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 31 

Abstract 32 

Decisions can be risky or riskless, depending on the outcomes of the choice. Expected Utility 33 
Theory describes risky choices as a utility maximization process: we choose the option with the 34 
highest subjective value (utility), which we compute considering both the option’s value and its 35 
associated risk. According to the random utility maximization framework, riskless choices could 36 
also be based on a utility measure. Neuronal mechanisms of utility-based choice may thus be 37 
common to both risky and riskless choices. This assumption would require the existence of a utility 38 
function that accounts for both risky and riskless decisions. Here, we investigated whether the 39 
choice behavior of macaque monkeys in riskless and risky decisions could be described by a 40 
common underlying utility function. We found that the utility functions elicited in the two choice 41 
scenarios were different from each other, even after taking into account the contribution of 42 
subjective probability weighting. Our results suggest that distinct utility representations exist for 43 
riskless and risky choices, which could reflect distinct neuronal representations of the utility 44 
quantities, or distinct brain mechanisms for risky and riskless choices. The different utility functions 45 
should be taken into account in neuronal investigations of utility-based choice.  46 
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 47 

Introduction 48 

Whether we are choosing between fruits or vegetables at the supermarket, deciding to jaywalk 49 
in the face of incoming traffic, or picking the ideal friends to go traveling with, most of our 50 
decisions fall under two categories: some have certain outcomes, some do not. Economists call 51 
these risky or riskless decisions (‘risk’ referring to the uncertainty of a choice’s outcome), and - 52 
while vastly untested – there is general agreement in economics that peoples’ preferences in one 53 
type of situation parallels preferences in the other.  54 

In economics, Expected Utility Theory (EUT) (von Neumann and Morgenstern, 1944) served 55 
as the dominant model of risky decision-making until the inception of behavioral economics in the 56 
1970s. Under EUT, a decision-maker’s attitude towards risk was fully captured by the curvature of 57 
their utility function: a mapping of reward quantities onto an internal, subjective metric. A concave 58 
utility function predicted an aversion to risk, while a convex one predicted risk-seeking behavior. 59 
Importantly, EUT assumed that the utility of a riskless choice option could be computed through the 60 
same utility function used for risky options. On the other hand, experimental findings indicated 61 
discrepancies between risky and riskless utility functions (Barron et al., 1984; Stalmeier and 62 
Bezembinder, 1999). 63 

Contrasting with EUT, Prospect Theory (PT) highlighted a difference between risky and 64 
riskless choices through the introduction of subjective probability weightings. Rather than being 65 
solely predicted by an individual’s utility curvature, one’s risk-attitude would also vary with their 66 
subjective treatment of outcome probabilities (Kahneman and Tversky, 1979; Tversky and 67 
Kahneman, 1992). In other words, while EUT assumed that risk attitudes derived exclusively from 68 
the way in which people value rewards, PT made the case for two components: the curvature of the 69 
utility function and the subjective weighting of probability.  70 

PT has since become widespread in the study of risky and riskless decision-making 71 
(Kahneman et al., 1990; Lattimore et al., 1992; Camerer et al., 2002; Hertwig and Erev, 2009). With 72 
all the studies on behavior that make use of PT, there is a remarkable lack of research validating its 73 
predictions in both risky and riskless choices; the limitation being that risky utilities (or PT values) 74 
are usually measured from choices between risky options (Stott, 2006; Tversky & Kahneman, 1992) 75 
while this clearly cannot be done in a riskless context. One interesting avenue has been to compare 76 
risky and riskless preferences via introspective metrics. In a study by Stalmeier & Bezembinder 77 
(1999), medical patients were asked questions that involved risky outcomes: ”would you rather: live 78 
20 years with a migraine on x days per week (followed by death), or live 20 years with a p% chance 79 
of getting migraines y times a week, z times a week otherwise”; and questions where all options 80 
were riskless: ”which difference is larger: the difference between 0 days of migraine and x days of 81 
migraine, or the difference between x days of migraine and 3 days of migraine”. Modelling 82 
preferences through PT, they found that risky and riskless utilities were identical, and that 83 
probability weighting accounted for most of the discrepancy between the risk attitudes predicted by 84 
riskless utilities and the risk attitudes measured from risky choices. A similar approach by 85 
Abdellaoui, Barrios, & Wakker (2007), this time using money outcomes (gains) rather than medical 86 
outcomes (losses), led to the similar conclusion: PT successfully reconciled risky and riskless 87 
utilities.  88 

Since the subjects in these studies were generally risk-averse (for gains), it remains to be seen 89 
whether PT also reconciles risky and riskless utilities for risk-seeking decision-makers.  90 
Additionally, the results of these introspective studies have recently been challenged by a set of 91 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 14, 2021. ; https://doi.org/10.1101/2021.01.12.426382doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.12.426382
http://creativecommons.org/licenses/by/4.0/


 

studies using a more modern, incentive-compatible approach: the use of time trade-offs as means to 92 
study riskless decisions (Cheung, 2016). In these studies, people make choices between larger 93 
rewards delivered in the future (with certainty) and smaller rewards delivered now; utilities from 94 
intertemporal choices are then compared to those estimated from risky choices. Unlike introspective 95 
experiments, however, the majority of the research done on time trade-offs reports discrepancies 96 
between riskless, time-discounted utility functions and risky ones (Musallam et al., 2004; Andreoni 97 
and Sprenger, 2012; Abdellaoui et al., 2013; Cheung and L., 2015; Lopez-Guzman et al., 2018), but 98 
see Andersen et al., 2008)- discrepancies that even probability weighting cannot resolve.  99 

The lack of clear insight as to PT’s ability to reconcile risky and riskless choices represents a 100 
crucial limitation to the interpretation of this fundamental economic model; particularly as it rapidly 101 
became the de facto model of choice to study animal behavior and neuroeconomics (De Martino et 102 
al., 2006; Lakshminarayanan et al., 2011; Marshall and Kirkpatrick, 2013; Stauffer et al., 2015; 103 
Chen and Stuphorn, 2018; Farashahi et al., 2018; Ferrari-Toniolo et al., 2019a). Simultaneously, 104 
since there have been no attempts at reconciling risky and riskless utilities in nonhuman decision-105 
makers, there is no evidence to suggest that either human interpretations can be used to explain 106 
animals’ choice behavior. 107 

The present study explores the link between the risky and riskless utilities of our close 108 
primate relative: the rhesus macaque. We presented monkeys with two types of binary choice trials: 109 
risky trials, where monkeys made choices between certain and uncertain juice rewards, and riskless 110 
trials, which only included choices between two certain juice magnitudes. We elicited the shape of 111 
the utility curves in the two domains, using the random utility maximization (RUM) framework (for 112 
review, see McFadden, 2001) in combination with a PT-based discrete choice model. Importantly, 113 
this risky/riskless design addressed two of the most important caveats in human studies: (i) both 114 
risky and riskless trials were incentive compatible (relying on revealed preferences rather than 115 
introspection), and (ii) choices were presented in the exact same way for both risky and riskless 116 
decisions. 117 

By parametrically separating the contributions that utility and weighted probability had on the 118 
monkeys’ risky choices, we found that, just like the human studies had previously shown, risky 119 
utilities were closer to riskless utilities once probability weighting had been accounted for. We did 120 
not, however, find that these utilities were identical, suggesting that two different utility quantities 121 
or mechanisms could drive behavior in risky and riskless choices. 122 

 123 

Methods 124 

Animals 125 

Two male rhesus macaques (Macaca mulatta; Monkey A: 11.2 kg, Monkey B: 15.3 kg) 126 
participated in this experiment. All animals used in the study were born in captivity, at the Medical 127 
Research Council’s Centre for Macaques (CFM) in the UK. The animals were pair-housed for most 128 
of the experiment and had previous experience with the visual stimuli and experimental setup 129 
(Ferrari-Toniolo et al., 2019). The animals repeatedly chose between two reward options (reward-130 
predicting stimuli) presented on an upright computer monitor. While sitting in a primate chair (Crist 131 
instruments), they used a left-right joystick (Biotronix Workshop, the University of Cambridge) to 132 
indicate their choice on each trial and received the reward they selected at the end of each of these 133 
binary choice trials (Fig. 1a). 134 
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This research has been ethically reviewed, approved, regulated, and supervised by the 135 
following institutions and individuals in the UK and at the University of Cambridge (UCam): the 136 
Minister of State at the UK Home Office, the Animals in Science Regulation Unit (ASRU) of the 137 
UK Home Office implementing the Animals (Scientific Procedures) Act 1986 with Amendment 138 
Regulations 2012, the UK Animals in Science Committee (ASC), the local UK Home Office 139 
Inspector, the UK National Centre for Replacement, Refinement and Reduction of Animal 140 
Experiments (NC3Rs), the UCam Animal Welfare and Ethical Review Body (AWERB), the UCam 141 
Governance and Strategy Committee, the Home Office Establishment License Holder of the UCam 142 
Biomedical Service (UBS), the UBS Director for Governance and Welfare, the UBS Named 143 
Information and Compliance Support Officer, the UBS Named Veterinary Surgeon (NVS), and the 144 
UBS Named Animal Care and Welfare Officer (NACWO). 145 

 146 

Task design and setup 147 

The premise of this study was to compare the utility functions estimated from monkeys’ 148 
choices in risky or riskless decisions. To do so, monkeys were presented with sets of choices that 149 
could then be translated into utility metrics. The utilities measured from riskless choices were 150 
compared with utilities derived from risky choices, first assuming no subjective weighing of 151 
probabilities (EUT utilities), then accounting for the contribution of probability weighting (PT 152 
utilities). 153 

Reward options took the form of various combinations of reward magnitude and probability, 154 
and were represented on the monitor through horizontal lines that scaled, and moved, relative to two 155 
vertical ‘framing’ lines (fig 1b). Reward magnitudes were represented by the vertical position of the 156 
horizontal lines: 0 ml at the bottom of the vertical frame (1.5ml at the top, and 0 < m < 1.5 in-157 
between), whilst the probability of receiving said reward was represented by the width of the 158 
horizontal lines within the frame. A single, horizontal line that touched the frames at both ends 159 
signaled a certain reward (probability p = 1); multiple lines that failed to touch the frames indicated 160 
gambles with probabilistic outcomes, each with associated probability 0 < p < 1 (Fig. 1a). The 161 
monkeys were trained to associate these two-dimensional visual stimuli with blackcurrant juice 162 
rewards over the course of two years, and both monkeys had previous experience with the task and 163 
stimuli before this study. They had both experienced reward probabilities that ranged from 0 to 1 164 
(Ferrari-Toniolo et al., 2019b), and reward magnitudes that ranged from 0 ml to 1.3 ml of juice. For 165 
this study, reward magnitudes were held between 0 ml and 0.5 ml of blackcurrant juice, and gamble 166 
options all had a probability of 0.5.  167 

Each binary choice trial began with a white cross at the center of a black screen, if the 168 
monkey were holding the joystick, a cursor would also appear on the screen (Fig. 1a). Using the 169 
joystick, the monkeys initiated each trial by moving the cursor to the center cross and holding it 170 
there for 0.5-1s. Following this holding period, two reward options appeared to the left and to the 171 
right of the central cross (see Fig. 1a). The animal had 3s to convey his decision by moving the 172 
joystick to the selected side and holding his choice for 0.1-0.2s - the unselected option would then 173 
disappear. The selected option lingered on the screen for 1 s after reward delivery – followed by a 174 
variable inter-trial period of 1–2 s before the next trial. Errors were defined as unsuccessful central 175 
holds, side selection holds, or trials where no choices were made. Each of these resulted in a 6 s 176 
timeout for the animal, after which the trial would be repeated (ensuring the elicitation of 177 
preferences for each tested option pair). Additionally, all reward options were repeated on both the 178 
left and right sides of the computer screen, alternating pseudorandomly to control for any side 179 
preference. Both the joystick position and task event times were sampled and stored at 1 kHz on a 180 
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Windows 7 computer running custom MATLAB software (The MathWorks, 2015a; Psychtoolbox 181 
version 3.0.11). we collected on average 423 ± 91 (SD) trials per session over 22 sessions for 182 
monkey A, and 338 ± 41 trials over 7 sessions for monkey B. Only trials where the option pair had 183 
been repeated at least 4 time were analyzed in this study. Data processing and statistical analyses 184 
were run in python (Python 3.7.3, SciPy 1.2.1, see Oliphant, 2007). 185 

Revealing preferences for risky and riskless choice 186 

The monkeys’ daily reward preferences were measured in risky and riskless choice sequences 187 
under the framework of utility maximization. In risky choice sequences, trials always pit a risky 188 
gamble against a safe option – the utility of different reward magnitudes was estimated via the ratio 189 
of choices between different gamble and safe rewards. All of the gambles comprised two equally 190 
likely reward outcomes (though one could be 0 ml). In riskless choice sequences, monkeys were 191 
presented with pairs of ‘safe’ options with a single fixed outcome – we used the ratio of choice 192 
between pairs of rewards to estimate utility.  193 

Estimating utility functions in risky choice 194 

For risky sequences, utilities were estimated using the fractile-bisection procedure – a method 195 
that involves dividing the range of possible utilities into progressively smaller halves (or fractals) 196 
and estimating the reward magnitude associated with each of these utility fractals. Simply put, the 197 
procedure defined set utility metrics (in this case ½, ¼ and ¾, and 1/8 and 7/8 of the maximum 198 
utility, see Fig. 2a, b) for which the corresponding safe rewards were derived (Fig. 2a).  199 

Utility values of 0 and 1 were arbitrarily assigned to 0ml and 0.5ml of juice, respectively. 200 
Since monkeys only experienced trials set between these reward magnitudes, this constrained all 201 
utility estimates between a 0 and 1. Then, in accordance with EUT, a utility of 0.5 was assigned to 202 
the equiprobable gamble formed of these two magnitudes (0.5 = [0.5 * 0ml] + [0.5 * 0.5ml]). The 203 
first step of the procedure involved presenting the monkeys with choices between this gamble and 204 
varying safe rewards (in 0.05 ml increments), from these, the safe reward that was equivalent to the 205 
gamble in utility terms was identified (i.e. the safe reward chosen in equal proportion to the gamble; 206 
see Fig. 1c).  207 

To estimate this safe reward, the following logistic sigmoid curve was fitted to the proportion 208 
of safe choices for each of the gamble/safe pairing:  209 

𝑃(𝐶ℎ𝑜𝑜𝑠𝑒𝑆𝑎𝑓𝑒) 	= 1/(1 +	𝑒!"
!"#$%$&"'()*	,	-.

/ #	     Eq. 1 210 

Where probability that the monkeys would choose a safe reward over the 0.5 utility gamble 211 
(P(ChooseSafe)) was contingent on the safe option’s magnitude (𝑆𝑎𝑓𝑒𝑅𝑒𝑤𝑎𝑟𝑑$%)	and two free 212 
parameters: x0, the x-axis position of the curve’s inflection point, and σ, the function’s temperature. 213 
Importantly, this function’s inflection point represented the exact safe magnitude for which the 214 
monkeys should be indifferent between the set gamble and a given safe reward. The x0-parameter 215 
could thus be used as a direct estimate of the gamble’s certainty equivalent (CE), or, put simply, the 216 
safe reward equivalent to a utility of 0.5. Only sequences that contained a minimum of three 217 
different choice pairs (repeated at least 4 times) were used in the elicitation of CEs. 218 

From the CE identified as the 0.5 utility value, two new equiprobable gambles were created 219 
representing utility values of 0.25 (¼ of the utility range) and 0.75 (1/4 and ¾ of the utility range, 220 
respectively). Of the two new gambles, one was set between 0 ml and the first CE’s ml value, the 221 
other was set between the first CE and 0.5 ml (Fig. 2b). The CE elicitation procedure (logistic 222 
fitting, Fig. 1c) was repeated for each of these gambles. Crucially, gamble/safe pairings for both 223 
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gambles were interwoven in the same sequence – to ensure a similar spread in the presented 224 
rewards.  225 

After eliciting the CEs of these gambles, the estimation procedure was repeated one final time 226 
with the new CEs as the upper or lower gamble outcomes. Here, the fractile procedure would 227 
automatically terminate if no safe rewards could fit between the outcomes of the new gambles; this 228 
would occur if the animal was particularly risk-seeking or risk-averse. If this was the case, utilities 229 
of 0.25, 0.5, and 0.75 would be mapped onto the appropriate reward magnitudes and the elicitation 230 
sequence would end. If, instead, the three fractile steps were successful, the procedure would result 231 
in a mapping of five utilities, 0.125, 0.25, 0.5, 0.75, and 0.875, onto five safe rewards. Only 232 
sequences where at least 3 utility points were successfully identified were used in the study 233 
(monkey A: 22 sessions; monkey B: 7 sessions).  234 

Estimating utility functions in riskless choice 235 

For riskless choice sequence, choice ratios between pairs of safe options were measured - this 236 
time looking at the likelihood of a monkey choosing the high magnitude option over the lower 237 
magnitude one (Fig. 1d). The range of juice rewards (0.05 ml to 0.5 ml) was divided into sets of 238 
0.05 ml increments and safe-safe pairs centered on these magnitude increments. For each increment, 239 
we defined three sets of safe-safe choices where each pairing differed by 0.02 ml, 0.04 ml, or 0.06 240 
ml. The small size of these differences ensured that choices would be stochastic. These differences 241 
are hereafter defined as ‘gaps’, i.e. safe-safe pairings of fixed differences, where three sets of gaps 242 
were anchored at each incremental ‘midpoint’.  243 

The likelihood of choosing the higher magnitude option in different gap-midpoint pairings 244 
was used to infer the shape of the monkeys’ utility functions (Fig. 3a, b, c). Specifically, the 245 
difference between the likelihoods of choosing the better options, at different midpoints, reflected 246 
the separability of the utility of different reward magnitudes. Under RUM, the degree of certainty 247 
with which choices are made (i.e. the closer choice ratios are to 100%) directly correlates with the 248 
separability of the noisy utilities that correspond to each option in a choice. This implies that, 249 
looking at repeated choices between two set magnitudes, a decision-maker with a flatter utility 250 
function should exhibit more stochasticity in their choices (i.e. less precision) than a decision-maker 251 
with a steeper utility (i.e. more precision). Changes in choice ratios between sequential midpoints, 252 
as averaged across gaps, could therefore be used as a proxy for a monkeys’ utility slope. 253 

To estimate these RUM-compliant utilities, logistic curves were fitted to the likelihood of 254 
choosing the better option (for the three gaps) at every midpoint level (Fig. 3a): 255 

𝑃(𝐶ℎ𝑜𝑜𝑠𝑒𝐻𝑖𝑔ℎ𝑒𝑟) 	= 1/(1 +	𝑒!"
0"1)*	

/ #)	      Eq. 2 256 

Unlike for CE estimation, this logistic function captured the likelihood of choosing the high-257 
magnitude option (in a safe-safe pairing) contingent on the gap between the two options (𝐺𝑎𝑝$%) 258 
and σ, the logistic function’s temperature. Just as is the case for CE estimation however, the utility 259 
estimates relied on aggregate choices between multiple reward pairs. The logistic fit also 260 
highlighted sequences where monkeys would not follow even the most basic principle of rational 261 
choice: weak stochastic dominance (picking an objectively lower outcome). Choices where this was 262 
the case were removed from all future analyses: that is, when the estimated temperature parameters 263 
of logistic fits were negative (i.e. the larger the gap, the lower the likelihood of choosing the better 264 
option) or significant outlier (p<0.05; Grubbs's test). In monkey A, 38 choice sets were removed 265 
from a total of 279 choice sets (14 negative parameters and 24 outliers). In monkey B, 1 choice set 266 
was removed from a total of 62 choice sets (1 negative parameters and no outliers). 267 
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Where logistic fittings were successful, the functions were used to estimate the higher-lower 268 
choice ratio, at each midpoint, for an untested magnitude gap of 0.03 ml (Fig. 3a). Then, the inverse 269 
cumulative of a logistic probability density function (centered at 0 with variance = 1) was used to 270 
estimate the distance, in utility terms, between the two magnitudes in the 0.03 ml gap (Fig. 3b). In 271 
other words, these 0.03 ml gaps were placed onto a shared scale (i.e. random utilities) through the 272 
assumption that, on each trial, the probability that the monkeys would pick the better reward (𝑥&) 273 
was given by:  274 

𝑃(𝑥&) 	= 	𝑃[𝑈(𝑥&) 	≥ 	𝑈(𝑥')],          Eq. 3 275 

𝑃(𝑥&) 	= 	𝑃[𝑢(𝑥&) 	+	𝜀& 	≥ 	𝑢(𝑥') 	+	𝜀' 	],       Eq. 4 276 

𝑃(𝑥&) 	= 	𝑃[𝑢(𝑥&) 	− 	𝑢(𝑥') 	≥ 	 𝜀' 	− 	𝜀& 	],        Eq. 5 277 

In this form, the probability of choosing 𝒙𝒊 rather than 𝒙𝒋 was given by the probability that the 278 
difference in the true utilities of 𝒙𝒊 and 𝒙𝒋 was greater or equal to the noise on 𝒙𝒋 (𝜺𝒋) minus the 279 
noise on 𝒙𝒊 (𝜺𝒊). From this, it followed that the distribution of noise differences could be used as a 280 
predictor of the distance between the two true utilities (𝒖(𝒙𝒊) and 𝒖(𝒙𝒋)). Because of the 281 
assumption of constant noise, the probability of choosing 𝒙𝒊 over 𝒙𝒋 would be directly proportional 282 
to the distance between the true utility of two options. In accordance with McFadden’s formulation 283 
(McFadden, 1974, 2005; Stott, 2006), we assumed that the distribution of error differences (𝜀' 	−284 
	𝜀&) took a logistic form: 285 

𝑃(𝑥&) 	= 	
*

(*,-,∆345*546	)
	           Eq. 6 286 

and then used the inverse of this logistic distribution’s CDF to estimate the difference in 287 
utilities (∆𝑢𝑡𝑖𝑙𝑖𝑡𝑦) between the hypothetical 0.03 ml reward gaps (Fig. 3c) - essentially the slope of 288 
the monkeys’ utility function at every midpoint. The cumulative sum of these slopes provided an 289 
estimate of the utility at each midpoint.  290 

Modelling risky and riskless choices in a common metric 291 

Because the utilities measured from aggregate behavior did not account for probability 292 
weighting on choices (i.e. they were EUT utilities rather than PT ones), parametric utility functions 293 
were re-estimated from individual choices using a discrete choice model that could account for the 294 
effects of both, separately. This placed utility metrics for risky and riskless choices on a common 295 
and comparable scale, and, importantly, it allowed for the inclusion of probability weighting as an 296 
additional contributor to the monkeys’ preferences.  297 

As in most discrete choice models (and in line with the aggregate RUM metric), a logit 298 
function (softmax) was used to represent noise in the decision-making process. The probability of 299 
the monkey making either a left or right choice was therefore given by:  300 

𝑃/0112-3-45 	=
*

6*,-,789:$#4,9%5;<4	,	=>7
       Eq. 7 301 

Where the probability of choosing the left option is a function of the difference in value 302 
between the left and right options, the noise parameter, 𝜆, and the side bias parameter 𝜃. The value 303 
of each option (VLeft, VRight) took on the functional form prescribed by PT in its cumulative form 304 
(Tversky & Kahneman, 1992): 305 

𝑉(𝑚*, 𝑚8, 𝑝8) = 	𝑢(𝑚8) ∗ 𝑤(𝑝8) + 𝑢(𝑚*) ∗ (1 − 𝑤(𝑝8))    Eq. 8 306 
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where m1 and m2 were the low and high outcome magnitudes respectively, while p2 was the 307 
probability of obtaining the high outcome; the probability weighting function (w(p)) corresponded 308 
to a power function:  309 

𝑤(𝑝) 	= 𝑝9           Eq. 9 310 

The utility of the option’s outcome (u(m)) was the CDF of a two-sided power distribution 311 
(Kotz and Dorp, 2010):	 312 

𝑢(𝑚) 	= 	 O
𝜅 Q$

:
R
*/<

𝑓𝑜𝑟	0 ≤ 𝑚 ≤ 𝜅

1 −	(1 − 𝜅) Q*!$
*!:

R	*/< 𝑓𝑜𝑟	𝜅 < 𝑚 ≤ 1
     Eq. 10 313 

In the probability weighting function, the ρ-parameter prescribed either an overweighing (ρ 314 
>1) or underweighting (ρ<1) of an outcome’s probability. The utility measure was a function of an 315 
α-parameter and an inflection point κ, where the curvature of the utility function would invert. Each 316 
outcome magnitude (m) was normalized onto a 0-1 scale, so that κ was bounded by the range of 317 
outcome magnitudes experienced by the monkeys (values from 0 to 1, corresponding to 0 ml and 318 
0.5 ml respectively). 319 

Each of these parameters was fit to single-choice data by maximizing the sum of log-320 
likelihoods defined on the model as: 321 

𝐿𝐿(𝜃|	𝑦) 	= ∑ 	𝑦&=
&	?	* ∗ 𝑙𝑜𝑔Y𝑃@0112-	3-45Z +	∑ 	𝑦&A=

&	?	* ∗ 𝑙𝑜𝑔Y1 −	𝑃@0112-	3-45Z Eq. 11 322 

For each individual choice trial (i), y and y’ indicated a left or right choice respectively (1 if 323 
yes, 0 if no), n was the total number of trials for the session, and 𝑃@0112-	3-45 was the output of the 324 
earlier logistic function (Eq. 7). This discrete choice analysis was restricted to choice sequences 325 
previously deemed appropriate for the aggregate preference estimations described in earlier 326 
sections. 327 

Statistical comparison of risky and riskless choices 328 

Estimating utilities through discrete choice modelling allowed for the comparison of the 329 
functional parameters that best described the monkeys’ decisions in risky and riskless choices, and 330 
to explore the unique contributions of both magnitudes (through utility) and probabilities (through 331 
probability weighting) in a way that aggregate, non-parametric measures did not permit.  332 

Because the logit function’s 𝜆-, and the utility’s α-parameters were asymmetrically distributed 333 
(with positive values <1 accounting for as much change as values >1), these were log-transformed 334 
before proceeding with any comparison. Then, the parameters elicited in risky choice sequences 335 
were compared to those estimated from riskless sequences using a one-way multivariate analysis of 336 
variance (or MANOVA) whereby the main comparison factor in the analysis was the risk-riskless 337 
choice scenario described by each set of parameters. Since the probability weighting parameter for 338 
riskless choices was constant and fixed at 1, we restricted the MANOVA analysis to the softmax 339 
and utility parameters. We then ran additional correlation analyses (Pearson’s R) between risky and 340 
riskless utility parameters to determine if the parameters in one set of choices could predict those of 341 
another.  342 

All parameters were compared independently for each monkey, results were never pooled 343 
across animals, and the statistics for each monkey are reported separately. All statistical analyses 344 
were considered significant at p < 0.05.  345 

 346 
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Results 347 

Experimental design 348 

Prospect theory implicitly assumes that the utilities that guide risky and riskless decisions are 349 
the same. We sought to validate this assumption in macaque monkeys by comparing the decisions 350 
they made in risky versus riskless choices. Two rhesus macaques were trained to make choices 351 
between pairs of reward options presented on the left and right sides of a computer screen by 352 
moving a joystick towards the chosen side (Fig. 1a). The reward options varied in terms of 353 
blackcurrant juice quantity as well as in the probability that they would be delivered. The monkeys 354 
received the selected rewards after every trial – contingent on their delivery probability.  355 

Choice preferences were elicited in trial sequences in which either both options were certain 356 
and therefore riskless, or in sequences where one option was certain (safe option) and the other was 357 
a risky gamble with two possible outcomes (juice magnitudes), each delivered with probability p = 358 
0.5 (equiprobable gamble). We separately used these riskless or risky choices to infer an animal’s 359 
utility function, compatible with PT. Choice sequences were structured in a way that allowed us to 360 
map utilities onto aggregate behavioral metrics, and to then model these choices under the 361 
assumptions of Prospect Theory.  362 

In risky choices, utilities were estimated by psychometrically measuring the certainty 363 
equivalent (CE) of equiprobable gambles and then applying the fractile method, a stepwise 364 
procedure whereby one progressively sections the range of possible rewards using the CEs 365 
estimated from previous steps (see Methods section). In each session, we obtained five intermediate 366 
points of the EUT-compatible utility functions (Fig. 2). 367 

Since gambles were off-limits to estimate riskless utilities, the random utility maximization 368 
(RUM) framework was used in riskless choices to estimate utility differences between two reward 369 
magnitudes (Fig. 3a, b). The utility functions were then reconstructed by cumulatively summing all 370 
such utility increments (Fig. 3c). This procedure produced seven utility levels, corresponding to our 371 
discrete estimate of the RUM-compatible utility function (see Methods section) (Fig. 3). 372 

Utility functions in risky and riskless choice 373 

Choice measurements from risky and riskless sequences were gathered on the same day, in 22 374 
and 7 sessions for monkeys A and B respectively. We used these choices to estimate the utility 375 
function underlying the measured choice pattern. 376 

For both risky and riskless sequences, a link between utility measurements and reward 377 
magnitudes was confirmed via one-way ANOVA. Both monkeys exhibited a significant main effect 378 
of utility on the CEs (Fig. 2c) in risky choices (Monkey A: F(4,124) = 35.482, p = 9.763∙10-20, 379 
Monkey B: F(4,39) = 172.537, p = 3.090∙10-24). In riskless choices, we contrasted the utilities with the 380 
midpoint reward magnitude (Fig. 3f), highlighting a significant main effect (Monkey A: F(8,232) = 381 
375.763, p = 3.503∙10-128; Monkey B: F(8,52) = 85.561, p = 3.474∙10-27). These basic results 382 
illustrated how the utilities associated with different reward magnitudes were significantly different 383 
from each other, which would not have been the case if monkeys selected options at random. 384 

Importantly, the utility levels were significantly rank-ordered in relation to the reward 385 
magnitudes (Spearman rank correlation in Monkey A: risky Rho= 0.7209, p=5.853∙10-22; riskless 386 
Rho= 0.9628, p=8.035∙10-138. In Monkey B: risky Rho= 0.9446, p=6.092∙10-22; riskless Rho= 387 
0.9665, p=1.529∙10-36), in line with the fundamental principle of utility functions being 388 
monotonically related to the reward magnitudes. In general, utilities appeared to be non-linear 389 
functions of physical reward magnitudes. 390 
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In risky choices, the full elicited risky utility functions followed an S-shape pattern in both 391 
monkeys, reflecting the typical risk attitudes observed in macaques: risk-seeking (convex utility) for 392 
relatively low-magnitude rewards and risk-aversion (concave utility) for relatively high-magnitude 393 
ones (Fig. 2c). 394 

In riskless choices, we compared the estimated utility increments in order to highlight any 395 
non-linearity in the utility shape. As increments in utility were proportional to the temperature 396 
parameter (i.e. the slope) of the softmax curves that described choices around a certain magnitude 397 
level, the softmax temperature could be used as a proxy for linearity: a constant temperature across 398 
magnitude levels would correspond to a linear utility function, while a varying temperature would 399 
indicate non-linear utility. We compared the temperature parameter across midpoints and found that 400 
it varied significantly with magnitudes (Fig. 3d; Monkey A: F(8, 232) = 2.663, p = 8.165∙10-3); 401 
Monkey B: F(8, 52) = 4.187, p = 6.370∙10-4) highlighting the non-linearity in the riskless utility 402 
function, in both monkeys. The softmax temperature, as a function of the midpoint, reached a 403 
minimum (around 0.30 and 0.15 ml for monkeys A and B respectively) before increasing again, 404 
suggesting a slight S-shape for the riskless utility function (Fig. 3f). 405 

Although these aggregate utility measures were based on commonly defined economic 406 
models, they were not (i) PT-compatible, and (ii) comparable between the risky/riskless choice 407 
scenarios. In fact, we estimated the risky utility functions following EUT, which, in contrast with 408 
PT, assumes no subjective weighting of probabilities; the utility functions had different magnitude-409 
ranges in risky and riskless choices (0 to 0.5 ml and 0.05 ml to 0.45 ml, respectively) and different 410 
discrete steps. We sought to overcome these limitations by defining a utility estimation method that 411 
allowed for a direct comparison of utility in risky and riskless choices, compatibly with economic 412 
choice models. 413 

Risky and riskless utility functions on a common scale 414 

To directly compare the utility functions between risky and riskless choices, we re-estimated 415 
utilities on a common scale, compatible with PT. We used the same discrete choice model (Eq. 7) to 416 
describe both riskless and risky choices, without the need of two different estimation procedures. 417 

The main assumption of our model is that a random quantity is added to each option’s utility 418 
at every trial, using the PT model as the underlying deterministic choice mechanism. This model 419 
introduced stochasticity in choices and could readily be applied to both risky and riskless choices 420 
without modification.  421 

In the model, utility functions took the form of the cumulative distribution function of a two-422 
sided power distribution (Eq. 10 ; Kotz & Dorp, 2010), a 2-parameter function that could easily 423 
account for complex risk-attitudes (Kontek and Lewandowski, 2018): if 𝛼 < 1, the utility function 424 
would be convex and predict risk-seeking choices up to the inflection at parameter 𝜅 (predicting 425 
risk-averse choices thereafter); if instead 𝛼 > 1, the utility function would be concave and predict 426 
risk-averse behavior up to the inflection at 𝜅 (predicting risk-seeking behavior afterwards). For 427 
risky choices, a 1-parameter power function captured the weighting of probabilities (Eq. 9). Since 428 
the only probability experienced was p = 0.5, 𝜌 > 1 implied an overweighting of the probability of 429 
receiving the highest reward whilst 𝜌 < 1 implied underweighting.  430 

We defined three forms of this discrete choice model, with different free parameters: the EV 431 
model (linear utility and probability weighting), where only the “noise” parameter was free to vary; 432 
the EUT model (linear probability weighting), where the utility parameter could vary; and the PT 433 
model, with both utility and probability weighting free parameters. In risky choices, we compared 434 
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the goodness-of-fit of the three models to identify the one that would produce the best estimate of a 435 
utility function. In riskless choices, we estimated the utility function using the EUT model.  436 

In risky choices (Fig. 4a, b), both the EUT and PT models predicted s-shaped utility functions 437 
(Monkey A EUT: t(22)= -29.0190, p<0.00001;  Monkey A PT: t(22)= -28.2543, p<0.00001;  438 
Monkey B EUT: t(22)= -4.2859, p=0.005172;  Monkey B PT: t(7)= -7.4532, p=0.000301). The PT 439 
model, however, relied on concave probability weighting (one-sample t test, Monkey A: t(22) = -440 
4.2533, p = 3.55∙10 -4; Monkey B: t(7) = -2.7316, p = 0.0341), rather than a convex utility function, 441 
to explain risk-seeking behavior. For that reason, PT’s s-shaped utility functions were mostly left-442 
skewed (more concave than convex) whereas EUT utility functions captured risk-seeking behavior 443 
solely through a right-skewed s-shape (more convex than concave) (Fig. 4a). Overall, the daily best-444 
fitting parameters from the PT and EUT models were significantly different from each other (Table 445 
1), with the PT model capturing behavior significantly more reliably than both EV and EUT models 446 
(Fig. 4b; Wilcoxon rank sum test; monkey A: p = 1.0∙10-4;	monkey B: p = 1.8∙10-2). Through the PT 447 
model, we could separate the contribution of utility and probability weighting to the risk attitude, 448 
obtaining a better estimate of the utility function underlying choices, compared to the EUT model. 449 

In riskless choices (Fig. 4c), the utility function’s α parameter was not significantly different 450 
from one (t test, Monkey A: t(22)=-0.3267, p=0.7471; Monkey B: t(7)=1.3457, p=0.2270). This 451 
implied that the riskless utility functions were close to linear, suggesting that magnitudes were 452 
objectively represented, according to the RUM framework. 453 

Mismatch between risky and riskless utility functions 454 

When comparing riskless and risky utilities computed on a common scale, we found a 455 
significant difference in the utility functions’ shapes in terms of α parameter, in both monkeys (Fig. 456 
5a; Monkey A: F(1,42) = 72.717, p = 1.04∙10-10; Monkey B: F(1,12) = 24.221, p = 3.52∙10-4). 457 

Monkey B’s difference in the utility’s inflection point between risky and riskless choices 458 
(Monkey A: F(1,42) = 1.282, p = 0.264; Monkey B: F(1,12) = 17.153, p = 0.00136) was significant, 459 
while we found no significant difference in either the noise or the side bias parameters (noise: 460 
Monkey A: F(1,42) = 2.760, p = 0.104; Monkey B: F(1,12) = 0.182, p = 0.677; side bias: Monkey A: 461 
F(1,42) = 0.2407, p = 0.626; Monkey B: F(1,12) = 2.338, p = 0.152). 462 

Overall, these results show that the dissimilarity between the modeled riskless and risky 463 
choices was mainly due to a difference in the non-linearity of the utility functions, as expressed by 464 
the α parameter. The utility function was strongly non-linear in risky choices, while it was close to 465 
linear in riskless choices. 466 

The difference in utility functions was also evident when comparing risky and riskless data 467 
from single days, through a correlation analysis: we found was no significant correlation between 468 
any of the parameters of risky utility functions and those of riskless utility functions across days 469 
(Fig. 5b). 470 

As a control, we correlated the measured riskless choice percentages (for the hypothetical 471 
0.03 ml gap, grey dot in Fig. 3a) with the modeled ones, separately using the utility function elicited 472 
from risky or riskless choices. We found a significant correlation coefficient when predicting 473 
riskless choices using the riskless utility function (Monkey A: R=0.442, p=1.278∙10-9 Monkey B: 474 
R=0.484, p=7.610∙10-5) but not using the risky one (Monkey A: R=0.104, p=0.175  Monkey B: 475 
R=0.087, p=0.503). This confirmed that the riskless utility function captured the behavior in riskless 476 
choices while the risky utility function did not, emphasizing the difference in risky/riskless utilities. 477 
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In summary, estimating utilities through PT, rather than EUT, brought risky fits more in line 478 
with riskless ones (Table. 1; Fig. 5a) in line with previous human studies (Stalmeier and 479 
Bezembinder, 1999; Abdellaoui et al., 2007). However, a direct comparison between the risky and 480 
riskless utility parameters revealed significant differences in the utility functions’ shapes between 481 
the two choices scenarios (Fig. 5b). 482 

 483 

Discussion 484 

Using a robust, incentive-compatible task, we showed that utility functions that describe 485 
decisions involving risk more closely mimicked riskless utility functions, if probability weighting 486 
was considered. We modelled macaque monkeys’ risky and riskless choices through stochastic 487 
versions of PT and EUT, and reliably estimated functional parameters that best described their 488 
choices. Each day, the monkeys were presented with risky or riskless binary choice sequences. In 489 
risky ones, they made choices between gambles and safe rewards; in riskless ones, both choices had 490 
a single, certain outcome. We found that modelling monkeys’ risky decisions via the PT model of 491 
choice, in addition to providing a better fit than EUT, led to decision parameters that more closely 492 
resembled riskless ones. This trend is in-line with the human literature (Stalmeier and Bezembinder, 493 
1999; Abdellaoui et al., 2007). However, the direct comparison differed: the monkeys’ utility 494 
functions elicited in riskless and risky choices were more alike, but they were still significantly 495 
different. 496 

In terms of behavioral metrics, the CEs estimated in fractile sequences suggested both 497 
monkeys were risk-seeking for all but the highest of reward magnitudes that they experienced. The 498 
PT and EUT models predicted similar risk-seeking behavior via an overweighing of gamble 499 
options, but they differed in the way in which they achieved this. Both EUT and PT models 500 
predicted s-shaped utilities, the PT model, however, accounted for the monkey’s risk seeking 501 
behavior mostly through its concave probability weighting. In other words, the subjective 502 
probability of ‘winning’ a gamble was higher than the objective probability of winning regardless of 503 
utility’s effects. EUT fits, on the other hand, captured risk-seeking behavior exclusively through 504 
their utility function; one that was right-leaning (more convex than concave) and so predicted 505 
higher utilities for gamble options than for safe ones. Since PT’s utilities were ‘free’ from the 506 
effects of probability weighting, the s-curves were left-shifted (i.e. more concave than convex), 507 
suggesting a relatively more risk-averse utility function than from EUT’s predictions. Comparing 508 
these findings to the riskless utility fits, we found that PT utilities deviated far less from riskless 509 
utilities than EUT ones. Still, the utilities estimated from riskless binary choices were relatively 510 
linear (if slightly risk-averse), a shape that was at odds with that of the risky PT estimates. It 511 
appears that, at least within the confines of our experiment, the difference between risky and 512 
riskless utilities was not as simple as the addition of a probability weighting parameter.  513 

Assuming that the discrete choice model is correct, the difference in utility functions for risky 514 
and riskless utilities could be used as a quantitative basis for a neuronal test of utility coding. By 515 
recording the activity of single neurons during risky or riskless choices, the pattern of neuronal 516 
activations in utility-coding neurons should reflect the different utility shapes elicited though 517 
behavior in the two choice scenarios. 518 

As an alternative interpretation, the source of discrepancy between risky and riskless utility 519 
function could be due to limits in the model specification. Alternative models should be compared 520 
to support this hypothesis, including different assumptions on the noise shape: while the current 521 
model assumes a constant and symmetric noise around each option’s utility, this could be an 522 
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oversimplification. A more biologically plausible contribution of noise on the utility measure could 523 
include asymmetric and non-constant noise (especially for activity rates close to the limits of the 524 
neurons’ dynamic range) as well as noise applied separately to every option’s component 525 
(magnitudes and probabilities). 526 

Moreover, monkeys could be using different strategies for solving the risky and riskless 527 
choice problems, implying different brain mechanisms. In particular, riskless choices closely 528 
resemble a perceptual discrimination task, in which subjective values would not be required and the 529 
optimal solution would be to perceptually compare the visual stimuli.  530 

While the same binary choice design was used in risky and riskless choices, the difference 531 
between options was much greater in risky sequences than in riskless ones. To estimate aggregate 532 
riskless utilities, for example, the rewards that the monkeys experienced differed only by up to 533 
0.06ml in every trial. In risky sequences, on the other hand, gambles were pitted against safe 534 
rewards spread over the full range of the gambles’ outcomes. Monkeys experienced a broad range 535 
of magnitudes in each of the sequences, but the differences between riskless choices could have 536 
required far more attention to dissociate than those in riskless choices (something we cannot 537 
account for; but see, Farashahi et al., 2018). 538 

Where these findings fail to replicate the data from risky and riskless introspective studies 539 
(though see Hertwig, Wulff, & Mata, 2018), they are nonetheless in line with the incentive-540 
compatible time trade-off approach. Since these types of time discounting tasks are easily adapted 541 
to study preferences in rhesus macaques (Hayden and Platt, 2007; Kobayashi and Schultz, 2008; 542 
Hwang et al., 2009; Blanchard et al., 2013), it would be interesting to see how utility functions 543 
estimated using time trade-offs in macaque monkeys correlate with the present findings. Another 544 
approach that would be interesting to consider is the one used by Chung, Glimcher and Tymula 545 
(Chung et al., 2019), where they compared risky and riskless choices between bundles of outcomes 546 
- estimating utilities through identifying the combinations of rewards for which decision-makers are 547 
indifferent. They found that risky and riskless choices could be reconciled when choices involved 548 
gains, but that PT failed to reconcile the two when the choices involved losses. Since preferences 549 
over losses are generally risk-seeking (for humans), it could be that the macaque monkeys’ risk-550 
seeking behavior mimics this loss-related discrepancy. If macaque monkeys were to, in risky 551 
settings, adjust their expectations in a way that paints the lower outcome of a gamble as a loss, one 552 
would expect the lower end of their utility function to behave like the loss side of PT’s value 553 
function (Kahneman and Tversky, 1979). There is some evidence that rhesus macaques (and indeed 554 
humans) do this: they exhibit preferences consistent with win-stay lose-shift strategies (Gilovich et 555 
al., 1985; Barron and Erev, 2003; Heilbronner and Hayden, 2013). For repeated gamble-safe 556 
choices, they generally reverse their risk-seeking preferences for gambles depending on if they have 557 
previously won or lost a previous gamble instance (Lau and Glimcher, 2005; Blanchard et al., 2014; 558 
Ferrari-Toniolo et al., 2019b). If this is the case, fitting macaques’ choices through utility models 559 
that account for trial-by-trial changes in preference functions are likely to do a better job at 560 
reconciling risky and riskless utilities than using fixed utility and probability weighting functions 561 
applied to the entire experimental procedure.  562 

Overall, the results presented here add to the need for decision models to account for flexible, 563 
context-specific preferences (Hayden, B; Heilbronner, S; Nair, A; Platt, 2013; Heilbronner and 564 
Hayden, 2016; Farashahi et al., 2018). For decision-theory as a whole, reconciling dynamic 565 
preferences with more traditional economic models would go a long way to making more accurate, 566 
descriptive predictions.  567 
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 669 

               670 
 671 
Figure 1. Experimental design and measures of risky and riskless choices.  672 
a) Binary choice task. The monkeys chose one of two gambles with a left-right motion joystick. 673 
They received the blackcurrant juice reward associated with the chosen stimuli after each trial. 674 
Time, in seconds, indicate the duration of each of the task’s main events.  675 
b) Schema of visual stimuli. Rewards were visually represented by horizontal lines (one or two) set 676 
between two vertical ones. The vertical position of these lines signalled the magnitude of said 677 
rewards. The width of these lines, the probability that these rewards would be realized).  678 
c) Estimating certainty equivalents from risky choices. Monkeys chose between a safe reward 679 
and a risky gamble on each trial. The safe rewards alternated pseudorandomly on every trial – they 680 
could be of any magnitude between 0 ml and 0.5 ml in 0.05 ml increments. Each point is a measure 681 
of choice ratio: the monkey’s probability of choosing the gamble option over various safe rewards. 682 
Psychometric softmax functions (Eq. 1) were fit to these choice ratios, then used to measure the 683 
certainty equivalents (CEs) of individual gambles (the safe magnitude for which the probability of 684 
either choice was 0.5; black arrow). The solid vertical line indicates the expected value (EV) of the 685 
gamble represented in the box.  686 
d) Estimating the strength of preferences from riskless choices. Riskless safe rewards were 687 
presented against one another, the probability of choosing the higher magnitude option (A) is 688 
plotted on the y-axis as a function of the difference in magnitude between the two options presented 689 
(∆ magnitude). The differences in magnitude tested were 0.02 ml, 0.04 ml, 0.06 ml, and a 690 
psychometric curve, anchored with its inflection anchored at a ∆ magnitude of 0, were fit on the 691 
choice ratios measured (Eq. 2). These functions were fit to different magnitude levels, and the 692 
temperature of each curve was linked to the strength of monkeys’ preferences at each of these 693 
different levels. 694 
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 696 

                  697 
Figure 2. Estimating risky utilities using the fractile procedure.  698 
a) Fixed utilities are mapped onto different reward magnitudes. The gambles that monkeys 699 
experienced are defined from bisections of the range of possible reward magnitudes. For each step 700 
the gambles were held fixed; safe magnitudes varied by 0.05ml increments.  701 
b) Estimation of utility using the stepwise, fractile method. In step 1, the monkeys were 702 
presented with an equivariant gamble comprised of the maximum and minimum magnitudes in the 703 
tested reward range. The CE of the gamble was estimated and assigned a utility of 50%. In step 2, 704 
two new equivariant gambles were defined from the CE elicited in step 1. The CEs of these gambles 705 
were elicited and assigned a utility of 25% and 75%. Two more gambles are defined in step 3, from 706 
the CEs elicited in step 2. Their CEs were then assigned a utility of 12.5% and 87.5%. Parametric 707 
utility functions, anchored at 0 and 1, were fitted on these utility estimates (see methods). 708 
c) Utility functions estimated from choices. Datapoints represent daily CEs (semi-transparent) and 709 
their median values (red filled circles) tied to specific utility levels, as estimated through the fractile 710 
procedure. Both monkeys exhibit risk-seeking behaviour for low-magnitude rewards, and risk-711 
aversion for high-magnitude ones. The data represents individual utility estimates gathered over 22 712 
sessions for monkey A, and 7 sessions for monkey B. The red curves were obtained by fitting 713 
piecewise polynomial functions to the measured CEs (cubic splines with three knots).  714 
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   716 

               717 
Figure 3. Estimating riskless utilities from the stochasticity in safe-safe choices. 718 
a) Measuring stochasticity in choices between safe reward pairs. Example visual stimuli (top) 719 
representing choices between safe rewards (A: low, B: high) resulting in different percentage of 720 
choices for the high option (bottom; black dots). This was repeated for different rewards pairs, 721 
centered at different increments (midpoints). For each midpoint, the likelihoods were fitted with a 722 
softmax curve (dashed), used to estimate the probability of choosing the larger option for a gap of 723 
0.03 ml (gray dot).  724 
b) Choice ratios as differences in utility. The likelihoods that monkeys would pick the better 725 
reward were transformed using the inverse cumulative distribution function (iCDF) of a logistic 726 
distribution. The utility of different rewards took the form of equally noisy distributions centered at 727 
the monkeys’ ‘true’ utilities. The output of iCDFs is the distance between these random utilities (i.e. 728 
the marginal utility). 729 
c) From marginal utilities to utility. The cumulative sum of marginal utilities approximated a 730 
direct utility measure for each midpoint. These measurements were normalized whereby the utility 731 
of the highest midpoint was 1, and the starting midpoint had a utility of 0.  732 
d) Daily strength of preference estimates. Each point represented the temperature of the softmax 733 
curve fitted on the choice ratios (blue points: average across days). The lower the temperature 734 
parameter, the steeper was the softmax curve and the more separable were the random utilities. 735 
Lower values meant higher marginal utility measurement (steeper utility function), higher ones 736 
meant lower marginal utility (flatter function). 737 
e) Daily choice ratio estimates from softmax fits. Estimates from the same day are linked by grey 738 
lines. Ratios of 0.5 meant that the random utility of the two options were fully overlapping (i.e. flat 739 
utility function); choice ratios closer to 1 meant random utilities that were fully dissociated and non-740 
overlapping.  741 
f) Utility functions. Utilities estimated in single days (grey lines) and averages (blue), normalized 742 
relative to the minimum and maximum midpoint. 743 
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 744 

 745 

Figure 4. Discrete choice estimates differ between risky and riskless choices.  746 
a) Utility functions in risky choice. Median parametric estimates for utility functions and 747 
probability weighting functions fitted to risky choices. Shaded area: 95% C.I. on the median of 748 
these functions. Two versions of the discrete choice model were fitted: the expected utility theory 749 
(EUT) model predicted choices solely based on reward options’ utilities (without probability 750 
weighting); the prospect theory (PT) model, predicted choices based on utilities and probability 751 
weighting. An expected value (EV) based model was included for comparison. Monkeys were risk-752 
seeking, but where the PT model accounted for this mainly through probability weighting, the EUT 753 
model accounted for it through a more convex utility. 754 
b) Comparison of risky choice models. The PT model described individual choices better than 755 
EUT and EV. Bayesian information criterions (BIC) were calculated from the log likelihoods of the 756 
daily best-fitting PT and EUT discrete choice models. 757 
c) Utility functions in riskless choice. Median parametric estimates for utility functions fitted to 758 
riskless choices (shaded area: 95% C.I. on the median). The discrete choice model predicted choices 759 
from the expected utilities of rewards (no probability weighting). Utilities were mostly linear, 760 
though slightly concave. 761 
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 763 

          764 
Figure 5. Risky utilities do not predict riskless ones, and vice-versa.  765 
a) Median utility function estimates for risky and riskless choices. The shaded area represents 766 
the 95% C.I. on the median of these functions. For riskless choices, utility estimates were mostly 767 
linear (though slightly concave). For risky utilities, the two different versions of the discrete choice 768 
model predicted S-shaped utilities, but risky EUT utility functions were more convex than PT utility 769 
functions.  770 
b) Absence of correlation for utility parameters in risky vs. riskless choices. Pearson’s 771 
correlations were run on the parameters from risky and riskless scenarios. Red squares highlight 772 
Pearson’s R for the correlation of the α and inflection parameters between risky and riskless 773 
choices. Asterisks (*) indicate significant correlations (p < 0.05). 774 
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 776 
Table 1. MANOVA Tests for pairwise differences between the risky EUT, risky PT, and riskless 777 
discrete choice models.  778 
 779 

 Utility Type F (1, 42) p Wilks λ 

Monkey A Riskless, 
Risky (PT) 28.697 6.158∙10-12 0.209 

 Risky (EUT), 
Risky (PT) 5.475 6.856∙10-4 0.581 

 Utility Type F (1, 12) p Wilks λ 

Monkey B Riskless, 
Risky (PT) 8.744 4.239∙10-3 0.155 

 Risky (EUT), 
Risky (PT) 1.687 0.243 0.487 

 780 

The analyses were run on four of the five free parameters, excluding probability weighting. The risky 781 
EUT and riskless models had no probability weighting parameter to compare with the risky PT 782 
model’s probability weighting. 783 
 784 

Table 2. Two-way ANOVA Tests for pairwise differences between three sets of certainty discrete 785 
equivalents.  786 
 787 

 Utility Type Df F (1, 60) p 

 Risky/Riskless, 
Risky (PT) (7, 168) 432.024 6.859∙10-104 

Monkey A Risky/Riskless, 
True CEs (7, 142) 118.972 3.665∙10-56 

 Risky (PT),  
True CEs (7, 142) 98.785 2.3∙10-51 

 CE Type Df F (1, 60) p 

 Risky/Riskless, 
Risky (PT) (9, 60) 193.653 6.75∙10-41 

Monkey B Risky/Riskless, 
True CEs (9, 149) 208.550 9.462∙10-80 

 Risky (PT),  
True CEs (9, 149) 211.873 3.189∙10-80 

 788 
The certainty equivalents were derived from the daily predictions of the risky/riskless hybrid model, 789 
the PT model, and the ones measured from out-of-sample sequences.  790 
 791 
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