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e Ultrafast initiation of a neural race by impending errors
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Key points

� The brain makes decisions by means of races between neural units representing alternative
choices.

� In the present study, we record the eyemovements made in the Wheeless task, when a visual
stimulus is followed after a short delay by another stimulus demanding a different response.

� The behaviour can be very precisely described as a race between three independent decision
processes: one Go process for each of the responses, and a Stop process that tries to cancel the
first, now erroneous, response.

� To explain the high success rate for cancellation that we observe, the onset time for the Stop
process must be some 10–20 ms shorter than for Go.

� As well as extending our understanding of the dynamics of complex decision-making, this task
provides a rapid, non-invasive method for quantifying disorders of higher neural function.

Abstract The brain makes decisions by means of races between neural units representing
alternative choices, and such models can predict behaviour in decision tasks in a precisely
quantitative way. But what is less clear is how soon after the stimulus the race actually starts.
In the present study, we re-visit a complex decision experiment: the Wheeless task, in which a
saccadic stimulus is followed after a short delay by a second stimulus, with the subject sometimes
making a saccade to the first, now inappropriate, stimulus, and sometimes going straight to the
correct one. We demonstrate that a simple model with three accumulator units, two ‘Go’ and
one ‘Stop’, can then account in detail for the individual responses made, as well as their timing.
This complex decision-making behaviour is predicted directly for each individual subject by their
performance in a simple step saccadic task, which identifies the two free parameters that are
specific for each subject. By contrast to previous assumptions, we find that it is necessary for the
onset time of the Stop unit to be shorter than for Go by 10–20 ms. This suggests a specifically
fast mechanism for altering responses in situations where urgent action is needed to prevent an
impending error.
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Introduction

It is generally assumed that the brain makes decisions
as a result of accumulating relevant information by a
quasi-Bayesian process until the resultant probability
reaches a threshold that justifies action. How long this
takes will depend on the dynamics of the rise-to-threshold,
and quantitative analysis of reaction times has provided a
great deal of information about the underlying decision
mechanisms. But what about when things go wrong?

An example is when a second stimulus appears very
soon after the first, which makes the first response
inappropriate: when driving, for example, and the crossing
lights turn green but a pedestrian steps in front and
you stop yourself from hitting the accelerator. In the
laboratory, a popular example is the countermanding task:
subjects are told to cancel their response to a stimulus if a
second one appears (Logan & Cowan, 1984; Logan et al.
1984; Carpenter, 1988; Hanes & Schall, 1995; Hanes &
Carpenter, 1999; Boucher et al. 2007; Camalier et al. 2007;
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Emeric et al. 2007). Because the accumulation process
is noisy, countermanding is probabilistic; sometimes it
succeeds, sometimes it does not. If the delay D before
the second stimulus is long, the probability of successful
countermanding is low because the decision process
has almost reached completionbut rises steadily as D is
reduced.

It is not difficult to model all of the above with
two accumulating decision units: one (Go) leading to
the response and a second (Stop) causing immediate
cancellation of the impending movement (Fig. 1) (Logan
& Cowan, 1984; Logan et al. 1984; Hanes & Schall,
1995; Hanes & Carpenter, 1999). Specifically, one can
instantiate the two units using LATER (Carpenter &
Williams, 1995; Carpenter, 2012), a Bayesian model that
can provide quantitatively accurate predictions of the
stochastic behaviour of individual subjects in this and
other more complex tasks (Hanes & Carpenter, 1999;
Noorani & Carpenter, 2011; Noorani et al. 2011; Noorani
& Carpenter, 2013; Noorani, 2014; Noorani & Carpenter,
2014). Such a race between Go and Stop processes has
recently been demonstrated for neurons in the basal
ganglia during countermanding (Schmidt et al. 2013), and
similar activity is probably found whenever impending
actions must be cancelled (Noorani & Carpenter, 2014).

A related but less artificial task can provide even
more information about how neural decisions alter
when circumstances suddenly change: the Wheeless task,
which was introduced almost 50 years ago but sub-
sequently investigated only sporadically (Wheeless et al.
1966; Komoda et al. 1973; Carlow et al. 1975; Becker &
Jürgens, 1979; Camalier et al. 2007). It can be regarded
as a special case of the more general double-step task
(Westheimer, 1954), in which a saccadic target is presented
in two successive positions with a short intervening delay;
the relationships between different versions of the basic
task have been usefully discussed by Ramakrishnan and
Murthy (2013). In the Wheeless task, a target steps to one
side at the start of the trial; in control trials, it remains there
but, on other trials, randomly interleaved, after a delay D,
it jumps to the corresponding location on the opposite
side (Fig. 2). No specific countermanding instructions
are needed: subjects are told simply to follow the target
with their eyes. As with countermanding, behaviour is
probabilistic: on some trials, they make a saccade to the
first target (a type A response), which is followed by

a saccade to the second (a type C response), whereas
sometimes they go straight to the final position (a type B
response). In general, the proportion of type A responses,
p(A), is an increasing function of D (Fig. 4).

Although this relationship between p(A) and D
can provide some information about the underlying
mechanisms, very much more can be learnt (as with
countermanding) by examining the distributions of
reaction times of latencies of the different types of response
in the task. A helpful way to represent the outcome of such
experiments is to plot these distributions cumulatively.
Using a probit scale for the cumulative frequency, and a
reciprocal scale for latency (a reciprobit plot), in control
trials, we should then obtain a straight line. This is because,
in LATER, the rate of rise varies from trial to trial with a
Gaussian distribution, such that the reciprocal of latency
is also Gaussian (Carpenter & Williams, 1995; Carpenter,
2012). An example is shown in Figure 2 for D = 100 ms.
The cumulative probabilities are plotted as a fraction of
the total number of trials for that category, leading to
distributions that level off at p(A) (for A), or 1-p(A) for
B. It can be seen that the earlier responses to A follow the
same distribution as the controls, and that the effect of
the second stimulus effectively cuts the cumulation short,
initiating a corresponding cumulation of the B response

A great advantage of the Wheeless task is that there is
at least one response in every trial, whereas, in counter-
manding, a large number of trials generate no response
at all, such that there is nothing to measure; from an
experimenter’s point of view, it is therefore a great deal
more efficient, with three different classes of response (A,
B and C) for which attemptscan be made to predict the
distributions. It is also more natural than countermanding
in that no explicit instructions to cancel are required:
cancellation simply follows implicitly if subjects are just
told to follow the target.

In the present study, we examine latency distributions
for the three different kinds of responses (A, B and C) made
in the Wheeless task and, from these, we deduce a simple
model that, despite having very few parameters, predicts
the quantitative details of the responses by individual
subjects, providing much more information about the
Stop process, as well as how it is triggered. In particular,
the time needed to detect a situation where the Stop
unit needs to abort the original response is shown to
be significantly shorter than that needed to detect the

Countermanding

Target

Stop signal

Stop-signal

delay

50 ms

50 ms

Delay

Delay Go

Incorrect

saccade

Stop

Stopμ, σ

μStop, σStop

Figure 1. A model for countermanding
When the target appears, it triggers a rise of activity in a
Go decision unit that would normally initiate a response
on reaching threshold. However, if a stop signal is
presented (after the stop-signal delay), it triggers a Stop
decision unit that cancels the Go unit if it reaches its
threshold first. Because of variability in the rates of rise of
the decision signals in different trials, sometimes
cancellation may be successful and sometimes not.
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existence and location of primary targets to initiate Go
units. We suggest that there are two functionally distinct
routes by which incoming stimuli influence a decision: one
that triggers directed actions, and one that recognizes and
aborts unwanted impending actions, with the increased
speed of the latter reflecting the simpler nature of the
associated detection process.

Methods

Participants

After having provided their informed consent, eight
subjects (six males, two females, age mean ± SD
27.9 ± 6.8 years) participated in the experiments, which
were performed in accordance with the Declaration
of Helsinki and had received Local Ethical Committee
approval. None of the subjects had visual defects other
than deuteranopia for participant F, and refractive errors,
which were corrected as necessary: the authors comprised
two of the subjects; the other subjects were not informed
about the purpose of the experiments. Data from one
participant had to be discarded because of over-noisy raw
records.

Stimuli

We created the stimuli on a calibrated and linear CRT
display (GDM-F520 monitor, resolution 800 × 600; Sony,
Tokyo, Japan), with a refresh rate of 100 Hz synchronized
to the timing of data collection, viewed at a distance of
1 m to provide a visual subtense of 22 × 17 deg. The target
elements consisted of black dots of diameter 0.3 deg, with
the peripheral targets centred horizontally at 4 deg to left
or right of the centre, on a uniform white background (CIE

x = 0.283, y = 0.299, Lum = 107.8 cd m−2). The visual
surrounds were arranged to have a similar luminance,
aiming to minimize the effect of after-images or field
adaptation.

Recording

Eye movements were measured using a dual differential
infrared reflection binocular oculometer (Ober et al. 2003)
(Ober Consulting, Poznan, Poland) with a 250 Hz band-
width, and linear to 7% within a range of ±30 deg. The
oculometer was positioned on the bridge of the nose,
with the subject’s head resting comfortably on a chin-rest.
Its output was sent to a ViSaGe system (Cambridge
Research Systems Ltd, Rochester, UK) sampling at 100 Hz
in exact synchrony with the screen frame rate to pre-
vent uncertainties arising from interrupts and other inter-
ference from Windows processes; the ViSaGe in turn inter-
faced with the recording and stimulation application SPIC
(Carpenter, 1994) running on a PC, which also generated
the stimuli.SPIC detects saccades in real time using a
criterion based on velocity and acceleration (normally
50 deg s−1 and 2500 deg s−2); however, after each
run, we checked the individual saccadic traces manually
and excluded from further consideration any containing
obvious artefacts (as a result of blinks, headmovements or
lapses of attention) or occurring with a latency of less than
80 ms.

Protocols

Each trial began with presentation of the central target
during a foreperiod whose duration varied randomly
between 0.5 s and 3 s in a non-ageing manner (Oswal et al.
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Figure 2. The Wheeless task
Left: in a control trial, after a random foreperiod, the target steps to one side and the subject makes a saccade
to follow it after a delay: the latency or reaction time.In the Wheeless task, such trials are randomly interleaved
with trials (middle) in which, after a delay D, the target steps to the opposite side. The subject may then respond
by making two saccades: one to the first position (an A response, grey) followed by one to the second (a C
response), or may jump straight to the second (a B response, black). Right, reciprobit plots of reaction times from
one subject in this experiment, showing cumulative frequency as a function of reciprocal latency. The distribution
for A responses (grey) is initially similar to that for controls (open circles) but then stops at a level dependingupon
D (whose value here was 100 ms). The B responses (black) are greatly delayed but rise in a similar manner to a
steady level.
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2007), followed by presentation of one of the peripheral
targets, randomly on the right or left. On experimental
trials, which formed half of the total and occurred at
random, this was followed after an interval D by the
target moving to the mirror-image target position on
the opposite side of the screen: experimental trials were
randomly interleaved with possible values of D: 40, 70,
100, 130 and 160 ms. Each trial ended 600 ms after pre-
sentation of the first stimulus, with an inter-trial period
of 100 ms before the start of the next. One hundred such
trials constituted a block, and each participant undertook
a run of six blocks, with rest and refreshment in between
as required. The subjects were told to look at the targets
presented on the screen and to follow them with their eyes
when they moved; we deliberately did not draw attention
to the fact that that there were interleaved control and
experimental trials or that, in the latter, the target would
jump to a new position. Before a session, they were allowed
to practise, usually for 20–30 trials, to ensure that they
understood the task.

Analysis

SPIC recorded distributions of latencies of A responses
(i.e. to the location of the first stimulus), of B responses
(i.e. that go direct to the location of the second stimulus)
and of the correction saccades to the second stimulus that
normally follow the first response (C responses), as well
as of the saccades generated in the control trials. The
individual distributions of control latencies were fitted
in SPIC to determine the best-fit values for each sub-
ject of the corresponding LATER parameters (μ and σ,
mean ± SD of the underlying Gaussian distribution of
the rate of rise of the cumulation) by minimization of the
one-sample Kolmogorov–Smirnov statistic (Kolmogorov,
1941; Smirnov, 1948) (K–S 1); this is a conventional
optimization that can be performed analytically and
does not demand iterative simulation. In doing this, we
assumed an overall invariant delay Tgo, as a result of
synaptic and conduction delay and activation of photo-
receptors and muscle cells and detection, which was held
constant at 50 ms: the critical question of how much of
that delay is afferent rather than efferent is discussed below.
These values are shown in Table 1.

Simulations

We used SPIC to run MonteCarlo simulations of the
behaviour in the experimental trials, using a model
described in detail below, finding values of the parameter
μStop (the mean rate of rise of the cumulation unit of the
stop process) for each subject and condition by reiterative
minimization of the two-sample Kolmogorov–Smirnov
test (K–S 2) in simulated runs of 300 trials each
(Table 2). The general procedures have been described

Table 1. Individual parameter values

Participant

Parameter A B C D E F G

μ 8.34 6.26 8.42 6.94 8.83 8.75 7.56
σ 2.05 0.67 2.34 2.13 2.79 2.28 1.87

Values are the mean ± SD(μ, σ) of the rate of rise of the Go
units as estimated from the control trials, for each participant
(expressed in Hz).

Table 2. Iterative simulation fitting

Sequence Iterations Trials p(K–S)A p(K–S)B μstop

1 16 4800 0.71 0.96 15.88
2 17 5100 0.51 0.97 16.25
3 23 6900 0.71 0.92 15.83
4 20 6000 0.64 0.91 15.89
5 17 5100 0.73 0.94 15.88
6 16 4800 0.81 0.87 15.80
7 8 2400 0.67 0.93 16.50
8 22 6600 0.58 0.97 15.48
9 13 3900 0.38 0.94 15.80
10 19 5700 0.64 0.97 15.99
11 9 2700 0.44 0.97 15.91
12 22 6600 0.73 0.95 15.80
13 12 3600 0.38 0.94 15.78
14 13 3900 0.44 0.97 15.65
15 15 4500 0.81 0.86 15.82
16 14 4200 0.58 0.91 16.29
17 13 3900 0.71 0.84 16.26
18 19 5700 0.61 0.89 16.49
19 14 4200 0.51 0.86 16.31
20 16 4800 0.58 0.92 15.90

The results of a sequence of 20 independent iterative simulation
fits for μstop in a representative single subject (B) with D = 100 ms,
showing the degree of robustness of the final estimated value.
Each fit reiterates until no further significant improvement
occurs, with the number of iterations and therefore trials (300
trials per iteration) varying stochastically in each case (the
Iterations and Trials columns); the data derive from a total of
95,400 trials; the mean estimate of μstop is 15.98 Hz (SEM= 0.06).
p(K–S)A and p(K–S)B are the significance values for the resultant
K–S tests in each case for the A and B response distributions,
respectively.

previously (Noorani et al. 2011; Noorani & Carpenter,
2013). Because of the greater stochastical complexity of the
model, compared to fitting the controls, this fitting cannot
be performed analytically, and must necessarily introduce
slightly more uncertainty concerning the optimality of
the values that are obtained. This is of course true of
any ‘best fit’ procedure, whether analytical or iteratively
stochastic: unless infinite time is available in which
to scan the n-dimensional space of possible parameter
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values, there must always be a degree of uncertainty,
and this is particularly true of non-parametric tests such
as the Kolmogorov–Smirnov test. The simulation fitting
performs an adaptive exploration of the region around
the previous best estimate, reducing the size of the
corresponding simplex (the Amoeba procedure; Press et al.
2007) each time, until no further significant improvement
occurs. In this case, some 10–20 iterations are typically
required; the robustness of the procedure can be judged
from Table 2, which shows the results from a sequence
of such iterations to estimate μStop on an identical set of
observations, with over 95,000 individual trials. The values
of μ and σ for the Go units for each subject were simply
those previously obtained analytically from the control
trials, and thus comprise fixed parameters for each sub-
ject. Other parameters (σstop, and two parameters, τ and L,
which describe lateral inhibition) that appeared to be less
critical were estimated globally (over all conditions) for
the group of subjects as a whole and no attempt was made
to find optimum values for individuals, aiming to reduce
the number of unnecessary free parameters. Therefore, the
only free parameter for each subject in each condition was
μStop.

Results

Controls

The distributions of latencies in the control trials (50%
of all trials: grey points) (Fig. 3) had the linear form

predicted by LATER, providing the data for estimating
the LATER parameters μ and σ of the Go units, for each
subject, by minimization of the K–S 1 (P values: 0.50, 0.89,
0.26, 0.85, 0.34, 0.46, 0.89). These parameters vary quite
widely from one subject to another, reflecting intersubject
variations that are nevertheless extremely stable over time,
as is characteristic of reaction times in general (Carpenter,
2012; Antoniades et al. 2013b) (Table 1).

The A responses

As noted in the Introduction, behaviour in the
experimental trials was stochastic. For a given value of the
interval D, in a proportion p(A) of the trials, the subject
made two successive saccades to the first and second target
locations (a type A response) and, in the remainder, the
subject would make a single saccade straight to the final
target location (a type B response). As previously reported
(Wheeless et al. 1966; Komoda et al. 1973; Carlow et al.
1975; Becker & Jürgens, 1979; Camalier et al. 2007), p(A)
increased monotonically with D (Fig. 4, left).

Figure 3 shows reciprobit plots of the distributions
of latencies of the A responses for each value of D. In
these ‘incomplete’ plots, the cumulative percentages are
of the number of responses as a fraction of the total
number of trials, rather than simply of A-trials alone,
such that they asymptote finally to a level representing
p(A). The distributions initially rise along the same
cumulant as the controls, corresponding to the period
before the appearance of the second target, during which
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Figure 3. Observed and simulated A
responses
Reciprobit plots of distributions of latencies for A
responses are shown (as in Fig. 2) for four subjects
(participants A, B, E and F): actual observations
(more saturated colours) are shown, as well as
simulated data (less saturated) from the model.
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the behaviour must inescapably be identical in the two
cases, before levelling off.

In this respect, the A responses are very similar to the
uncancelled responses in a countermanding task, and a
similar model should predict both. However, we found
that applying a model such as in Fig. 1 to our Wheeless
data failed in one crucial respect. The problem is illustrated
schematically in Fig. 5. In a countermanding trial, the stop
stimulus, after the inevitable ‘physiological’ afferent delay,
starts the Stop unit, which eventually reaches threshold
and, in effect, slices into the distribution for control trials,
cancelling all of the responses that would otherwise have
occurred. If we take the afferent delay to be identical for the
target and for the stop stimulus, then there is an absolute
minimum value for p(A) that cannot be reduced, however
rapidly the Stop unit rises to threshold. Were we to observe
a smaller value of p(A), we would be forced to conclude
either that the system is capable of precognition or that the
assumption of equal afferent delays for the Go and Stop
pathways is incorrect, and that the latter is faster and able
to overtake the former.

For two of our subjects, with the largest values of D,
this is exactly what we found: the control distributions
were being ‘sliced’ earlier than would be physically possible
even if the rate of rise of the Stop unit, μStop, were to be
infinite. By modelling with different afferent delays for the
Stop unit, we estimated that, for both of these subjects,
it would have to be some 5 ms shorter than the afferent
delay for the Go unit to make the observations possible,
albeit with an implausibly infinite value for μS. If this
difference, �T (= Tstop – Tgo) is −10 ms, the values of
μstop needed to fit the observations are still anomalously
large (Fig. 4, right; Table 2) but, with �T = −20 ms,
the necessary values for μstop, averaged across all subjects,
are not significantly different for D = 160 ms compared
to the other values of D (two-tailed t test, P = 0.194).
Because it is always possible to trade off different values
of �T against variations in μstop, there is no absolute
conclusion, except that our data show that �T must be at
least −5 ms and probably lies in the range −10 to −20 ms
(as shown in Fig. 6; which also adds, to Fig. 1, an explicit
distinction between afferent delays and the corresponding
efferent delays that must include such factors as muscle

activation, nerve conduction and neuromuscular synaptic
delay). It is important to note that this argument makes
no assumptions about any aspect of the model except the
values of the delays in each case; for the two instances
mentioned, the Stop signal must be initiated earlier if
causality is not to be violated. Nor is it simply the result of
some individual statistical anomaly. From Fig. 4, it clear
that is an increased �T regularizes the data across all
subjects.

Table 3 shows best-fit values for μStop, assuming
�T = −10 ms, and Fig. 3 shows the corresponding
simulated distributions, all of which fit the observations
for all subjects and values of D, with Pnever less than 0.1.
As noted above, at this value of �T, discrepantly large
values of μstop are still needed to fit the observations for
some subjects, suggesting that �T should be larger still.

The B responses

Having obtained best-fit values for μStop by analysis of
the A responses, it should in principle be possible to pre-
dict latency distributions for the B responses as well. A
simple independent race model, with a second Go unit
having exactly the same parameters μ and σ as the original
A unit, and with the same afferent delay, does indeed
generate simulated distributions very similar to what is
observed, although with some systematic discrepancies.
In particular, for small D, they predict slightly shorter
latencies for B responses than are actually observed, as
if the original A stimulus was exerting some kind of
transient inhibitory effect, of a kind that has been noted
before between interacting saccadic targets (Hanes &
Carpenter, 1999; Noorani et al. 2011). We found that
these discrepancies could almost be eliminated by adding
a simple mechanism of lateral inhibition, of a kind
frequently introduced in such models (Hanes & Carpenter,
1999; Leach & Carpenter, 2001; Findlay & Gilchrist, 2003)
between the units (Fig. 7), having an exponential decline
with a time constant τ of 67 ms and a relatively small
(L = 2%) maximum effect (in other words, the rate of
rise of one unit is reduced by 2% compared to that of the
other); these values did not need to be varied between sub-
jects, and we made no attempt to determine their optimum
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Figure 4. Dependence of p(A) and µstop on D
Left: average values of p(A), rising monotonically
as D increases. Right: average best-fit values of
μstop for three different values of �T, of the Stop
signal afferent delay relative to that for Go; with no
reduction (�T = 0) the value rises catastrophically
beyond D = 130 ms; for �T = −10 ms, μstop still
rises but less dramatically; for �T = −20 ms,
μstop does not alter significantly with D. Averages
are across all subjects; error bars indicate 1 SE;
μstop is shown in Hz.
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values. The observed and simulated latency distributions
for B responses, using this model, are shown in Fig. 8, left.
In general, the correspondence is very good, despite the
obvious idiosyncratic differences between subjects, and in
no case (across all subjects and D-values) was P less than
0.1 (K–S 2).

Target
Latency distribution

Control trial

Countermand trial

Time

appears

Stop

stimulus

Stop

stimulus

Stop unit

accumulation ...

Afferent delay

Afferent delay

Afferent delay

Afferent delay

p(A)

p(A)

Afferent delay

Cancel

Stop stimulus

afferent delay

too long

Stop stimulus delay, D

Stop stimulus delay, D

Target unit accumulation ...

Wheeless trial

Figure 5. Timing relationships in countermanding and
Wheeless trials
Top: countermanding. After an afferent delay, assumed the same as
for the original stimulus, a stop stimulus initiates a stop process that
cancels the responses that would otherwise have occurred (grey
area), leaving behind a proportion p(A) of trials that remain
uncancelled (black). Bottom: wheeless. Even if the stop process is
taken to be infinitely fast (dotted arrow), if the two afferent delays
are assumed identical, it is impossible to explain the small proportion
p(A) of A responses actually observed (black). It must be concluded
that the afferent delay for the stop process is shorter than that for
Go.

The C responses

A complete model should also be able to predict the
timing of the final corrective saccades (C responses). In
a previous study (Noorani & Carpenter, 2014), we showed
that, in the anti-saccade task, the final corrective saccades
made after an initial incorrect response could be accurately
modelled very simply, if the LATER unit corresponding
to these saccades is triggered when the unit for the
original response reached its threshold. We incorporated
the same mechanism in our Wheeless model, with the
additional and inescapable proviso that the unit could not
be triggered until the second target had actually appeared
(and allowing for the afferent delay). Observed and pre-
dicted distributions of latencies of C responses, according
to this model (which requires no extra parameters) are
shown in Fig. 8 (right); the fits are all satisfactory (K–S 2:
P > 0.05 for all conditions and subjects).

Figure 9 compares observed and predicted proportions
of type A responses and median latencies of B and C
responses.

Discussion

Although race models have been used to describe simple
or choice reaction times for several decades, only relatively
recently has it been realized that they can also model more
complex decisions. In the present study, we have revisited a
classic example of such a task, showing that a simple model
with three decision units can explain the reaction time
behaviour in considerable quantitative detail. Moreover, it
needs only one free parameter for each subject, with the
others being invariant between subjects or derived from
control data; indeed, if the larger value of �T is accepted,
no individual free parameter is required at all: the entire
behaviour for any particular subject can be predicted from
the reaction times in their control trials.

The precision of the model provides further
information about quantitative aspects of cancellation
and error correction, implying in particular that the
mechanism for stopping an impending disaster appears
to be specialized for unusually fast initiation. Specifically,
if the Go and Stop afferent delays are equal, and even
allowing μstop to be infinite, such that the stop unit acts
instantaneously, for larger values of D, the model generates

Wheeless A responses

Target

D

Delay Go

Stop

Stop

20 ms
A response

Delay

30 ms

10-20 ms

μ, σ

μStop, σStop

Figure 6. Model for the Wheeless A responses
This is closely similar to that for countermanding
(Fig. 1) but with the overall fixed delay divided
between afferent and efferent components, and
the former shorter for the Stop signal than for Go.
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Table 3. µStop

Participant

D (ms) A B C D E F G

40 22 20 19 19 22 31 25
70 22 19 19 19 22 23 22
100 18 16 19 19 29 18 20
130 21 15 24 21 63 26 22
160 22 15 45 18 90 26 110

The best-fit values for μStop are shown (Hz) for all participants
and each value of D, using a model in which �T, the difference
between the afferent delays for Go and Stop, is taken to be
−10 ms. Other parameters (τ and L, time-constant and degree of
lateral inhibition, and σstop) were invariant across subjects (τ =
67 ms, L = 2%, σstop = 5.0 Hz).

more type A responses than are actually observed. The
inescapable conclusion is that the afferent delay of the
Stop unit is shorter than the Go unit by some 10–20 ms;
this then predicts the correct proportions of responses
in the task with values for μStop for each subject that no
longer have to alter with D. This is in contrast to what has
previously been reported for the countermanding task,
or other tasks such as anti-saccades that require a Stop
unit (Logan et al. 1984; Hanes & Schall, 1995; Hanes &
Carpenter, 1999).

Fast neural onset time

The time lapse between a stimulus and the onset of the
decision rise-to-threshold, an aspect of decision modelling
that has tended to be glossed over, comprises two logically
distinct components. First, there is an irreducible afferent
delay Tin including photoreceptor activation, synaptic
delays and conduction; second, especially where stimuli
are complex, noisy or distributed in space, there is the
time Tdet taken for stimulus detection (Reddi, 2001; Reddi
et al. 2003; Carpenter et al. 2009; Smith & Ratcliff, 2009).
In addition, there is an irreducible efferent delay Tout,
comprising motor neuron conduction, efferent synaptic

delay and muscle activation time. The sum of these three
components constitutes the overall fixed delay, designated
Tgo or Tstop depending upon which of the decision units is
being considered.

It is surprisingly difficult to make robust estimates of
these delays (Luce, 1986). For quantitative modelling of
reaction times to simple stimuli, it is generally adequate to
use a ballpark value combining the afferent and efferent
components, T often being taken to be some 50 – 60 ms
(Thompson et al. 1997; Hanes & Carpenter, 1999; Noorani
& Carpenter, 2013). One might hope to estimate an upper
bound for this value by examining the very shortest visual
saccadic latencies, in early or express saccades; however,
it is very difficult to make the necessary allowance for
any background, spontaneous, rate of saccadic initiation.
A recent study examining monkey colour-discrimination
times in a saccadic task (Stanford et al. 2010) generated a
rather long estimate (�100 ms) for T, although much of
this is probably a result of the time needed to discriminate
colour. In Fischer’s classic work on human express saccades
(Fischer & Ramsperger, 1984; Fischer et al. 1993), for gap
tasks, the peak of the express distributions is �100 ms,
with a skirt that extends perhaps down as far as 70–80 ms;
however, although the gap task is excellent at encouraging
a larger number of express responses, one cannot be sure
whether the earliest responses are in effect to the gap
rather than the target itself. Similarly, the fastest responses
to step or overlap targets have such dramatically short
latencies (<20 ms) that they cannot possibly represent
visually-driven responses.

For more complex modelling, we need to separate
the efferent and afferent components. Estimates of Tout

suggest some 4–10 ms from firing in the abducens nucleus,
and perhaps 20 ms from the colliculus (Robinson, 1972;
Sparks, 1986; Sylvestre & Cullen, 1999); the latter is the
value that we use in our modelling. For Tin, we have
the additional complication that the time to activate
photoreceptors increases at low light levels, and that
different populations of optic nerve fibres conduct at
different velocities, and respond to different aspects of the
stimulus. With high-contrast targets under light-adapted
conditions, and where colour discrimination is not an

Wheeless complete

Target
Go

D

Delay

67 ms

Delay

Delay

30 ms

30 ms

Restart

10-20 ms

μ, σ

μ, σ

μStop, σStop

Stop

Stop

B 20 ms

20 ms

B response

A response

Figure 7. A model for the entire system
A third decision unit for the B responses (blue) is
added to the model shown in Fig. 6, and transient
inhibition with a time-constant of 67 ms acts on both
the Stop and B units. When an A response occurs, the
B unit is retriggered to generate the second saccade
(C) that lands on the final position of the target. The
values of μ and σ for each subject are taken directly
from their performance in the control task.
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issue, one is justified in ignoring the spread of latencies
characteristic of central regions, and considering only
the shortest that are consistently observed. Two classic
studies provide such data, relating to the primate lateral
geniculate nucleus and visual cortex (V1), reporting
minimum latencies of 16 ms and 18 ms, respectively
(Maunsell & Gibson, 1992; Maunsell et al. 1999); although
otherstudies have reported rather larger values (Nowak
et al. 1995), perhaps as a result of using different stimuli,
it is the minimum that is relevant here. Collicular
latencies are longer (Goldberg et al. 1972; Sparks, 1986;
Dorris et al. 1997; Bell et al. 2006) but less relevant:
if the primary function of the colliculus is localization
rather than decision, there is no particular hurry for the
relevant information. Overall, one must conclude that the
irreducible minimum time for information to reach V1 is
�15–20 ms. Taken together, all of these values represent
tight constraints, although they are compatible with the
20 ms of delay that we assume for the model’s output, as
well as our input delays of 30 ms for Go units and 10–20 ms
for Stop.

As noted above, a process of detection may have to be
accomplished before the decision unit itself is activated.
Although the changes in this detection time resulting
from manipulation of stimuli can be measured (Carpenter
et al. 2009; Smith & Ratcliff, 2009), it is almost
impossible to estimate an absolute minimum value for
it. It probably depends on what it is that has to be
detected: longer for colour discrimination, for example,
or when contrasts are low (Thompson et al. 1996;

Carpenter, 2004; Carpenter et al. 2009; Noorani et al.
2011). Similarly, manipulations of the countermanding
task can alter the time of decision activity onset rather
than its rate of rise (Salinas & Stanford, 2013). Pouget
et al. (2011) correspondingly argue that systematically
increased latencies after unsuccessful countermanding
trials are the result of a delay in onset time of accumulation
by the neurons responsible for movement initiation in
the frontal eye fields and superior colliculus, rather than
a change in other race model parameters. It is not
unreasonable to suggest that onset time could be longer
when, for a Go unit, a target must both be identified and
localized compared to what is needed for a Stop unit;
simply to register that something has changed probably
making the forthcoming movement redundant. In the
anti-saccade task, to model the distribution of latencies an
additional delay is needed, in advance of the Go unit, to
calculate the required location of the saccadic destination,
different from where the actual visual target is (Zhang &
Barash, 2000; Noorani & Carpenter, 2013).

One may well wonder why shortening of the Stop onset
time relative to Go was not previously observed in models
of the countermanding task. One reason could be that,
in countermanding, the stop signal is typically a central
visual stimulus no different from the initial target at the
start of a trial, and subjects have to be told beforehand that
it represents a cancellation command. In other words, it
is an arbitrary signal that requires prior instruction and
learning. By contrast, in the Wheeless task this signal is
implicit, requiring no prior instruction. It is therefore a
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simpler and more natural stop signal. However, it is also
true that, with the exception of the work by Pouget et al.
(2011), models of the implied race process in counter-
manding have tended to assume, in the absence of specific
evidence, that the two fixed delays, Tgo and Tstop, were
identical. As noted by by Hanes & Carpenter (1999), in
such models, the parameters for the Stop process are not
almost as tightly constrained by the data as for the Go
process, and an increase in μstop can be traded off against
an increase in Tstop (Fig. 10, left) without introducing
unacceptable discrepancies with observed distributions.

For example, although Hanes and Carpenter (1999),
assuming Tstop to be identical to Tgo with a value of
60 ms, found best-fit values for μstop of 13–14 Hz, it is
easy to show by simulation that the data can be equally
well fitted by taking μstop to be the same as in the present
study (�24 Hz), and increasing �T to +26 ms. Figure 10
(plot B) compares the simulated distributions (100 trials
each) of the uncancelled responses in each of these two
cases: the distributions are statistically indistinguishable
(Fig. 10, plot B). In other words, although, in the Wheeless
task, the simplicity of the stop signal results in a shortening
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In the original model, there is a race between a Go unit and a Stop unit, which starts after a delay D; both have the
same fixed delay Tgo = Tstop, although μstop is greater than μgo, such that the Stop process frequently overtakes
the Go (A, left), with the decision signal reaching the threshold level (dotted line) sooner. Estimates of μstop in
countermanding are smaller than we have observed for the Wheeless task, although the original countermanding
behaviour can be accurately simulated with the increased value for μstop if Tstop is increased as well, relative to
Tgo. The results of such a simulation are presented in reciprobit plot B, which shows uncancelled responses in
countermanding trials, with �T = 0 (filled symbols: μstop = 13.8 Hz, σ stop = 3.0 Hz) and �T = +26 ms (open
symbols: μstop = 24.0 Hz, σ stop = 5.0 Hz). Simulations are shown for D = 90 ms and D = 130 ms; for all cases,
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of T, which considerably constrains the timing parameters,
the arbitrary and learnt nature of countermanding means
that different combinations of afferent delay and assumed
μstop may not be experimentally discriminable, such that
no firm conclusions can be reached about the underlying
values either of μstop or of the afferent delay.

Finally, it is worth also emphasizing that, in LATER,
there is another fundamental parameter that determines
the shape of the distribution, namely the threshold level,
ST. Indeed, there is a redundancy necessarily built into the
model, in that changes in ST are indistinguishable in their
effects from proportional changes in μ and σ because,
essentially, it is simply a scaling factor. Nevertheless, there
are circumstances such as changes in urgency, when the
behaviour of the system is more simply described as
a change in ST, and also, from a functional point of
view, more naturally because ST in Bayesian terms is an
embodiment of the balance between speed and risk (Reddi
& Carpenter, 2000). This could certainly be expected to
apply to the stop process, and it is arguably more natural
to attribute the rapidity of the corresponding LATER
process to increased urgency rather than to increased μ

(Fig. 10), although, in previous accounts, the difference
between the Stop and Go processes has generally been
expressed in terms of alterations in μ. Figure 10(plot C)
demonstrates that the same countermanding simulation
discussed previously can be performed just as satisfactorily
by assuming not that ST is the same for Stop and Go
but that μstop and μgo are identical (and also σstop and
σgo), with a corresponding lowering of ST for the Stop
process to �25% of its previously assumed value. This
approach has something to recommend it with respect to
future modelling studies not just because it offers a more
functionally plausible explanation for the speed of the Stop
decision process, but also because it eliminates one more
free parameter from what is already a very economically
sparse model.

One can of course speculate on why the Stop unit
appears to have a privileged access to a faster activation
pathway compared to a Go unit. Two possible reasons
come to mind, concerning the underlying mechanism and
the possible functional consequences. To simply detect
something unexpected has occurred requires less in the
way of signal-processing than recognizing a specific and
localized stimulus that demands a correspondingly specific
response, and, in many situations, almost any unexpected
behaviour (e.g. a change in the size of the stimulus, or of
the colour of the background) can inhibit the ongoing
accumulation (Singh & Carpenter, 2010). In addition,
one can argue that an inappropriate uncancelled response
delays the final correct response, as is apparent in the B and
C responses shown in Fig. 8, and of course it also implies
a needless expenditure of energy.

Relationshipwith previous models

A model with a similar architecture to ours has previously
been proposed for the Wheeless task and other more
general two-step paradigms by Camalier et al. (2007).
This model has also been used for an identical task in
clinical studies to identify deficits in stop reaction times
in Parkinson’s disease and schizophrenia patients (Joti
et al. 2007; Thakkar et al. 2015), although the focus was
on mean reaction times rather than detailed individual
distributions. Although the basic arrangement of the
Stop unit and two separate Go units is the same, it did
not incorporate specific afferent delays, and the decision
units were not explicitly identified; rather, a generic
Weibull function with three free parameters was used to
provide empirical fits to latency distributions, with the
two Go units being allowed to have different parameters.
Moreover, we show the stop unit has a shorter intrinsic
delay by 10–20 ms or so, which they did not find: indeed,
their model assumes that the units start immediately on
presentation of a stimulus, rather than after an onset delay.
We now know from neural recordings that onset time is an
important feature of neural decision activity influencing
reaction time (Stanford et al. 2010; Pouget et al. 2011) and
must be recognized as an important parameter in neural
race models.

We implemented several different models, com-
paring how well they succeeded in explaining latency
distributions. As previously emphasized by Camalier et al.
(2007), and as already been noted by Carpenter (1988),
without a Stop unit, one cannot explain the delayed
distribution of B responses. Similarly, Ramakrishnan et al.
(2012) demonstrated that a model with a stop unit
provided the best description of data from macaques
under conditions of frontal eye field manipulation in the
same task. We have seen that it is necessary for the onset
time of Stop to be shorter than for the Go unit because,
otherwise, the values of μStop are unacceptably high, or the
observed p(A) cannot be simulated at all. Lateral inhibition
is also required because, without it, the model predicts
systematically faster distributions of B and C responses
than actually occur.

For correction responses, an alternative model is to let
the second Go unit continue after the first one wins, rather
than have it restart: in other words, after the A response is
initiated, the B unit continues accumulating, triggering the
correction response when it reaches threshold. Although
Camalier et al. (2007) used this alternative version to
model the overall proportions of corrections, it could
not entirely predict the variation in their incidence across
subjects. In the present study, by plotting the correction
latency distributions in full as reciprobit plots, we find
that their alternative architecture only predicts very fast
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corrections and does not satisfactorily account for the
entire distribution. With the race re-starting, our model
predicts the entire correction distribution satisfactorily,
including variation between subjects.

Future

One conclusion is that detecting a target for use in the
decision process is faster when the stimulus means that
an impending action needs to be cancelled compared to
when its existence and location must be determined for
the purpose of initiating a new directed action. The former
is certainly the simpler task and, on those grounds alone,
one might well expect the corresponding detection process
to be faster: furthermore, it is less risky, in the sense that
stopping an action reduces rather than increases energy
expenditure. Such a view is supported by recent neural
recordings in the basal ganglia of rats during the counter-
manding task: the subthalamic nucleus, representing the
stop process, was activated very quickly, within 15 ms of
the stop signal onset, much as in the model of Wheeless
presented here (Schmidt et al. 2013). Such a fast time
would leave no allowance for prefrontal cortical input to
the basal ganglia, which is probably important in humans.
However, the rats in this task were probably very well
trained, implying alternative mechanisms for the stop
process such as thalamic–subthalamic nucleus plasticity.
Of course, it is not entirely impossible that the difference
in speed reflects the existence of two distinct pathways,
rather than a simplified process of detection.

Simple-minded interpretations need to be avoided.
For example, although the superior colliculus is a
shorter physical pathway from the retina compared to
the frontal eye fields, recordings suggest that collicular
activation latencies are longer (Maunsell & Gibson,
1992; Nowak et al. 1995; Maunsell et al. 1999) and, in
general, it is important to avoid the category mistake
of claiming to make deductions about neural locations
from purely behavioural data. The aimof neuroscience
is not neophrenology (or not entirely neophrenology;
Carpenter, 2012) but, instead, the provision of detailed
functional explanations of behaviour; if nothing else,
the present study demonstrates that this is not a
wholly unrealistic goal. The specific model presentedhere
advances our understanding of the task, as well as our
ability to use it in such studies, by enabling a detailed pre-
diction of all reaction time distributions at the level of the
individual subject.

Finally, this approach also has clinical implications:
measurements of saccadic latency distributions in simple
tasks are increasingly used as measures of high-level neural
performance, particularly in neurodegenerative disorders
(Temel et al. 2009; Ghosh et al. 2010; Krismer et al.
2010; Perneczky et al. 2011; Burrell et al. 2012). The
Wheeless task is easy to implement in a clinical setting

(Joti et al. 2007; Thakkar et al. 2015). Similar to the
currently popular anti-saccade task (Antoniades et al.
2013a), it can provide additional information about more
complex decision processes but more rapidly. Being a more
natural task than the anti-saccade, it is simpler for sub-
jects to understand, and an important consideration in
testing patients with cognitive disorders. Making neuro-
logy both data-rich and determinedly quantitative is key
to better understanding subtypes of impairment, as well as
evaluating the consequences of different forms of therapy.
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