skip to primary navigationskip to content

Clare Baker PhD

We are investigating a broad range of questions relating to the development of neurogenic placodes and the neural crest.
Clare Baker, PhD

Reader in Comparative Developmental Neurobiology

Clare Baker is accepting applications for PhD students.

Office Phone: +44 (0) 1223 333789, Fax: +44 (0) 1223 333786

Research Interests

Neurogenic placodes and the neural crest: development of the vertebrate peripheral sensory nervous system

Neurogenic placodes and the neural crest are two distinct embryonic cell populations that are crucial for the development of the vertebrate head. Together, they give rise to the whole peripheral nervous system, i.e., all the sensory receptor cells, neurons (nerve cells) and glial cells (nerve-support cells) located outside the brain and spinal cord. Neural crest cells also build much of the craniofacial skeleton.

Neurogenic placodes (paired patches of thickened surface ectoderm in the embryonic head) give rise to the paired peripheral sense organs: the olfactory placodes form the olfactory receptor neurons in the nose that detect smells; the otic placodes form the inner ears, in which fluid movement (due to sound waves or head motion) stimulates mechanosensory hair cells, giving us our senses of hearing and balance; and a series of lateral line placodes forms the lateral line system of fish and aquatic-stage amphibians, in which mechanosensory hair cells (very like those in the inner ear), distributed in lines over the head and flank, detect local water movement for e.g. prey/predator detection and schooling behaviour. Neurogenic placodes also form the hormone-producing cells of the anterior pituitary gland, the eye lenses, and most of the peripheral sensory neurons of the head, collected in discrete cranial sensory ganglia.

Neural crest cells migrate out of the developing brain and spinal cord: they give rise to all the other neurons and all glial cells of the peripheral nervous system, plus a wide variety of other cell types including pigment cells, most of the cartilages and bones of the face and skull, and the dentine-producing cells of teeth.

Development of olfactory ensheathing glia

Using grafting techniques in chicken embryos and genetic lineage-tracing in mice, we discovered that olfactory ensheathing cells (OECs, which ensheath and protect olfactory nerve fibres) are derived from the neural crest, like all other peripheral glial cells, and not from the olfactory placodes as previously thought (Barraud et al., 2010, Proc. Natl. Acad. Sci. USA). Excitingly, OECs can promote nerve repair when transplanted into the damaged spinal cord, but it has proved difficult to isolate them in large enough numbers from the nose for effective therapy. Neural crest stem cells persist in adult skin and hair follicles, and it is possible to isolate these stem cells and grow them in the lab. The next step is to work out how to turn these stem cells into OECs: to do this, we need to investigate how this process happens normally in the developing embryo. We are currently investigating this question, as well as the role of OECs during the embryonic development of the olfactory system.

Development and evolution of electroreceptors

Land vertebrates, as well as frogs and most modern bony fish, have lost one of the most ancient vertebrate senses, the ability to detect weak electric fields in water, used for finding prey and for orientation. Electroreceptors are modified hair cells, distributed in fields of "ampullary organs" on either side of the lateral lines of mechanosensory hair cells. They are found in all major aquatic vertebrate groups, including jawless fish (lampreys), cartilaginous fish (sharks, rays), primitive bony fish (e.g. sturgeon, paddlefish), and even some amphibians (salamanders). Although the ancestors of teleosts (modern bony fish) lost electroreceptors, so that most of these fish cannot detect electric fields, electroreceptors seem to have been independently "re-invented" at least twice in two different groupsof teleosts, including catfish and "electric fish". (For more information on vertebrate electroreception, see Map Of Life). Very little is known about electroreceptor development. We are investigating the embryological origins of electroreceptors, and the genes underlying their formation, in a wide range of vertebrate groups including shark, paddlefish, salamander and catfish.

Development and evolution of the neural crest-derived pharyngeal skeleton

Dr Andrew Gillis, a Royal Society Newton International Fellow in the lab from 2009-2011, worked on a variety of questions relating to the formation of the neural crest-derived skeleton of the jaws and more posterior pharyngeal arches. For further details, please see his webpage.

Research team

Dr Perrine Barraud
Dr Melinda Modrell
Dorit Hockman (PhD Student)
Sophie Miller (PhD Student)
Connie Rich (PhD Student)


Professor Marianne Bronner-Fraser, California Institute of Technology, USA
Dr Alan Burns, UCL Institute of Child Health, London
Dr Marcus Davis, Kennesaw State University, USA
Dr Raj Ladher, RIKEN Centre for Developmental Biology, Kobe, Japan
Dr Sylvie Mazan, Station Biologique, Roscoff, France
Dr Filippo Rijli, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
Dr Andrea Streit, King's College London
Professor Eric Turner, Seattle Children's Research Institute, USA


Part IA MVST Functional Architecture of the Body

Part IB MVST Head & Neck Anatomy

Part IB MVST Neuroanatomy

Part II PDN module N1 Developmental Neurobiology

Part II PDN/Zoology module P6 Development: Cell Differentiation and Organogenesis

Key Publications

Piotrowski T, Baker CVH, (2014), The development of lateral line placodes: Taking a broader view, Dev. Biol. 389, 68-81

Modrell MS, Hockman D, Uy B, Buckley D, Sauka-Spengler T, Bronner ME, Baker CVH, (2014), A fate-map for cranial sensory ganglia in the sea lamprey, Dev. Biol. 385, 405-416

Barraud P, St John JA, Stolt CC, Wegner M, Baker CVH, (2013), Olfactory ensheathing glia are required for embryonic olfactory axon targeting and the migration of gonadotropin-releasing hormone neurons, Biology Open 2, 750-759

Gillis JA*, Modrell MS, Baker CVH, (2013), Developmental evidence for serial homology of the vertebrate jaw and gill arch skeleton, Nature Communications 4, 1436. doi: 10.1038/ncomms2429 *Corresponding author

O'Neill P, Mak S-S, Fritzsch B, Ladher RK*, Baker CVH*, (2012), The amniote paratympanic organ develops from a previously undiscovered sensory placode, Nature Communications 3, 1041. doi:10.1038/ncomms2036 *Joint corresponding authors

Gillis JA, Modrell MS, Northcutt RG, Catania KC, Luer CA, Baker CVH, (2012), Electrosensory ampullary organs are derived from lateral line placodes in cartilaginous fishes, Development 139, 3142-3146

Modrell MS, Bemis WE, Northcutt RG, Davis MC, Baker CVH, (2011), Electrosensory ampullary organs are derived from lateral line placodes in bony fishes, Nature Communications 2, 496. DOI:10.1038/ncomms1502

Barraud P, Seferiadis AA, Tyson LD, Zwart MF, Szabo-Rogers HL, Ruhrberg C, Liu KJ, Baker CVH, (2010), Neural crest origin of olfactory ensheathing glia, Proc. Natl. Acad. Sci. U.S.A. 107, 21040-5

Dude, CM, Kuan, C-YK, Bradshaw, JR, Greene, NDE, Relaix, F, Stark, MR*, Baker CVH*, (2009), Activation of Pax3 target genes is necessary but not sufficient for neurogenesis in the ophthalmic trigeminal placode, Dev. Biol. 326: 314-326 *Joint corresponding authors

Baker CVH, (2008) The evolution and elaboration of vertebrate neural crest cells, Curr. Op. Gen. Dev. 18, 536-543

Xu, H, Dude, CM, Baker CVH, (2008), Fine-grained fate maps for the ophthalmic and maxillomandibular trigeminal placodes in the chick embryo, Dev. Biol. 317, 174-186

O’Neill, P, McCole, RB, Baker CVH, (2007), A molecular analysis of neurogenic placode and cranial sensory ganglion development in the shark, Scyliorhinus canicula Dev. Biol. 304, 156-181

Above: Cross-section of the embryonic chicken olfactory bulb showing neural crest-derived olfactory ensheathing cells (green). (Blue, axons; red, low-affinity neurotrophin receptor.) Dr Perrine Barraud

Above: Head of a paddlefish (Polyodon) embryo stained for Sytox green, showing fields of rosette-like ampullary organs (containing electroreceptors) on either side of lines of mechanosensory hair cells. Dr Melinda Modrell

Above: Scanning electron micrograph of a frog (Xenopus) mechanosensory lateral line organ showing the long kinocilia of the mechanosensory hair cells that make up the neuromast. The kinocilia are deflected by water movements. Dr Clare Baker & Dr Jeremy Skepper