skip to primary navigationskip to content

Professor Angela Roberts FMedSci

Neural circuits underlying the regulation and dysregulation of positive and negative emotion.
Professor Angela  Roberts, FMedSci

Professor of Behavioural Neuroscience

Angela Roberts is accepting applications for PhD students.

Office Phone: +44 (0) 1223 333763, Fax: +44 (0) 1223 333786


Angela Roberts received her degree in Neurobiology from the University of Sussex and her PhD in neuroendocrine control of reproduction from the University of Cambridge under the supervision of Joe Herbert in the Department of Anatomy. She stayed on in Cambridge and did her postdoctoral training in the Department of Experimental Psychology with Trevor Robbins where she held a Royal Society Research Fellowship from 1992-96. She then took up a teaching appointment in the Department of Anatomy and there began her studies on the prefrontal control of emotion regulation. Currently she undertakes the scientific leadership of the marmoset research centre at Cambridge and is Chair of the steering committee for a new Laboratory of Translational Neuroimaging. She also sits on the Executive committee of Cambridge Neuroscience.

She is currently an associate editor for Frontiers in Behavioral Neuroscience, a field Editor for the International Journal of Neuropsychopharmacology and sits on the council of the British Association of Psychopharmacology. In 2016 she was elected to the Fellowship of the Academy of Medical Sciences.

Research Interests

I am interested in the neural circuits underlying the regulation of cognition and emotion of relevance to our understanding of a variety of neuropsychiatric and neurodegenerative disorders. In particular my lab focusses on the prefrontal control of subcortical circuitry involved in processing positive and negative emotions, both in adulthood and more recently in development. The overall aim is to fractionate the neurocognitive circuits that underlie the regulation of emotion and to relate them to the distinct symptoms of emotion dysregulation present, not only in anxiety and depression, but also schizophrenia, autism and neurodegenerative disorders, such as Parkinson's disease. We combine a range of different experimental techniques and approaches including neuropsychopharmacology, remote measurement of cardiovascular activity, in vivo microdialysis, microPET and MRI. The lab is also interested in the relationship of activity in these neurocognitive circuits with individual differences in behavioural phenotypes, e.g. trait anxiety, and genotypes, during development as well as in adulthood.

Currently funded by an MRC Programme Grant and a WT Investigator award.

Current Lab members

Dr Andrea Santangelo
Dr Christian Wood
Dr Kevin Mulvihill
Dr Shaun Quah Kit Lung
Mrs Gemma Cockcroft
Mrs Lauren McIver
Graduate Students:
Ms Taylor Lynn-Jones
Mrs Rana Banai-Tizka
Ms Zuzanna Stawicka
Ms Lisa Duran
Mr Sebastian Axelsson


Professor Trevor Robbins
Professor Barry Everitt
Professor Barbara Sahakian
Dr Jeff Dalley
Professor Franklin Aigbirhio
Dr Tim Fryer
Dr Steve Sawiak
Dr Rudolf Cardinal
Dr Hannah Clarke



Organiser of Part II Neuroscience in PDN
Lecturer in Part 1B Neurobiology of human and animal behaviour, MVST
Organiser and Lecturer in Module N6, Part II PDN
Demonstrator in Part 1B Neuroanatomy practicals, MST

Key Publications

Roberts, A.C. Prefrontal Regulation of Threat-Elicited Behaviors: A Pathway to Translation. (2020) Annual Review of Psychology 71:20.1–20.31.

Santangelo A.M., SawiakS., Fryer T., Hong Y., ShibaY., ClarkeH.F., RissP.J., FerrariV., Tait R., SucklingJ. AigbirhioF.I., and RobertsA.C. Insula serotonin 2A receptor binding and gene expression contribute to serotonin transporter polymorphism anxious phenotype in primates (2019) Proceedings of the National Academy of Sciences16:14761-14768 

Roberts, A.C., Clarke, H.F. (2019) Why we need non-human primates to study the role of ventromedial prefrontal cortex in the regulation of threat and reward elicited responses. Proceedings of the National Academy of Sciences 116:26297-26304.

Alexander, A., Clarke, H.F., Roberts, A.C. A Focus on the functions of area 25. (2019) Brain Sciences 9:129.

AlexanderL., GaskinP., SawiakS.J., FryerT., HongY.T., CockcroftG., ClarkeH.F., RobertsA.C. Fractionating anhedonia by over-activating area 25 of primate subgenual anterior cingulate cortex (2019) Neuron 101:307-320.

Sawiak S.J., Shiba Y., Oikonomidis L., Windle C.P., Santangelo A.M., Grydeland H., Cockcroft G., Bullmore E.T*., Roberts A.C.*  Trajectories and milestones of cortical and subcortical development of the marmoset brain from infancy to adulthood.  (2018) Cerebral Cortex 28:4440-4453.  

Shiba Y., Oikonomidis L., Sawiak S., Fryer T.D., Hong Y.T., Cockcroft G., Santangelo A.M., Roberts A.C. Converging Prefronto-Insula-Amygdala Pathways in Negative Emotion Regulation in Marmoset Monkeys. (2017) Biological Psychiatry 82:895-903.   

Wallis C.U., Cardinal R. N., Alexander L., Roberts A.C., Clarke H.F. Opposing roles of primate areas 25 and 32 and their putative rodent homologs in the regulation of negative emotion. (2017) Proceedings of the National Academy of Sciences 114:E4075-4084.  

Santangelo, A.M. Ito, M., Shiba, Y., Clarke H.F., Schut E.H.S. Cockroft G., Ferguson-Smith A.C., Roberts A.C. Novel primate model of serotonin transporter genetic polymorphisms associated with gene expression, anxiety and sensitivity to antidepressants. (2016) Neuropsychopharmacology 41:2366-76.

Clarke HF, Horst N, Roberts AC, (2015), Regional inactivations of primate ventral prefrontal cortex reveal two distinct mechanisms underlying negative bias in decision making, Proceedings of the National Academy of Sciences, 112:4176-81

Shiba Y, Kim C, Santangelo AM, Roberts AC, (2015), Lesions of either anterior orbitofrontal cortex or ventrolateral prefrontal cortex in marmoset monkeys heighten innate fear and attenuate active coping behaviors to predator threat, Frontiers in Systems Neuroscience, 8:250,1-15. Special Research Topic: Structural and functional organization of the prefrontal cortex

Mikheenko Y, Shiba Y, Sawiak S, Braesicke K, Cockcroft G, Clarke H, Roberts AC, (2015), Serotonergic, brain volume and attentional correlates of trait anxiety in primates, Neuropsychopharmacology, 40:1395-404

Rygula R, Clarke HF, Cardinal RN, Cockcroft GJ, Xia J, Dalley JW, Robbins TW, Roberts AC, (2014), Role of Central Serotonin in Anticipation of Rewarding and Punishing Outcomes: Effects of Selective Amygdala or Orbitofrontal 5-HT Depletion, Cereb Cortex 2014 May 30. pii: bhu102 [Epub ahead of print]

Shiba Y, Santangelo AM, Braesicke K, Agustín-Pavón C, Cockcroft GJ, Haggard M, Roberts AC, (2014), Individual differences in behavioral and cardiovascular reactivity to emotive stimuli and their relationship to cognitive flexibility in a primate model of trait anxiety, Frontiers in Behavioral Neuroscience, 8:137, 1-14

Agustín-Pavón C, Braesicke K, Shiba Y, Santangelo AM, Mikheenko Y, Cockroft G, Asma F, Clarke H, Man M, Roberts AC, (2012), Lesions of ventrolateral prefrontal or anterior orbitofrontal cortex in primates heighten negative emotion, Biological Psychiatry, 72:266-272

Hampshire A, Chaudry AM, Owen AM, Roberts AC, (2012), Dissociable roles for lateral orbitofrontal cortex and lateral prefrontal cortex during preference driven reversal learning, Neuroimage, 59:4102-4112

Roberts AC, (2011), The importance of serotonin for orbitofrontal function, Biological Psychiatry, 69:1185-1191

Clarke HF, Hill GJ, Robbins TW, Roberts AC, (2011), Dopamine, but not serotonin, regulates reversal learning in the marmoset caudate nucleus, Journal of Neuroscience, 31:4290-4297

Mikheenko Y, Man M-S, Braesicke K, Johns ME, Hill G, Agustín-Pavón C, Roberts AC, (2010), Autonomic, behavioural and neural analyses of mild conditioned negative affect in the common marmoset, Behavioural Neuroscience, 124:192-203

Rygula R, Walker S, Clarke H, Robbins TW, Roberts AC, (2010), Differential contributions of the primate ventrolateral prefrontal and orbitofrontal cortex to serial reversal learning, Journal of Neuroscience, 30:14552-14559

Walker SC, Robbins TW, Roberts AC, (2009), Response disengagement on a spatial self-ordered sequencing task: effects of regionally selective excitotoxic lesions and serotonin depletion within the prefrontal Cortex, Journal of Neuroscience, 29:6033-6041

Walker SC, Robbins TW, Roberts AC, (2009), Differential contributions of dopamine and serotonin to orbitofrontal cortex function in the marmoset, Cerebral Cortex, 19:889-898

Man MS, Clarke HF, Roberts AC, (2009), The role of the orbitofrontal cortex and medial striatum in the regulation of prepotent responses to food rewards, Cerebral Cortex, 19:899-906

Reekie YL, Braesicke K, Man M, Roberts AC, (2008), Uncoupling of behavioral and autonomic responses following lesions of the primate orbitofrontal cortex, Proceedings of the National Academy of Sciences, 105:9787-9792

Clarke HF, Walker SC, Dalley JW, Robbins TW, Roberts AC, (2007), Cognitive inflexibility after prefrontal serotonin depletion is behaviourally and neurochemically specific, Cerebral Cortex, 17:18-27

Roberts AC, Reekie Y, Braesicke K, (2007), Synergistic and regulatory effects of orbitofrontal cortex on amygdala-dependent appetitive behavior, Annals of the New York Academy of Sciences, 1121:297-319

Clarke HF, Dalley JW, Crofts HS, Robbins TW, Roberts AC, (2004), Cognitive inflexibility after prefrontal serotonin depletion, Science, 7:878-880

Arana FS, Parkinson JA, Hinton E, Holland AJ, Owen AM, Roberts AC, (2003), Dissociable contributions of the human amygdala and orbitofrontal cortex to incentive motivation and goal selection, Journal of Neuroscience, 23:9632-9638

Crofts HS, Dalley JW, Collins P, Van Denderen JCM, Everitt BJ, Robbins TW, Roberts AC, (2001), Differential effects of 6-OHDA lesions of the frontal cortex and caudate nucleus on the ability to acquire an attentional set, Cerebral Cortex, 11:1015-1026

Dias R, Robbins TW, Roberts AC, (1996), Dissociation in prefrontal cortex of affective and attentional shifting, Nature, 380:69-72

Plain English

Emotions in humans and animals are regulated by circuits in the brain. These circuits process both positive and negative emotions. Our lab studies the higher order brain circuits that regulate both positive and negative emotion. This is relevant to our understanding of the heightened fear and anxiety and loss of pleasure associated with a range of disorders including not only generalised anxiety and depression but also schizophrenia, Parkinson’s disease and dementia.

From preclinical reward processing deficits in monkeys to anhedonia in depression

Trajectories and milestones of cortical and subcortical development of the marmoset brain from infancy to adulthood. 


Above: Serotonin innervation of orbitofrontal cortex.

Above: High Resolution structural MR images of the developing brain. Right hand column shows map of volume changes using tensor-based morphometry.

Above: Reduced Serotonin 2A receptor binding in the anterior insula associated with increased anxiety and genetic variation in the serotonin transporter.

Above: Altanserin (5-HT2a receptor) binding across the cortex. Picture courtesy of the Wolfson Brain Imaging Centre.