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Abstract—It is now common to use knowledge about human au-
ditory processing in the development of audio signal processors.
Until recently, however, such systems were limited by their lin-
earity. The auditory filter system is known to be level-dependent as
evidenced by psychophysical data on masking, compression, and
two-tone suppression. However, there were no analysis/synthesis
schemes with nonlinear filterbanks. This paper describe18300060s
such a scheme based on the compressive gammachirp (cGC) audi-
tory filter. It was developed to extend the gammatone filter concept
to accommodate the changes in psychophysical filter shape that are
observed to occur with changes in stimulus level in simultaneous,
tone-in-noise masking. In models of simultaneous noise masking,
the temporal dynamics of the filtering can be ignored. Analysis/
synthesis systems, however, are intended for use with speech sounds
where the glottal cycle can be long with respect to auditory time
constants, and so they require specification of the temporal dy-
namics of auditory filter. In this paper, we describe a fast-acting
level control circuit for the cGC filter and show how psychophys-
ical data involving two-tone suppression and compression can be
used to estimate the parameter values for this dynamic version of
the cGC filter (referred to as the “dcGC” filter). One important ad-
vantage of analysis/synthesis systems with a dcGC filterbank is that
they can inherit previously refined signal processing algorithms de-
veloped with conventional short-time Fourier transforms (STFTs)
and linear filterbanks.

Index Terms—Compression, nonlinear analysis/synthesis au-
ditory filterbank, simultaneous masking, speech processing,
two-tone suppression.

I. INTRODUCTION

I T IS NOW common to use psychophysical and physi-
ological knowledge about the auditory system in audio

signal processors. For example, in the field of computational
auditory scene analysis (CASA) (e.g., [1]), models based on
auditory processing [2]–[6] are recommended to enhance and
segregate the speech sounds of a target speaker in a multisource
environment. It is also the case that popular audio coders (e.g.,
MP3 and AAC) use human masking data in their “perceptual
coding,” to match the coding resolution to the limits of human
perception on a moment-to-moment basis [7]–[11]. Neverthe-
less, most speech segregation systems and audio coders still
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use nonauditory forms of spectral analysis like the short-time
Fourier transform (STFT) and its relatives. One of the major
reasons is their computational efficiency. It is also the case
that simple auditory models with linear auditory filterbanks do
not necessarily improve the performance of audio processors.
Research over the past two decades shows that the auditory
filter is highly nonlinear and it is dynamic; specifically, the fre-
quency response of the auditory filter exhibits level-dependent
asymmetry [12]–[14] and a compressive input/output function
[15]–[17], and both of these characteristics are fundamentally
dynamic; that is, the filter adapts to signal amplitude with a
time constant on the order of 1 ms. It seems likely that these
nonlinear characteristics are partly responsible for the robust-
ness of human speech recognition, and that their inclusion in
perceptual processors would make them more robust in noisy
environments. In this paper, we introduce a dynamic version
of the compressive gammachirp filter with a new level-control
path that enables the filter to explain “two-tone suppression,” a
prominent nonlinear feature of human masking data. Dynamic
auditory filterbanks with these properties should also be useful
as preprocessors for hearing aids [18].

The use of a nonlinear filterbank raises a problem for analysis/
synthesis processors, because there is no general method for
resynthesizing sounds from auditory representations produced
with nonlinear filterbanks. So, although there are a number of
dynamic nonlinear cochlear models based on transmission-line
systems (e.g., [19], [20]) and filterbanks (e.g., [21]), none of
them supports the analysis/synthesis framework. The reason is
that they were developed to simulate auditory peripheral fil-
tering, and the brain does not resynthesize directly from the en-
coded representation. This is a serious constraint for CASA sys-
tems, where the resynthesized version of the target speaker is
used to evaluate the performance of the system. The filter struc-
tures in cochlear models are complex and, typically, the specifi-
cation of the impulse response is not sufficiently precise to sup-
port high-quality resynthesis. Recently, we developed a linear
auditory filterbank with the aim of eventually developing a non-
linear analysis/synthesis system [22]. In this paper, we demon-
strate how the linear system was extended to produce a dynamic
nonlinear auditory filterbank that can explain a substantial range
of nonlinear behavior observed in psychophysical experiments.
We also demonstrate how it can be used as the basis for an anal-
ysis/synthesis, perceptual processor for CASA and speech re-
search.

Theoretically, within the framework of wavelet (e.g., [23]),
inversion is straightforward when the amplitude and phase in-
formation is preserved. It can be accomplished using filterbank
summation techniques after compensation for the group delay
and phase lag of the analysis filter. The same is not true, how-
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ever, for nonlinear filterbanks. There were a limited number
of studies of inversion with auditory filterbanks where part of
the phase information was missing [25]–[27]. The resynthesis
technique involved an iterative process which had local minima
problems and which precluded establishing a one-to-one cor-
respondence between the representation and the resynthesized
signal. Moreover, the resynthesized sounds were distorted even
when there was no manipulation of the coded representation
because these systems can never guarantee high-quality recon-
struction. Thus, what is required is a nonlinear filterbank that en-
ables properly defined resynthesis, at least when the amplitude
and phase information are preserved. A nonlinear dynamic fil-
terbank that can guarantee the fidelity of a processor would en-
able us to manipulate the encoded representation of a sound and
then resynthesize the corresponding sound appropriately. Such
a system could inherit the many excellent signal-processing al-
gorithms developed previously in the linear domain (e.g., [28]),
while avoiding the problems of the STFT and the linear filter-
bank. Thus, the framework should be useful for a range of ap-
plications from coding and speech enhancement to speech seg-
regation [1]–[6] and hearing aids [18].

The gammachirp auditory filter [22], [29]–[31] was devel-
oped to extend the domain of the gammatone auditory filter [32],
to provide a realistic auditory filterbank for models of auditory
perception and to facilitate the development of a nonlinear anal-
ysis/synthesis system. A brief summary of the development of
the gammatone and gammachirp filterbanks over the past 20
years is provided in[31, Appendix A]. The resultant compres-
sive gammachirp filter (cGC) was fitted to a large body of si-
multaneous masking data obtained psychophysically [31]. The
cGC consists of a passive gammachirp filter (pGC) and an asym-
metric function which shifts in frequency with stimulus level as
dictated by data on the compression of basilar membrane mo-
tion. The fitting of the psychophysical data in these studies was
performed in the frequency domain without temporal dynamics.

A time-varying version of the gammachirp filterbank was
proposed [22], [33] in which an infinite impulse response (IIR)
asymmetric compensation filter (AF) was defined to simulate
the asymmetric function. The filter is minimum phase and, thus,
invertible. Moreover, since it is a time-varying linear filter, it is
possible to invert the signal even when the filter coefficients are
time-varying if the history of the coefficients from the analysis
stage is preserved and applied properly in the synthesis stage.
(Indeed, it is only necessary to preserve the history of the esti-
mated signal level, since the filter coefficients are entirely deter-
mined by the signal level.) This enables us to resynthesize sound
from the output of the dynamic filterbank. The resynthesized
sound is very similar to the original input sound; the fidelity is
limited simply by the frequency characteristics and the density
of the filters, and the total bandwidth of the linear analysis/syn-
thesis filterbank. When the coefficients of the IIR asymmetric
compensation filter are controlled by the estimated level of the
input signal, the system has nonlinear characteristics that enable
it to explain psychophysical suppression and compression data.

Thus, all that is actually required is to extend the static version
of the cGC filter into a dynamic level-dependent filter that can
accommodate the nonlinear behavior observed in human psy-
chophysics. In this paper, we use psychophysical data involving
two-tone suppression [34], [35] and compression [15], [16] to

Fig. 1. Block diagram of an analysis/synthesis filterbank based on the dynamic,
compressive gammachirp auditory filter. The first two blocks produce a periph-
eral representation of sound whose features can be manipulated with standard
signal processing algorithms. Then, the sound can be resynthesized to evaluate
its quality.

derive the details of the level control circuit for a dynamic ver-
sion of the cGC. We then go on to describe an analysis/synthesis
filterbank based on the cGC that can resynthesize compressed
speech.

II. GAMMACHIRP AUDITORY FILTERS

Fig. 1 is a block diagram of the proposed gammachirp anal-
ysis/synthesis filterbank. The system consists of a set of linear
passive gammachirp filters, a set of asymmetric compensation
filters both for analysis and synthesis, and a level estimation cir-
cuit. Between the analysis and synthesis stages, it is possible
to include a very wide range of signal processing algorithms
including ones previously developed with linear systems. This
section explains the dynamic, compressive gammachirp (dcGC)
filterbank in terms of A) the mathematical background of the
compressive gammachirp (cGC) filter [29]–[31] and the method
used to fit it to psychophysical masking data [12]–[14], B) a
time-domain implementation of the cGC filter [22], [33], C)
the incorporation of a new level estimation circuit, in a channel
somewhat higher in frequency than the signal channel, that en-
ables the system to accommodate two-tone suppression data
[34], [35] and compression data [15], [16], and D) a discussion
of the computational costs.

A. Compressive Gammachirp Filter Function

The complex analytic form of the gammachirp auditory filter
[29] is

(1)

where is amplitude; and are parameters defining the
envelope of the gamma distribution; is the chirp factor;
is a frequency referred to as the asymptotic frequency since the
instantaneous frequency of the carrier converses to it when
is infinity; is the equivalent rectangular bandwidth
of average normal hearing subjects [13], [14]; is the initial
phase; and is the natural logarithm of time. Time is restricted
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to positive values. When , (1) reduces to the complex
impulse response of the gammatone filter.

(2)

The Fourier magnitude spectrum of the gammachirp filter is

(3)

(4)

is the Fourier magnitude spectrum of the gammatone
filter, and is an asymmetric function since is
an antisymmetric function centered at the asymptotic frequency,

(4). is a constant.
Irino and Patterson [30] decomposed the asymmetric function

into separate low-pass and high-pass asymmetric
functions in order to represent the passive basilar membrane
component of the filter separately from the subsequent level-de-
pendent component of the filter to account for compressive non-
linearity observed psychophysically. The resulting “compres-
sive” gammachirp filter is

(5)

Conceptually, this compressive gammachirp is composed
of a level-independent, “passive” gammachirp filter (pGC)

that represents the passive basilar membrane, and
a level-dependent, high-pass asymmetric function (HP-AF)

that simulates the active mechanism in the
cochlea. The filter is referred to as a “compressive” gam-
machirp (cGC) because the compression around the peak
frequency is incorporated into the filtering process itself. The
HP-AF makes the passband of the composite gammachirp more
symmetric at lower levels.

Fig. 2 illustrates how a level-dependent set of compressive
gammachirp filters (cGC; upper set of five solid lines; left ordi-
nate) can be produced by cascading a fixed passive gammachirp
filter (pGC; lower solid line; right ordinate) with a set of high-
pass asymmetric functions (HP-AF; set of five dashed lines;
right ordinate). When the leftmost HP-AF is cascaded with the
pGC, it produces the uppermost cGC filter with most gain. The
HP-AF shifts up in frequency as stimulus level increases and, as
a result, at the peak of the cGC, gain decreases as stimulus level
increases [30]. The filter gain is normalized to the peak value of
the filter associated with the highest probe level, which in this
case is 70 dB.

The angular variables are rewritten in terms of the center
frequency and bandwidth of the passive gammachirp filter and
the level-dependent asymmetric function to accommodate the
shifting of the asymmetric function relative to the basilar mem-
brane function with level. If the filter center frequencies are
and , respectively, then from (4)

Fig. 2. Set of compressive gammachirp filters (cGC, with peak frequency f )
which are constructed from one passive gammachirp filter (pGC, with peak fre-
quency f ) and a high-pass asymmetric function (HP-AF) whose center fre-
quency f shifts up as stimulus level increases, as indicated by the horizontal
arrow [30]. The gain of the cGC filter reduces as level increases, as indicated
by the vertical arrow. The five filter shapes were calculated for probe levels of
30, 40, 50, 60, and 70 dB using the parameter values listed in the second row of
Table I.

and

(6)

The peak frequency of pGC is

(7)

and the center frequency of HP-AF is defined as

In this form, the chirp parameters, and , can be fixed, and
the level dependency can be associated with the frequency ratio

. The peak frequency of the cGC is derived from nu-
merically. The frequency ratio is the main level-dependent
variable when fitting the cGC to the simultaneous masking data
[30], [31]. The total level at the output of the passive GC
was used to control the position of the HP-AF. Specifically

(8)

The superscripts 0 and 1 designate the intercept and slope of the
line.

In Fig. 2, as the signal level increases, the peak frequency of
the cGC filter first increases slightly and then decreases slightly,
because the pGC filter is not level independent in the current
model. It would be relatively easy to include monotonic level-
dependency in the peak frequency of the cGC filter by intro-
ducing a level-dependency in the asymptotic frequency of
the pGC filter. In this case, the pGC filters would not necessarily
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TABLE I
COEFFICIENT VALUES FOR THE COMPRESSIVE GAMMACHIRP FILTER IN

PATTERSON et al. [31] AND THE CURRENT STUDY. P , P , AND P ARE IN

DECIBELS. � IS IN MILLISECONDS AND WAS VARIED BETWEEN 0 AND 5 ms
WHEN WE CALCULATED THE EFFECT OF THE HALF-LIFE IN SECTION III-B

be equally spaced along the ERB rate axis. It is, however, be-
yond the scope of this paper because 1) the level-dependent peak
frequency cannot be estimated from the notched noise masking
data used to determine the coefficients of the current cGC filter,
2) a small amount of peak fluctuation does not affect the output
of the filterbank much since adjacent filters tend to shift together
in the same direction, and 3) it is simpler to use a linear pGC
filter for the discussion of analysis/synthesis filterbanks.

A detailed description of the procedure for fitting the gam-
machirp to the psychophysical masking data is presented in
[31, Appendix B]. Briefly, the five gammachirp filter parame-
ters , , , , and were allowed to vary in the fitting
process; was fixed at 4. The filter coefficients were found to
be largely independent of peak frequency provided they were
written in terms of the critical band function (specifically, the
ERB rate function [14], [31]). So, each filter parameter can
be represented by a single coefficient. The parameter has
to change with level and so it requires two coefficients. This
means that a dynamic, compressive gammachirp filterbank that
explains masking and two-tone suppression data for a very wide
range of center frequencies and stimulus levels can be described
with just six coefficients [31], whose values are as listed in the
second row of Table I.

B. Time Domain Implementation

The description above is based on the frequency-domain re-
sponse of the gammachirp filter. For realistic applications, it is
essential to define the impulse response. The following is a brief
summary of implementation; the details are presented in [22],
[30], and [33].

The high-pass asymmetric function does not have
an analytic impulse response. So, an asymmetric compensation
filter was developed to enable simulation of the cGC impulse
response, in the form

(9)

Here, is a constant, is the gammachirp impulse
response from (1), and is the impulse response of the
asymmetric compensation filter that simulates the
asymmetric function such that

(10)

The asymmetric compensation filter [22], [33] is defined in the
-plane as

(11)

(12)

(13)

otherwise
(14)

otherwise
(15)

(16)
where , , , and are positive coefficients; is the sam-
pling rate; and is the number of filters in the cascade. When

(which is the case throughout this paper)

and

With these values, the discrepancy between and
is small in the critical region near the asymptotic frequency

[33]. Since the asymmetric compensation filter is always accom-
panied by the bandpass filter of the gammatone or gammachirp
filter, the error in the combined filter is reliably reduced to less
than 1 dB within the wide range required by parameters and
. It is also the case that the impulse responses are in excellent

agreement. The coefficients and are functions of the pa-
rameters and . So, it is also possible to derive the values on
a sample-by-sample bases even when and are time-varying
and level-dependent, although it is not the case of the current
simulation.

Since the asymmetric compensation filter is a minimum phase
filter, it is possible to define the inverse filter which is

(17)

since the numerator and denominator in (12) are invertible de-
pending on the sign of . The inverse filter is a low-pass filter
when the analysis filter is a high-pass filter, so that their product
is unity. The crucial condition is to ensure that it is possible to
invert the filtered signal, even when the parameters , , and
vary with stimulus level [22], [33]; the coefficients used in the
analysis are preserved and precisely applied in the synthesis.
In the current study, it is sufficient to preserve the temporal se-
quences of the estimated levels since the gammachirp parame-
ters are level-independent except for , which is a linear func-
tion of the level as in (8).

Fig. 1 shows the block diagram of the cGC analysis/syn-
thesis filterbank. The initial block is a bank of linear pGC fil-
ters; the second block is a bank of HP-AF filters which simulate
the high-pass asymmetric function in (9) and (10). We refer to
both the high-pass filter and the high-pass function as “HP-AF”
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Fig. 3. Block diagram of the dcGC filter illustrating how the pGC and HP-AF in
a higher frequency channel (f ) are used to estimate the level for the HP-AF
in the signal path of the dcGC filter with channel frequency f .

for simplicity, since there is a one-to-one correspondence be-
tween them. Together, this cascade of filterbanks represent the
dcGC filterbank; the architecture of the dcGC filter itself is de-
scribed in the next section. After arbitrary signal processing of
the dcGC output, it is possible to resynthesize the sound: 1) The
outputs of filterbank are applied to a bank of low-pass asym-
metric compensation filters (LP-AFs) that is the inverse of the
HP-AF filterbank as in (17) and has level-dependent coefficients
based on the estimated level at the analysis filterbank. (2) The
linearized filterbank outputs are applied to a time-reversed pGC
filterbank and then summed up across the channel. When there
is no signal processing between the analysis and resynthesis
stages, the resynthesized sound is almost indistinguishable from
the input sound. The degree of precision is determined by the
passband of the linear pGC filterbank and the density of the fil-
ters. There are many possible variations of the architecture, de-
pending on the purpose of the signal processing. For example,
in Section III-C, we demonstrate resynthesis from compressed
speech by removing the LP-AF filterbank; under normal cir-
cumstances, the original, noncompressed speech is recovered as
described above.

C. Filter Architecture

Preliminary simulations had shown that the previous cGC fil-
terbank with six coefficients (second row in Table I) could not
explain two-tone suppression data (e.g., [34], [35]). So, we had
to modify the filterbank architecture. Since the cGC has a pre-
cise frequency response, it is possible to simulate two-tone sup-
pression in the frequency domain just as we did when fitting the
simultaneous masking data. This greatly reduces the simulation
time required to find a reasonable candidate for the filter archi-
tecture from the enormous number of possible variations. The
result was the filter architecture shown in Fig. 3.

As in the previous compressive gammachirp [31], there are
two paths which have the same basic elements; one path is for
level-estimation and the other is for the main signal flow. The
signal path (bottom blocks) has a pGC filter with parameters ,

, , and a HP-AF with parameters , , .
This combination of pGC and HP-AF results in the compres-
sive gammachirp (cGC) defined in (5) with peak frequency .
The parameter values are the same as in the previous study and
are listed in the fourth row of Table I. The level-estimation path

(upper blocks) has a pGC with parameters , , , and an
HP-AF with parameters , , . The com-
ponents of the level-estimation path are essentially the same as
those of the signal path; the difference is the level-independent
frequency ratio, . The peak frequency of the pGC in
the level-estimation path is required to satisfy the relationship

(18)

where is the rate at frequency [13],
[14], and is a parameter that represents the frequency sep-
aration between the two pGC filters on the ERB rate axis.

The output of the level-estimation path is used to control the
level-dependent parameters of the HP-AF in the signal path. In
order to account for the different rates of growth of suppression
in the upper and lower suppression regions [35], it was neces-
sary to use not only the level at the output of the pGC as in the
previous cGC [31], but also the level of the output of the HP-AF.
The level was estimated in decibels on a sample-by-sample
basis and used to control the level in the signal path.

If the outputs of the pGC and HP-AF in the level-estimation
path are and , then the estimated linear levels and are
given by

and

(19)

where is the sampling time, and is the half-life of the ex-
ponential decay. It is a form of “fast-acting slow-decaying” level
estimation. The estimated level tracks the positive output of the
filter as it rises in level, but after a peak, the estimate departs
from the signal and decays in accordance with the half-life. The
effect of the half-life on the simulation of compression is illus-
trated in Section III-B. The control level is calculated as
a weighted sum of these linear levels in decibels.

(20)

and

where , , and are weighting parameters, and is
a parameter for the reference level in decibels.

In the filterbank, the asymptotic frequencies of the pGC
filters are uniformly spaced along the ERB scale. The peak
frequencies of the pGC filters are also uniformly spaced
and lower than the asymptotic frequencies , since in
(7). The peak frequencies of the dcGC filters are, of course,
level-dependent and closer to the asymptotic frequencies of
the pGC filters. The resultant filterbank is referred to as a dcGC
auditory filter.

We used an equal-loudness contour (ELC) correction to simu-
late the outer- and middle-ear transfer functions [13], [14] in the
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following simulations. The ELC filter is implemented with an
FIR filter, and it is possible to define an inverse filter for resyn-
thesis.

D. Computational Cost

The computational cost of a filterbank is one of important
properties, particularly in realtime applications. We estimated
the computational cost in terms of the total number of filters
in the system. The cGC filter consists of a gammatone filter
(GT), a lowpass asymmetric compensation filter (LP-AF), and a
highpass asymmetric compensation filter (HP-AF) as in (5). The
GT filter is implemented with a cascade of four second-order IIR
filters [36]. The LP-AF and HP-AF filters are also implemented
with a cascade of four second-order IIR filters. So, there are a
total of 12 second-order IIR filters for one channel of the signal
path. Since the pGC filter in the level-estimation path of one
cGC filter is identical to the pGC in the signal path of a cGC filter
with a higher peak frequency, it is not necessary to calculate
the output of the pGC filter in the level-estimation path twice.
The HP-AF in the level estimation path is necessary and is also
implemented as a cascade of four second-order IIR filters. So, in
total, one channel in the analysis filterbank requires calculation
of 16 second-order IIR filters.

For the synthesis filterbank, it is necessary to use a cascade
of four second-order IIR filters per channel for the LP-AF filter
(inverse of HP-AF) to linearlize the nonlinear representation.
The temporally-reversed gammachirp filterbank is not essen-
tial when considering the cost because the synthesis is accom-
plished with a filtebank summation technique after compen-
sating for the group delay and phase lag of the analysis filter.
The maximum group delay is defined as the group delay of the
gammachirp auditory filter with the lowest center frequency; it
is just under10 ms when the lowest center frequency is 100 Hz.

The computational cost increases linearly with the number of
channels. It is, however, possible to reduce the cost consider-
ably by down sampling. It should now be possible to produce a
real time version of the analysis and synthesis components. So,
the total computational cost would largely depend on the cost
of the signal processing implemented between the analysis and
synthesis filterbanks.

In the current study, we used two filterbanks—one for the
two-tone suppression data and one for the compression data.
The suppression filterbank had 100 channels covering the fre-
quency range from 100 to 4000 Hz (i.e., ERBNrates from 3.4
to 27) The compression filterbank also had 100 channels with a
frequency range from 100 to 15 000 Hz (i.e., rates from
3.4 to 39). The filter densities were 4.2 and 2.8 filters per ERB
rate, respectively, which was sufficient to obtain reasonbly ac-
curate paramater values. The sampling rate was 48 000 Hz, and
no down sampling was used since the fitting procedure does not
need to run in real time. The maximum center frequency of the
auditory filter needs to be less than one quarter of the sampling
rate in order to define the filter impulse response properly. In
the simulation of compression, however, there was no problem
since the maximum frequency of the signal components was
6000 Hz and the sampling rate was 48 000 Hz.

III. RESULTS

This section illustrates the use of the dcGC filterbank to sim-
ulate two-tone suppression and compression, and the potential
of the filterbank in speech processing. The dcGC filter param-
eters , , , , and (Table I) are essentially the same
values as for the previous cGC filter used to fit the simultaneous
masking data [31]. These specific values were determined with
a fitting procedure that was constrained to minimize the number
of free parameters as well as the rms error of the fit. The fre-
quency ratio parameters, , in the level-estimation path is
1.08 so that the peak gain of the cGC is 0 dB when the peak
gain of the pGC is 0 dB, as it is in this simulation. The other
level-estimation parametes , , , , and were
set to the values listed in the bottom row of Table I which were
derived from preliminary simulations.

A. Two-Tone Suppression

Two-tone suppression [34], [35] is one of the important char-
acteristics for constructing an auditory filterbank. The amplitude
of the basilar membrane in response to a “probe” tone at a given
frequency is reduced when a second “suppressor” tone is pre-
sented at a nearby frequency at a higher level. The suppressor
dominates the level-estimation path of the dcGC (Fig. 3) where
it increases the compression of the probe tone by shifting the
HP-AF of the signal path.

The method for simulating suppression is simple. A probe
tone about 100 ms in duration and 1000 Hz in frequency is pre-
sented to the filterbank, and the output level of the filter with the
peak at the probe frequency is calculated, in decibels, for various
suppressor tones. Fig. 4 shows the suppression regions (crosses)
and the probe tone (triangle). They show combinations of sup-
pressor-tone frequency and level where the suppressor-tone re-
duces the level of the filter output at the probe frequency by more
than 3 dB. There are regions both above and below the probe fre-
quency. The solid curve shows the “excitatory” filter, that is, the
inverted frequency response of the dcGC with a peak frequency
of 1000 Hz, when the probe tone level is 40 dB. The dashed lines
centered at about 1100 and 1300 Hz show the “suppressive” fil-
ters, that is, the inverted frequency response curves of the pGC
and cGC in the level estimation path, respectively. When the
estimated level of an input signal increases, the HP-AF in the
signal path moves upward in the frequency and reduces or “sup-
presses” the output level of the signal path. The two-tone sup-
pression is produced by the relationship between these excita-
tory and suppressive filters.

The dashed and dotted lines show the suppression regions
observed psychophysically with the pulsation threshold tech-
nique [35]; the simulated suppression regions are quite similar
to the observed regions except for the upper-left corner of the
high-frequency region. The discrepancy arises partially because
the upper skirt of the dcGC filter is shallower than what is usu-
ally observed in physiological measurements. The current pa-
rameters were derived from two large databases of human data
on simultaneous masking without any constraints on the upper
slope. The simulated suppression areas could be manipulated to
produce a better fit by changing the filter parameters if and when
the correspondence between the physiological and psychophys-
ical data becomes more precise. The current example serves to
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Fig. 4. Simulation of two-tone suppression data. The probe tone is shown by
the triangle. The suppression regions are shown with crosses. The dashed and
dotted lines show the suppression regions observed psychophysically with the
pulsation threshold technique [34]. The solid curve shows the filter shape of
the cGC for the probe tone on its own. The dashed curves show the inverted
frequency response curves of the pGC and cGC in the level estimation path,
respectively.

demonstrate that the dcGC filter produces suppression naturally
and it is of roughly the correct form.

At this point, it is more important to account for the asym-
metry in the growth of suppression with stimulus level in the
lower and upper suppression regions [35]. Plack et al. [16] re-
ported that the current dual resonance nonlinear (DRNL) model
[21] could not account for the asymmetry in growth rate even
when the parameters were carefully selected. Fig. 5 shows the
relative output level of the dcGC filter for a 1000-Hz probe
tone, as a function of suppressor level, when the suppressor fre-
quency is either 400 Hz (left panel) or 1400 Hz (right panel).
It is clear that the absolute growth rate of the suppression for
the lower suppressor frequencies is greater than for the upper
suppressor frequencies. It is also the case that the suppressor
levels are different for the “bend points” (or “break points” in
[35, Fig. 11]), where the output level starts to decrease as the
suppressor level increases. The bend-point levels for a 40-dB
probe tone are about 60 dB for 400 Hz and 40 dB for 1400 Hz.
This difference it appears to be largely due to the difference in
the curvature of the suppression curve; it is more acute in the
lower region and more gradual in the upper region.

The maximum absolute growth rate is about 0.4 dB/dB when
the suppressor frequency is 400 Hz. In contrast, the maximum
slope is about 0.3 dB/dB when the suppressor frequency is 1400
Hz. Note that the output level is compressed by the very na-
ture of the dcGC architecture, and the degree of compression
increases as the probe level increases. The observed decrement
in the depth for the 60-dB tone does not necessarily mean the
actual suppression slope decreases. To avoid the effect of com-
pression, the degree of suppression was measured in terms of the
input signal level so that the output level at the probe frequency
was unchanged before and after the suppressor was introduced.
Using this criterion, the growth rates in the model data increase

Fig. 5. Relative level of the output of the dcGC for a 1000-Hz probe tone, as
a function of suppressor level, when the suppressor frequency is either 400 Hz
(left panel) or 1400 Hz (right panel). The numbers in the left-hand side show
the probe level in decibels SPL. The output level is normalized to 50-dB SPL
by shifting a constant decibel value. There is suppression whenever the probe
level drops below its starting value where the suppressor is 20-dB SPL.

slightly to about 0.5 and 0.3 dB/dB, respectively, when the probe
is 40-dB sound pressure level (SPL). The suppression levels in
psychophysical data vary considerably with listener and level
[35]; the rates are 0.5–3 dB/dB for a 400-Hz suppressor as in
[35, Fig. 4], and less than 0.2 dB/dB for one subject (no data for
other subjects) for a 1400-Hz suppressor as in [35, Fig. 10]. The
reason for the variability across listeners and levels is unclear.
The growth rates in the lower frequency suppressor are gener-
ally much larger than the rates in the current simulation. We
could change the level-estimation parameter values or modify
the level estimation function in (20) to accommodate the data.
It is, however, not currently clear which set of data is the most
appropriate or reliable, and so we will not pursue the fitting fur-
ther in this paper. We did, however, confirm that we were able
to change the depth of suppression for 400- and 1400-Hz sup-
pressors by changing the weight parameters , , and .
For current purposes, it is sufficient to note that the dcGC filter
produces two-tone suppression, the growth rate is greater on
the low-frequency side of the probe tone, and qualitatively, at
least, the model is consistent with psychophysical data unlike
the DRNL filter model [16], [21].

B. Compression

Compressive nonlinearity is also an important factor in
the auditory filterbanks. Oxenham and Plack [15] estimated
the compression characteristics for humans using a for-
ward-masking paradigm. They also explained the data using
a DRNL filter model [21]. This section shows how the dcGC
filter can also explain the compression data.

1) Method: The experiment in question [15] was performed
as follows: a brief, 6000-Hz, sinusoidal probe was presented at
the end of a masker tone whose carrier frequency was either
3000 or 6000 Hz, depending on the condition. The probe enve-
lope was a 2-ms Hanning window to restrict spectral splatter; the
duration of the masker was 100 ms. In addition, a low-level noise
was added to the stimulus to preclude listening to low-level,
off-frequency components. Threshold for the probe was mea-
sured using a two-alterative, forced choice (2AFC) procedure in
which the listener was required to select the interval containing
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Fig. 6. Compression data from [15] (thick dashed lines) and simulations of the
data with dcGC filters in which the half-life for level estimation varies from 0
to 5 ms (thin solid lines).

the probe tone. The level of the masker was varied over trials to
determine the intensity required for a criterion level of masking.

The dcGC filter was used to simulate the experiment as fol-
lows: The output of each channel of the dcGC filterbank was rec-
tified and low-pass filtered to simulate the phase-locked neural
activity pattern (NAP) in each frequency channel, and then the
activation was averaged using a bank of temporal windows to
simulate the internal auditory level of the stimulus. The window
was rectangular in shape, 20-ms in duration, and located to in-
clude the NAPs of the end of the masker and the probe. The
shape of the temporal window does not affect the results be-
cause it is a linear averaging filter and the temporal location of
the probe tone is fixed. The output levels for all channels were
calculated for the masker alone and the masker with probe, and
the array was scanned to find the channel with the maximum dif-
ference, in decibels. The calculation was performed as a func-
tion of masker level in 1-dB steps. Threshold was taken to be the
masker level required to reduce the difference in level between
the two intervals to 2 dB in the channel with the maximum dif-
ference. The half-life of the level estimation was varied to min-
imize the masker level at threshold; the remaining parameter
values were exactly the same as in the simulation of the two-tone
suppression data (Table I).

2) Results: Fig. 6 shows the experimental results [15] as
thick dashed lines. The simulation was performed for seven
half-lives ranging from 0 to 5 ms (19), and the results are pre-
sented by thin solid lines. The solid lines above the dotted diag-
onal show the simulated threshold when the probe and masker
have different frequencies, namely, 6000 and 3000 Hz. It is clear
that the half-life affects the growth of masked threshold. When
the half-life is 0.5 or 1 ms, the change in the growth rate is very
similar to that in the experimental data (thick dashed line). The
average growth rate is larger in other conditions; it is about 0.5
dB/dB when the half-life is 5 ms and it is more than 0.3 dB/dB
when the half-life is 0.1 ms. When the half-life is 0 ms, the av-
erage slope is close to 0.8 dB/dB which means almost no com-

pression. So, the level-estimation process must be quick, but not
instantaneous, with a half-life on the order of 0.5–1.0 ms.

The best fit would appear to be for a half-life of 0.5 ms. In
this case, the simulation error is less than 3 dB, since we set the
threshold criterion to 2.0 dB to minimize this error. Threshold
for the condition where the probe and masker have the same
frequency (namely, 6000 Hz) is located a few decibels below
the dotted diagonal line. The threshold functions are almost the
same, despite relatively large half-life differences, and they are
essentially linear input–output functions. This is consistent with
the psychophysical data, at least, for one subject [23]. When the
threshold criterion decreases, the lines for both conditions shift
up in the same way, that is, both when the probe and masker have
the same frequency and when they have different frequencies.
We would still need to explain the subject variability which can
be more than 5 dB when the probe and masker have the same
frequency. We would also need to estimate the half-life for fre-
quencies other than 6000 Hz, which is not possible currently
because there are no psychophysical data for other frequencies.

In summary, the current model provides a reasonable account
of the compression data; with the exception of the time constant,
the parameters values were identical to those used to explain
two-tone suppression and simultaneous masking.

C. Speech Processing

It appears that the dcGC analysis/synthesis filterbank can
be used to enhance the plosive consonants in speech and the
high-frequency formants of back vowels. The effects are illus-
trated in Fig. 7 which shows three “cochlear” spectrograms,
or “cochleograms,” for the Japanese word “aikyaku”; the three
segments of each cochleogram correspond to “ai,” “kya,” and
“ku.” The cochleograms were produced by the pGC filterbank
on its own (a), the linear cGC filterbank without dynamic
level-estimation and when the control level , was fixed at 50
dB (b), and the dcGC filterbank with dynamic level-estimation
(c). The output of each filterbank was rectified, averaged for 2
ms with a frame shift of 1 ms, normalized by the rms value of
the whole signal, and plotted on a linear scale. The smearing
of the formants in (a) arises from the fact that the pGC filter
has a much wider passband than either the cGC or dcGC filter.
Compare the representations of the plosives around 350 and
570 ms, and the representation of the high-frequency formants
of the vowel in “ku” in the region beyond 600 ms. The compar-
isons show that the dcGC filter compresses the dynamic range
of the speech which emphasizes the plosive consonants and the
higher formants of back vowels, and do so without the need
of a separate compression stage like those typically used with
linear auditory filterbanks or short-time Fourier transforms.

Fig. 8 shows excitation patterns (or frequency distributions)
derived from the same speech segment at points centered on
60 ms (a) and 630 ms (b) in the sustained portions of the /a/
and /u/ vowels, respectively. The solid curve was derived by
averaging the output of the dcGC filterbank [Fig. 7(c)] for 21
ms (1024 sample points). The dashed curve was derived from
the output of the linear cGC filterbank [Fig. 7(b)] and the total
rms level was set to the same level as the output of the dcGC
filterbank. The excitation patterns of the nonlinear dcGC and
linear cGC filterbanks are similar but in both cases the dcGC
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Fig. 7. “Cochlear” spectrograms, or cochleograms, for the Japanese word
“aikyaku,” plotted on a linear scale to reveal level differences. (a) pGC filter.
(b) Linear cGC filter. (c) dcGC filter.

Fig. 8. Excitation patterns calculated from the dcGC filterbank (solid line) and
a linear cGC filterbank (dashed line). The time is (a) 60 ms and (b) 630 ms. A
rectangular window with 1024 points was used for averaging the filter output.
The dashed and dotted curve is a level-dependent excitation pattern derived with
a roex filterbank [13].

filterbank increases the relative size of the upper formants, and
the effect is stronger for the /u/ which has the weaker upper
formants [Fig. 8(b)]. The dashed and dotted curve is a level-
dependent excitation pattern derived with a roex filterbank [13],
which is provided for reference. The pattern was calculated from
the signal level produced by a STFT with a hanning window of
1024 points.

The speech can be resynthesized from the cochleograms
using the time-reversed pGC filterbank in which the peak
frequencies are almost the same as those of the cGC and dcGC
filterbanks. The synthesis LP-AF is not required in this case.
The original speech wave is shown in Fig. 9(a); the resyn-
thesized speech from the linear cGC and dcGC filterbanks

Fig. 9. (a) Original speech wave. (b) Resynthesized versions from the linear
cGC analysis/synthesis filterbank. (c) dcGC analysis filterbank with the linear
pGC synthesis filterbank.

are shown in Fig. 9(b) and (c), respectively. These sounds
are normalized to the rms value of the whole signal. The
resynthesized cGC wave [Fig. 9(b)] is essentially the same as
the original [Fig. 9(a)]. It is clear that the peak factor of the
resynthesized dcGC wave [Fig. 9(c)] is reduced and the relative
level of the plosives has been increased. The sound quality of
the compressed speech is not quite as good as the original, but
it has the advantage of sounding louder for a given rms value.

Fig. 10 shows the compression characteristics (input–output
functions) for the linear cGC and dcGC filterbanks. The sound
pressure level, in decibels, is derived from the rms value of a en-
tire word. The average and standard deviation of the SPL were
calculated from fifty word segments of speech in a phoneti-
cally-balanced Japanese database. The dashed line with error
bars on the dotted diagonal is for the analysis/synthesis signal
produced with the linear cGC filterbank. The solid line with
error bars is for speech compressed by the dcGC filterbank; the
output level is set to 100-dB SPL for an input level of 90-dB
SPL. The solid line with circles shows the compression charac-
teristic for the forward-masking condition where the half-life is
0.5 ms, as shown in Fig. 6. The linear analysis/synthesis signal
has variability because the filterbank restricts the passband be-
tween about 100 and 6000 Hz and, thus, the low- and high-fre-
quency components drop off. The variability of the compressed
speech is less than about 2 dB.

The slope of the input/output (I/O) function is about 0.6
dB/dB which is greater than that for the masking of short probe
tones, where it is about 0.2 dB/dB at minimum. This moderate
slope is reasonable for speech signals because speech consists
of a range of frequency components which interact with each
other; at one moment a component acts like a suppressor and
at another it acts like a suppressee. This is an important obser-
vation for the design of compressors like those in hearing aids
because the degree of compression is different for the simple
tone sounds used to define the compression, and the speech
sounds that the user wants to hear.
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Fig. 10. Compression characteristics (input–output functions) of the resynthe-
sized speech sounds. The solid line with error bars shows the compressed speech
from the dcGC filterbank; the dashed line with error bars shows the analysis/syn-
thesis signal from the linear cGC filterbank; the solid line with circles shows the
compression characteristic for the forward-masking condition where the half life
is 1 ms, as shown in Fig. 5.

The compression of the dcGC filterbank is reminiscent of the
compression in the much simpler wide dynamic range compres-
sion (WDRC) hearing aids [18]. However, both of these com-
pression processes have a serious drawback. When there is back-
ground noise or concurrent speech, small noise components are
effectively enhanced, and they interfere with the speech com-
ponents. It will be essential to introduce noise reduction [28]
and speech segregation (e.g., [1]) in future speech processors.
The analysis/synthesis, dcGC filterbank provides a framework
for the design and testing of advanced auditory signal proces-
sors of this sort.

IV. CONCLUSION

We have developed a dynamic version of the compressive
gammachirp filter with separate paths for level-estimation and
signal processing. We have also developed a complete, analysis/
synthesis filterbank based on the dynamic, compressive gam-
machirp auditory filter. We have demonstrated that the filter-
bank can simulate the asymmetric growth of two-tone suppres-
sion and the compression observed in nonsimultaneous masking
experiments. The dcGC filterbank provides a framework for the
development of signal processing algorithms within a nonlinear
analysis/synthesis auditory filterbank. The system enables one
to manipulate peripheral representations of sounds and resyn-
thesize the corresponding sounds properly. Thus, it provides an
important alternative to the conventional STFTs and linear au-
ditory filterbanks commonly used in audio signal processing.
The new analysis/synthesis framework can readily inherit re-
fined signal processing algorithms developed previously in the
linear domain. This framework should be useful for various ap-
plications such as speech enhancement and segregation [1]–[6],
[28], speech coding [7]–[11], and hearing aids [18].
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