skip to primary navigationskip to content

Professor Randall S. Johnson Ph.D.

We are interested in the physiology of hypoxic response.
Professor Randall S. Johnson, Ph.D.

Professor of Molecular Physiology and Pathology

Wellcome Trust Principal Research Fellow

Fellow of Pembroke College

Randall Johnson is accepting applications for PhD students.

Office Phone: +44 (0) 1223 765931


I received a Bachelor of Science in Molecular Biology and a Bachelor of Arts in Swedish Language and Literature concurrently in 1983 from the University of Washington, in Seattle.  Having resolved to choose science over literature, I worked for a couple of years as a research technician for Dr. Don Pious at the UW, on a project concerned with the genetics of the human major histocompatibility complex. I then went to Harvard to do my doctoral work with Prof. Bruce Spiegelman, where we were involved in the early days of gene targeting in embryonic stem cells; and I knocked out the c-fos and c-jun proto-oncogenes, amongst others, while receiving a Ph.D. in Genetics.  I did my post-doctoral work as a Jane Coffin Childs Fellow with Prof. Doug Hanahan when he was at UC San Francisco, working on the role of angiogenesis in transgenic tumor models.  I began my career as a group leader in the Dept. of Biology at UC San Diego. There, our lab began our study of hypoxia and its effects on tumorigenesis and physiology, continuing to use knockout and other genetic models.  In 2011, I came to Cambridge and the Dept. of PDN as a Wellcome Trust Principal Research Fellow. In 2012 I became an associated member of the Department of Cell and Molecular Biology of the Karolinska Institute, in Stockholm, Sweden, and I continue to be an adjunct member of the Division of Molecular Biology at UC San Diego.

Research areas

Cellular and systems physiology:

Oxygen/hypoxic physiology

Research Interests

We work on how the body responds to hypoxia, or low levels of tissue oxygen.  This is relevant to a number of diseases, including cancer, and the laboratory is interested in hypoxic response in disease as well as in normal physiology.

  • The response to hypoxia acts in significant part through the Hypoxia Inducible Factor, or HIF.  The actions of this transcription factor are evident in almost all forms of cancer, but HIF is also present in other disease states.  Further, many aspects of normal physiological response include activation of HIF: HIF expression is seen in normal embryonic development, it is seen whenever wound healing or inflammation occur, and is essential for adjustment to high altitude or whenever the organism experiences a lower than normal level of oxygen.
  • Cancer: our work has for many years focussed on how malignant cells and the tissues that surround and infiltrate them react to oxygen levels.  The levels of oxygen found vary tremendously both from cancer to cancer, and within individual tumors.  One of the key findings from our recent work has been that each cell type found within tumors utilizes the HIF response differently; the malignant cells, tumor-associated fibroblasts, myeloid cells, endothelial cells and lymphoid cells all have different spectra of response via HIF, and these differences impact how tumors grow, survive and, ultimately, metastasize.
  • Inflammation, infection and immunity: We have investigated how T cells and macrophages utilize hypoxic response to allow immune response.  We are actively investigating this in terms of models of infection, inflammation, and immunological response to cancer; and we are also asking how myeloid/lymphoid interactions are affected by the response to oxygenation.
  • Physiology: a critical aspect of ventilatory control is the normative response of the carotid body and other tissues to the organisms overall oxygenation.  This response in turn can affect various aspects of homeostasis, including pulmonary vascular tension and even systemic blood pressure.  We have found that this control is highly related to the function of HIF and hypoxic response, in a way that is tightly controlled by complex interactions amongst tissue types.


Dr Cristina Branco-Price, Research Associate
Dr Andrew Cowburn, Senior Research Associate
Dr Colin Evans, Research Associate
Dr Asis Palazon, Research Associate
Dr Hideki Yamamoto, Research Associate

Key Publications

Palazon A, Goldrath AW, Nizet V, Johnson RS, (2014), HIF transcription factors, inflammation, and immunity, Immunity, 41(4):518-28

Lee YS, Kim JW, Osborne O, Oh da Y, Sasik R, Schenk S, Chen A, Chung H, Murphy A, Watkins SM, Quehenberger O, Johnson RS*, Olefsky JM* (*=Co-corresponding authors), (2014), Increased Adipocyte O2 Consumption Triggers HIF-1α, Causing Inflammation and Insulin Resistance in Obesity, Cell, 157:1339-1352

Cowburn AS, Takeda N, Boutin AT, Kim J, Sterling J, Nakasaki M, Southwood M, Goldrath AW, Jamora C, Nizet V, Chilvers E*, Johnson RS* (*=Co-corresponding authors), (2013), Differential regulation of systemic arterial pressure by the skin: role of HIF isoforms, Proceedings of the National Academy of Sciences, 110:17570-17575

Doedens AL, Phan AT, Stradner MH, Fujimoto JK, Nguyen JV, Yang E, Johnson RS, Goldrath AW, (2013), Hypoxia inducible factors enhance CD8+ T cell effector responses to persistent antigen, Nature Immunology, 14:1173-1182

Kim J, Evans C, Weidemann A, Takeda N, Lee YS, Stockmann C, Branco-Price C, Brandberg F, Leone G, Ostrowski MC, Johnson RS, (2012), Loss of Fibroblast HIF-1a accelerates tumorigenesis, Cancer Research, 72:3187-3195

Branco-Price C, Zhang N, Schnelle M, Evans C, Katschinski DM, Liao D, Ellies L, Johnson RS, (2012), Endothelial cell HIF-1a and HIF-2a differentially regulate metastatic success, Cancer Cell, 21:52-65

Doedens A, Stockmann C, Rubinstein M, Liao D, Zhang N, DeNardo D, Coussens LM, Karin M, Goldrath A, Johnson RS, (2010), Macrophage expression of HIF-1 suppresses T cell function and promotes tumor progression, Cancer Research, 70:7465-7475

Zhang N, Fu Z, Linke S, Chicher J, Gorman JJ, Poellinger L, Peet DJ, Powell F, Johnson RS, (2010), The asparaginyl hydroxylase FIH is an essential regulator of metabolism, Cell Metabolism, 11:364-378

Takeda N, O’Dea EL, Doedens A, Kim J-W, Weidemann A, Stockmann C, Asagiri M, Simon MC, Hoffmann A, Johnson RS, (2010), Differential activation and antagonistic function of HIF-a isoforms in macrophages are essential for NO homeostasis, Genes and Development, 24:491-501

Stockmann C, Kerdiles Y, Nomaksteinsky M, Weidemann A, Takeda N, Doedens A, Torres-Collado AX, Iruela-Arispe L, Nizet V, Johnson RS, (2010), Loss of myeloid cell-derived growth factor accelerates fibrosis, Proceedings of the National Academy of Sciences, 107:4329-4334

Nizet V, Johnson RS, (2009), Interdependence of hypoxic and innate immune responses, Nature Reviews Immunology, 9:609-617

Stockmann C, Doedens A, Weidemann A, Zhang N, Greenberg J, Cheresh D, Johnson RS, (2008), Deletion of vascular endothelial growth factor in myeloid cells accelerates tumorigenesis, Nature, 456:814-818

Boutin A, Weidemann A, Fu Z, Mesropian L, Gradin K, Jamora C, Wiesener M, Eckardt K-U, Koch CJ, Ellies LG, Haddad G, Haase VH, Simon MC, Poellinger L, Powell FL, Johnson RS, (2008), Epidermal sensing of oxygen is essential for systemic hypoxic response, Cell, 133:223-234

Mason S, Ameln H, Duh R, McNulty WJ, Howlett RA, Olfert IM, Sundberg CJ, Poellinger L, Johnson RS, (2007), HIF-1α in endurance training: suppression of oxidative metabolism, American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 293:R2059-206

Peyssonnaux C, Zinkernagel AS, Schuepbach RA, Rankin E, Vaulont S, Haase VH, Nizet V, Johnson RS, (2007), Regulation of iron homeostasis by the hypoxia inducible transcription factors (HIFs), Journal of Clinical Investigation, 117:1926-1932

Liao D, Corle C, Seagroves TN, Johnson RS, (2007), HIF-1α is a key regulator of metastasis in a transgenic model of cancer initiation and progression, Cancer Research, 67:563-572

Above: Randall Johnson's group (click to enlarge).

Above: Lung tissue showing infiltration following hypoxia: the yellow is MCP-1, a chemoattractant for inflammatory cells, expressed after exposure to hypoxia.

Above: Carotid body stained for tyrosine hydroxylase expression: this tissue is highly sensitive to hypoxia, in a manner determined by HIF expression.