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Realistic, everyday rewards contain multiple components. An apple has taste and size. However, we
choose in single dimensions, simply preferring some apples to others. How can such single-dimensional
preference relationships refer to multicomponent choice options? Here, we measured how stochastic
choices revealed preferences for 2-component milkshakes. The preferences were intuitively graphed as
indifference curves that represented the orderly integration of the 2 components as trade-off: parts of 1
component were given up for obtaining 1 additional unit of the other component without a change in
preference. The well-ordered, nonoverlapping curves satisfied leave-one-out tests, followed predictions
by machine learning decoders and correlated with single-dimensional Becker-DeGroot-Marschak (BDM)
auction-like bids for the 2-component rewards. This accuracy suggests a decision process that integrates
multiple reward components into single-dimensional estimates in a systematic fashion. In interspecies
comparisons, human performance matched that of highly experienced laboratory monkeys, as measured
by accuracy of the critical trade-off between bundle components. These data describe the nature of
choices of multicomponent choice options and attest to the validity of the rigorous economic concepts
and their convenient graphic schemes for explaining choices of human and nonhuman primates. The
results encourage formal behavioral and neural investigations of normal, irrational, and pathological
economic choices.
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We like sweet apples. We can state our preference in words, but
they may not be accurate because of poor introspection, faulty
memory or erroneous report. It would be better to observe our
choice. However, how do we choose apples? We may prefer a
sweeter apple even if it is a bit smaller; hence, we trade-in size for

sweetness. Our preference does not concern any component alone
but their combination. Every reward or economic good has mul-
tiple components, attributes, or dimensions and, thus, constitutes a
bundle. The bundle components may be integral parts of a good,
like sweetness and size of an apple, or consist of distinct entities,
like steak and vegetable of a meal. Each component contributes to
the choice. Without considering the multicomponent nature of
choice options, we would only study exchanges, like choosing
between an apple and a pear (not a choice for an apple lover), or
between a movie and a meal (not good when hungry). Thus, to
understand realistic choice, we should consider the multicompo-
nent nature of choice options.

In contrast to the multidimensionality of choice options, their
subjective value, or utility, varies only along one dimension.
Likewise single-dimensional are the preference relationships that
are revealed by our choice of bundles. With two options, a rational
decision maker prefers either one option, or its alternative, or is
indifferent to them (completeness axiom; Von Neumann & Mor-
genstern, 1944; Mas-Colell, Whinston, & Green, 1995). With
repeated stochastic choice, preferences are revealed by choice
probability (McFadden, 2005; McFadden & Richter, 1990); the
probability of choosing one option over its alternative varies in a
graded, scalar manner. Correspondingly, the utility of a choice
option can only be higher, lower, or equal to that of its alternative.
Further, neural signals representing choice options can only vary
along a single dimension at any given moment and, thus, are also
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scalar; their firing rate either increases, remains unchanged, or
decreases (thus, constituting a distribution), even when encoding
multidimensional variables (Pastor-Bernier, Stasiak, & Schultz,
2019). Hence the question: how can single-dimensional prefer-
ences, utility, and neural signals concern multicomponent choice
options? Or, put more formally, how can scalar measures reflect
vectorial bundles? And can we test the issue empirically, using
well worked-out, rigorous theoretical concepts that should reduce
possible confounds?

Concepts and Hypotheses

The issue of vectorial-to-scalar transformation of economic
goods during economic decisions can be addressed by studying
revealed preferences. The key notion posits that preferences cannot
be observed directly but are revealed by measurable choice. Re-
vealed preferences contrast with stated preferences; both are un-
observable, but only revealed preferences refer to immediate,
actual choices. Revealed preferences may be inherent and fixed,
sitting there, and waiting to be revealed by the choice. This is a
basic assumption of formal Revealed Preference Theory (Fisher,
1892; Samuelson, 1937, 1938). However, preferences vary with
many factors such as context, frame, and number of options, which
might indicate that preferences are flexible and constructed on the
fly, at the moment of choice. These distinctions are important and
a matter of ongoing debate (Dhar & Novemsky, 2008; Kivetz,
Netzer, & Schrift, 2008; Payne, Bettman, & Schkade, 1999; Si-
monson, 2008; Warren, McGraw, & Van Boven, 2011). However,
the possibility to empirically infer preferences from observable
choice is invaluable for investigating choices of multicomponent
options. Therefore, we like to restrict the use of the term “re-
vealed” to the inference of preferences from observable choice
irrespective of their assumed origin, while nevertheless benefiting
from the rigorous concepts and graphics of Revealed Preference
Theory.

We used the following notions of Revealed Preference Theory
and stochastic choice theories (Luce, 1959; McFadden, 2005;
McFadden & Richter, 1990; Stott, 2006) for humans (for the
design of our parallel study on monkeys, see Method; Pastor-
Bernier, Plott, & Schultz, 2017):

1. The option set contains two simultaneously presented
bundles (binary choice). Each bundle contains two com-
ponents (A and B). The options are mutually exclusive
(choose one bundle or its alternative but not both) and
collectively exhaustive (they contain all available bun-
dles).

2. Each bundle can be plotted at the intersection of an
x-coordinate (component A) and an y-coordinate (com-
ponent B) on a two-dimensional graph (Figure 1A).

3. Stochastic preference is revealed by the probability of
choosing one bundle over its alternative, which depends
on all components of both bundles.

4. Every bundle has a utility for the decision maker that
depends only on the amounts of both of its components.
A bundle is chosen with higher probability than any other
bundle in the same option set if and only if its utility is

higher than in any other bundle in that option set. In other
words, the preference relationship between two bundles
is monotone if the higher utility of one bundle implies
that it is preferred to its alternative (Mas-Colell et al.,
1995).

5. Two bundles are chosen with equal probability if and
only if their utility is the same. Equal choice probability
of p � .5 for each bundle reveals equal stochastic pref-
erence and is graphically represented by a two-
dimensional indifference point (IP). At the IP, some
amount of one component is given up to gain one unit of
the other component without change in preference (mar-
ginal rate of substitution, MRS; Figure 1A). In the apple
example, some size is given up for more sweetness (the
sweeter apple was smaller). The IP is estimated from an
S-shaped psychophysical function fitted to the choice
probabilities while varying one component of one bundle
and keeping all other components constant (Figure 1B,
1C and 1D). The trade-off at the IP is conceptually
important, as it demonstrates same preference despite
oppositely varying bundle composition.

6. Multiple IPs align on a single, continuous indifference
curve (IC). The ICs are graphically characterized by two
parameters: (a) the slope, which reflects the relative util-
ity (currency) of the two bundle components; it could be
asymmetric between x-axis and y-axis; (b) the curvature,
which captures any slope change between IC center and
IC periphery. The ICs are typically convex (viewed from
the origin): larger reward amounts are associated with
decreasing value increment (reflecting diminishing mar-
ginal utility of concave utility function) and, therefore,
require larger trade-in amounts for getting a smaller
amount of the other component.

7. Bundles with larger amounts of one or both components
are plotted farther away from the origin and are assumed
to be revealed preferred to bundles with smaller amounts
(the “value function” for the component is strictly mono-
tonically positive; “more is always better”). Hence, any
bundle above an IC (farther away from origin) would be
revealed preferred to any bundle on that IC, and any
bundle on an IC would be revealed preferred to any
bundle below that IC (closer to origin).

8. The preference relationship between two bundles may
hold even when one component of the preferred bundle
has a smaller amount than the alternative bundle (partial
physical nondominance, requiring overcompensation by
the other bundle component). This aspect, together with
the equal-preference trade-off, crucially reflects the inte-
gration of the physical value of both bundle components
into single-dimensional preference relationships and
utility.

An alternative to integrating multiple bundle components may
exist when choices follow the amounts of only one bundle com-
ponent and partly or fully neglect changes in the other component.
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With such “lexicographic” preferences, the decision maker would
forego potential gains from the neglected component and, thus,
violate the principle of utility maximization. In such cases, ICs
would be parallel to one of the axes: any bundle on such a line
would be equally preferred, and more preferred bundles would lie

on one or more parallel lines farther out on the graph. Such scenarios
are not far-fetched, as decision-makers may have different discrimi-
nation thresholds for different bundle components, such as seen with
reward amounts and probabilities (Tversky, 1969; Just-Noticeable-
Difference, JND; Rieskamp, Busemeyer, & Mellers, 2006).
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Figure 1. Concepts, binary choice task, and experimental design. (A) Scheme of trade-off on indifference
curve. Equal revealed preference from varying bundle composition (inspired by a textbook scheme; Perloff,
2009). The original (black) and new bundles (green) are equally revealed preferred (black curve) when a quantity
of component B is traded in (red; Marginal Rate of Substitution: initially 3 ml, then 1 ml) for one unit of
component A (green; 1 ml). (B) Bundle stimuli for binary choice. Each bundle contained two components with
amounts between 0.0 and 8.0 ml. In this example, the Reference Bundle contained a low amount of Component
A (Comp A: low-sugar high-fat milkshake) and a high amount of Component B (Comp B: high-sugar low-fat
milkshake). Participants chose between the Reference Bundle and the Variable Bundle, whose locations on a
computer monitor alternated pseudorandomly between fixed left and right positions. (C) Psychophysical test
design. In the Reference Bundle, components A and B were set to 0.0 and 8.0 ml, respectively; in the Variable
bundle, component A was set to a participant-specific test amount (online Supplemental Materials Table S1A–C)
while psychophysically varying the amount of component B (dashed arrows). (D) Psychophysical assessment of
two example choice indifference points (IP; choice probability p � .5 each option; yellow and green) in a typical
participant. During repeated trials, the participant chose between the preset Reference Bundle and the Variable
Bundle. Component A of the Variable Bundle was set to predetermined participant-specific test amounts (here
0.5 and 2.0 ml). Component B of the Variable Bundle varied between seven randomly selected amounts of
component B. IPs were estimated from choice probabilities, p (Bundle 1) and p (Bundle 2), respectively, using
the probit model (Equations 1 and 2). (E) Schematic indifference curve (IC), fitted by a hyperbola (Equations
3 and 3a) to all equally revealed preferred but differently composed bundles (indifference points, IPs), as tested
in binary choice between an anchor bundle on the y-axis (blue dot, top left) and psychophysically varied test
bundles (yellow and green dots), as estimated in D. (F) Schematic map of three hyperbolically fitted ICs.
Increasing distance from origin reflects larger milkshake amounts and represents higher utility; all bundles on
higher ICs were revealed preferred to all bundles on lower ICs. Arrows denote a preference relationship between
two bundles with oppositely varying physical amounts of component A (top-IC bundle is revealed preferred to
mid-IC bundle despite lower physical amount of component A; partial physical nondominance). See the online
article for the color version of this figure.
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Previous Studies

Without referring to the IC graphism, studies tested quality and
price of TV sets (Simonson, 1989), comfort and fuel consumption
of cars (Simonson, 1989), payoff amount and probability (Chau,
Kolling, Hunt, Walton, & Rushworth, 2014; Levy, Rosenberg
Belmaker, Manson, Tymula, & Glimcher, 2012; Soltani, De Mar-
tino, & Camerer, 2012; Tversky, 1969), shape and color of cards
(Fellows, 2016), artificial objects and appendages (Pelletier &
Fellows, 2019), various food components (DiFeliceantonio et al.,
2018; Harris, Clithero, & Hutcherson, 2018; Suzuki, Cross, &
O’Doherty, 2017), hats and shoes (Thurstone, 1931), and pastries
and payoffs (MacCrimmon & Toda, 1969). Studies using ICs were
restricted to hypothetical outcomes, such as hats and shoes (Thur-
stone, 1931), pencils and payoff (MacCrimmon & Toda, 1969),
and monetary token (Choi, Fisman, Gale, & Kariv, 2007; Kurtz-
David, Persitz, Webb, & Levy, 2019). Without experimentally
establishing ICs, studies used the IC scheme for conveniently
explaining choice inconsistencies when an added nonpreferred
option to the choice set affects the preferences of the original
option and, thus, violates the Independence of Irrelevant Alterna-
tives (IIA; like adding a reasonably priced decent camera alters the
choice between an expensive but fantastic camera and a cheap but
bad camera; “compromise effect”). Such inconsistencies might be
particularly frequent with multicomponent bundles that require
attention to and integration of the components in addition to
the already complex economic decision process itself; difficulties
are seen in normal humans (Chung et al., 2017; Gluth, Hotaling, &
Rieskamp, 2017; Li, Michael, Balaguer, Herce Castañón, & Sum-
merfield, 2018; Rieskamp et al., 2006; Tversky, 1969), patients
with frontal lobe lesions (Fellows, 2006; Fellows, 2016; Pelletier
& Fellows, 2019), and animals (Beran, Ratliff, & Evans, 2009;
Pattison & Zentall, 2014; Silberberg, Widholm, Bresler, Fujito, &
Anderson, 1998; Zentall, 2019). Despite the importance of these
economic concepts, what is lacking are more empirical tests of the
IC formalisms in controlled laboratory situations using actual,
tangible outcomes. Such experiments should help to describe
choices involving multicomponent options, empirically scrutinize
the theoretical concepts and encourage future behavioral and neu-
roeconomic studies on multicomponent choices and their fine-
grained “irrational” IIA anomalies in normal and brain-damaged
humans who might fail to properly consider all components of
choice options.

The Current Study

Our experiment revealed stochastic preferences in humans and
compared human performance with that of monkeys. Monkeys, as
our evolutionary close neighbors, have superb and understandable
cognitive and behavioral abilities that allow generalization across
primate species and high-resolution neuronal investigations. Inter-
species comparisons are also methodologically useful, as monkeys
can participate longer in experiments and provide much larger
numbers of trials for more sophisticated tests, including preference
between bundles not used for IC fitting, transitivity across partially
physically nondominating bundles on different ICs, and change of
option set size, all in the same individual.

The perspective of serving as template for future human and
animal studies determined the experimental design and imposed

constraints concerning event timing, trial repetition and immedi-
ately consumable payouts comparable to tangible liquid and food
rewards for animals (Kagel et al., 1975). We followed the notions
above and used the same design and data analysis as in rhesus
monkeys (Pastor-Bernier et al., 2017). Participants repeatedly
chose between two composite visual stimuli presented on a com-
puter monitor. Each stimulus predicted a bundle of the same two
milkshakes that varied in amount of fat and sugar concentration
and were delivered directly to the participant’s mouth (component
A, component B; Figure 1B). The milkshakes were fully known to
the participants and constituted rewards, as evidenced by the
participants’ voluntary consumption. We kept effort cost constant
and equal for both choice options, but we did not test budget
constraints to stay compatible with neurophysiological primate
studies in which budgets would add confounds for interpreting
neuronal responses and, thus, increase experimental complexity.
We estimated ICs from psychophysically assessed IPs and confirmed
the resulting two-dimensional preference map with mechanism-
independent Becker-DeGroot-Marschak (BDM) auction-like bidding
that truthfully reveals the bidder’s value of desired objects in humans
and monkeys (Al-Mohammad & Schultz, 2019; Becker, DeGroot, &
Marschak, 1964; Plassmann, O’Doherty, & Rangel, 2007). The
choices conformed with the ICs of economic theory, satisfied leave-
out statistics, corresponded to decoder predictions, and correlated with
BDM bids. The trade-off accuracy of humans compared well with
that of laboratory monkeys.

Method

Human Participants

A total of 24 human participants (11 men, 13 women; mean age
25.4 years, range 19–36 years) completed a binary choice task for
measuring revealed preferences and performed a Becker-DeGroot-
Marschak (BDM) control task. The sample size of 24 participants
was chosen with future neuroimaging tests on these participants in
mind; an earlier study in our laboratory suggested that this sample
size was adequate for avoiding false negatives (Zangemeister,
Grabenhorst, & Schultz, 2016). The participants were fully in-
formed about the upcoming consumption of milkshakes, the gen-
eral nature of the binary choice task, the requirement to perform
this task and a BDM bidding task in a separate session in the
human imaging scanner (whose neural results will be published
elsewhere), the remuneration (20 U.K. £, paid into their bank
account a few days after the second session), and the duration of
each of the two experimental sessions. Because of this informa-
tion, the participants were able to construct the “meal” of milk-
shakes in advance. None of the participants had diabetes or lactose
intolerance, nor did they require specific diets, to avoid medical
and cultural interference. All participants had a known appetite for
milkshakes and provided written informed consent based on a
detailed information sheet. We used similar design, data analysis
and validation procedures as in our parallel study on rhesus mon-
keys, where they are described and discussed in more detail
(Pastor-Bernier et al., 2017). The Local Research Ethics Commit-
tee of the Cambridgeshire Health Authority approved the study.
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Stimuli, Rewards, and Delivery Apparatus

The human participants viewed quantitative, colored visual
stimuli on a computer monitor, which represented the two milk-
shakes and their amounts in each of the two bundles (Figure 1B
and 1C). Each bundle stimulus consisted of two vertically aligned
rectangles. The color of each rectangle indicated the bundle com-
ponent. The vertical position of a bar in each rectangle indicated
the physical amount of each component (higher was more).

After extensive piloting with various liquids and liquidized
foods, we found milkshakes with a controlled mix of sugar and fat
to give the most reliable behavioral performance. As the milk-
shakes were delivered individually (see below), drinks containing
either only sugar or only fat were deemed to be too unnatural.
Thus, in our bundles, component A (top, blue) consisted of a
low-sugar high-fat milkshake (25% whole milk, 75% double
cream, no sugar), and component B (bottom, red) consisted of a
high-sugar low-fat milkshake (10% sugar in skimmed milk). The
Psychtoolbox in Matlab (Version R2015b) running on a Dell
Windows computer served for stimulus display and recording of
behavioral choices.

Participants were tested one at a time and in the absence of other
persons in the room; they were seated on a standard, padded office
chair at a standard-height desk in a closed, small, window-less
experimental room (ca. 3 � 4 m) with artificial light; the room was
located in a quiet laboratory area, without specific ambient noise.
Besides the desk and chair, the room was empty except for one
standard-height table with a large storage carton box underneath
that was unrelated to the experiment. The two milkshakes were
delivered directly into the participant’s mouth via a custom-made
mouthpiece with two single-use pipette tips onto which the par-
ticipant bit; the mouthpiece was connected to two silicone tubes
approved for delivery of food stuffs; the two tubes were, respec-
tively, attached to two 50-ml syringes driven by two piston pumps
(NE-500, New Era Pump Systems Inc.; www.syringepump.com).
As used before (Zangemeister et al., 2016), each pump delivered a
programmable quantity of one milkshake with milliliter precision
(VWR International Ltd.) and was controlled by the computer
using a National Instruments card (NI-USB-6009) via the Matlab
Data Acquisition Toolbox.

Binary Choice Task

Each trial started with an initial fixation cross in the center of a
computer monitor in front of the participant. After a pseudoran-
domly varying interval (mean 0.5 s, flat hazard rate from Poisson
distribution), the two bundle stimuli appeared simultaneously at
pseudorandomly alternating fixed left and right positions on the
monitor; each bundle stimulus indicated the same two milkshakes
with independently set amounts (Figure 1B). The participant chose
one of the two bundle stimuli by pressing a single button once (left
or right computer keyboard arrow for corresponding left or right
bundle choice), upon which a green rectangle appeared for 200 ms
around the chosen bundle to confirm the choice. There was no time
limit on the button press, and most RTs (from appearance of
bundle stimuli to button press) were between 0.5 and 4.0 s (me-
dians of 1.98 to 2.58 s depending on distance-to-choice indiffer-
ence). At 4.0 s after trial start or at 0.5 s after button press,
whatever occurred later, all stimuli extinguished, and the partici-
pant received either no payout (80% of trials), or a payout (20% of

trials); thus, every fifth chosen bundle was paid out on average,
using a Poisson distribution. No-payout trials ended here, and a
new trial started after an intertrial interval (ITI) of 0.5 s. Thus,
given that button press was allowed to occur later than 4.0 s after
trial start, the median duration of unrewarded trials was 5.0 s, and
total cycle time (trial � ITI) was 5.5 s.

By contrast, in payout trials, both milkshakes of the chosen
bundle were delivered; component A immediately after the choice,
and component B at a constant interval of 0.5 s after onset of
delivery of component A. The constant delay between the two
components, rather than simultaneous delivery or pseudorandomly
alternating sequential liquid delivery, served to clearly demarcate
the two distinct components and maintain their discriminability.
Thus, the utility for component B reflected the subjective value of
the milkshake itself and a temporal discount because of longer
delay. Delivery of each milkshake by the syringe pump system
took between 0.5 and 5.0 s depending on amount (up to 8.0 ml);
thus, the participant could swallow milkshake A while waiting for
milkshake B or mix the milkshakes in the mouth before full
swallowing. The trial ended 5.0 s after component B delivery
onset, which started 0.5 s after component A delivery onset.
Adding these 5.5 s for milkshake delivery to the median trial
duration of 5.0 s before payout, payout trials lasted about 10.5 s,
and total cycle time (trial � ITI of 0.5 s) was 11.0 s.

The full assessment of 3 ICs with 4 IPs required a total of 504
trails (see below for details). With 20% rewarded trials lasting 11.0
s and 80% unrewarded trials lasting 5.5 s, the total duration of an
experiment for each participant was 55 min (0.2 � 504 � 11 s �
0.8 � 504 � 5.5 s � 1,109 s � 2,218 s � 3,327 s � 55 min).

Although participants were instructed to not eat or drink up to 4
hr before testing, satiety was a concern because of the high sugar
and fat content of the milkshakes. We addressed the issue by the
20% payout schedule, by limiting each payout to maximally 10.0
ml, and by delivering not more than 200 ml of total liquid to each
participant on each session. We did not find evidence for satiety
with a specific data analysis.

Psychophysical Assessment of Binary Choice

We used the same standard psychophysical staircase procedure
(Green & Swets, 1966) as in our parallel study on rhesus monkeys
(Pastor-Bernier et al., 2017) to estimate IPs at which each of two
bundles were chosen with equal probability (p � .5 each option),
revealing equal preference for each option. We tested seven bun-
dles for obtaining each IP and, to avoid hysteresis, alternated their
sequence randomly. We obtained five IPs for estimating each of
three ICs. The procedure required repeated testing, which was also
necessary for the subsequent neuroimaging experiment with the
same participants (to be reported elsewhere).

We advanced in several steps. First, we realized that participants
had different sensitivity ranges for milkshake amounts. To assess
the appropriate ranges of good discrimination of both milkshake
components, we had each participant chose between single-
component bundles containing only milkshake B with the amount
of 4 ml (the starting amount for the intermediate IC to be estimated
in the full procedure) and amounts varying between 0 and 8 ml of
only milkshake A. Once these individual ranges had been deter-
mined, the Matlab function interp1q was used to set test amounts
at five even incremental steps for component A (x-axis) within the
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specific sensitive range of each participant. The used test amounts
for both component for each of the three IC levels are listed in
online Supplemental Materials Tables S1A–C and S2. This initial
test was also used to discard data from participants with differ-
ences in preferences between the two milkshakes larger than 1:3,
which would have resulted in technical difficulties for milkshake
delivery and control of satiety.

Once the participant-specific test amounts for component A
had been determined, we performed the full psychophysical
procedure. We set, in the Reference Bundle, component A to
0.0 ml and component B randomly to either 2.0, 5.0, or 8.0 ml
as starting points for the future three ICs (thus, estimating the
3 ICs in random order). Then we set the alternative Variable
Bundle as follows: we set the participant-specific test amount of
component A one step higher (Step 2 in online Supplemental
Materials Table S1A–C), and we randomly selected (without
replacement) one of the seven amounts of component B (online
Supplemental Materials Table S2); we repeated the selection
until all seven amounts had been tested once (Figure 1D). The
seven amounts were even divisions of the vertical space (y-axis)
between 0 and 2 ml (lowest IC), 0 and 5 ml (intermediate IC),
and 0 and 8 ml (highest IC). We performed this procedure six
times to estimate each IP using sigmoid fitting (see Equations 1
and 2 below); thus, requiring 42 choices per IP (Figure 1D). At
each IP, the amount of component B was usually lower in the
Variable Bundle compared with the Reference Bundle. In this
way, we implemented the marginal rate of substitution (MRS)
at each IP that indicated how much of component B the partic-
ipant was willing to give up to gain one unit of component A,
always relative to the constant Reference Bundle.

We obtained three further IPs in choices between the constant
Reference Bundle and the Variable Bundle whose amounts of
component A increased stepwise (Steps 3, 4, and 5 in online
Supplemental Materials Tables S1A–C); thus, advancing from
top left to bottom right on a two-dimensional x-y indifference
map. As the distance in physical space of component B between
the Reference Bundle and the Variable Bundle increased, the
confidence intervals (CI) increased also rightward for IPs. This
effect was consistent across all participants and ICs (however,
differences in slope and curvature between participants re-
flected genuine properties of IC and did not result from the
method). We are aware that the unidirectional progression of
testing may lead to somewhat different IP estimates than testing
in the opposite direction or in random sequence (Knetsch,
1989). However, in this initial study, we were primarily inter-
ested in the systematic assessment of consistent IPs rather than
exploring potential pitfalls.

We obtained three ICs with the three starting amounts of com-
ponent B in the Reference Bundle (2.0, 5.0, or 8.0 ml). Each IC
required four psychophysically estimated IPs (from five test bun-
dles); thus, the three ICs required a total of 12 IP estimations. Each
of the 12 IP estimations involved seven test amounts and was done
six times; thus, requiring a total of 12 � 7 � 6 � 504 choices for
each participant.

Becker-DeGroot-Marschak (BDM) Bidding Task

The preferences represented by the ICs should reflect the utility
of each IP bundle on a given IC (see Notions 4 and 5 above). To

confirm the correspondence between revealed preference and in-
ferred utility with an independent estimation method, we assessed
the utility of each IP bundle with a BDM mechanism that is akin
to a second price auction and estimates the true subjective value of
the participant for the bundle (Becker et al., 1964). The BDM
estimates for bundles on IPs should increase with higher ICs but
vary only insignificantly along the same IC; thus, following the
two-dimensional pattern of preferences represented by the ICs.

We ran the BDM task in the same 24 participants as a separate
task a few days after the binary choice task during neuroimaging
in pseudorandomly selected 50% of trials immediately after a
binary choice trial. During neuroimaging, the participant was lying
in an functional magnetic resonance imaging (fMRI) scanner in the
supine position (instead of sitting on a chair at a desk) and viewed
the stimuli on a computer monitor above the head (instead of the
monitor in front). The BDM value bids were then compared with
the three levels of revealed preference defined by the IPs estimated
in the binary choice task (we compared with revealed preference
levels rather than fitted ICs to avoid potential inaccuracies from
curve fitting). The data obtained from the binary choice task in the
scanner confirmed the currently reported data but will not be
further used in the current study; the neuroimaging results will be
reported separately.

In the BDM, the participant received a fresh monetary endow-
ment (20 U.K. pence) on each trial. The participant bid for a
bundle against a pseudorandomly set computer bid that was re-
trieved from a normal distribution with replacement; a normal
compared with a uniform distribution slightly focusses behavior
into the bidding range of our untrained participants without unduly
affecting the cost of misbehavior (Lusk, Alexander, & Rousu,
2007), in analogy to the beta distribution used on monkeys (Al-
Mohammad & Schultz, 2019). If the participant’s bid was higher
than or equal to the computer bid then the participant received both
component rewards of the bundle and paid an amount equal to the
computer bid. If the participant’s bid was lower than the computer
bid, the participant lost the auction, paid nothing and did not
receive any bundle reward. The participant was informed about a
win or a loss immediately after placing the bid; when winning the
bid, the participant received the bundle rewards in the same se-
quence and frequency (every fifth trial on average) as in the choice
task assessing revealed preferences. Although we did not assess in
an objective manner whether the participants understood the BDM,
the similarity in payout schedule with the binary choice task and
the correlation in performance between the two tasks suggested a
sufficient amount of comprehension for making BDM a valid
mechanism.

We showed each participant single bundles that were randomly
selected (without replacement) from the set of 15 IP bundles on the
three revealed preference levels (the same 15 IPs as had been used
to fit the three ICs). A given bundle was set to the participant’s
psychophysically estimated IP. We presented each of the 15 bun-
dles 12 times, resulting in 180 trials in total, and considered the
mean of these bids as the BDM-estimated utility. The participant
indicated the bid by moving a cursor horizontally on the computer
monitor with left and right keyboard arrows. The BDM bid was
registered from the cursor position at 5.0 s after onset of presen-
tation of the horizontal bidding scale.
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Statistical Analysis

This analysis allowed us to construct the graphic ICs that
represent revealed preferences for two-component choice options.
Specifically, we used a probit function to estimate each IP bundle
from the psychophysical procedure described above, and we used
a hyperbolic regression to obtain each of the three ICs from the
respective sets of one start bundle (on the y-axis) and four IP
estimations. A separate random effects analysis confirmed that the
measured choices were explained by bundle components rather
than other regressors.

To estimate the IPs numerically, we obtained a sigmoid fit to the
empirically assessed choice frequencies via a general linear regres-
sion. To do so, we used the Matlab function glmfit (Matlab
R2015b; Mathworks) on a binomial distribution with a probit link
function, which is the inverse of the normal cumulative distribu-
tion function (G). Specifically, the generalized linear regression
y � �0 � �1Bvar � ε can be rewritten after applying the link
function as:

G(y) � �0 � �1Bvar � � (1)

with y as number of times the subject chose the Variable Bundle
in the current block from a series of six repetitions, �0 as offset
constant, �1 as regression slope coefficient, Bvar as reward amount
(milliliter) of component B in the Variable Bundle, and ε as
residual error. We chose the probit model because it assumes that
random errors have a multivariate normal distribution, which
makes it attractive as the normal distribution provides a good
approximation to many other distributions. The model does not
rely on the assumption of error independence and is used fre-
quently by econometricians (Razzaghi, 2013). Further, preliminary
data analysis had revealed a slightly better fit for the probit model
compared with the logit model (deviance of 0.4623, as twice
log-likelihood difference between probit model and maximum-
parameter model, compared with deviance for logit model of
0.5907; 3,200 trials, five participants). Therefore, we estimated the
IPs from the sigmoid fit provided by the probit model, using the
following equation:

Indifference Point � �(�0 ⁄ �1) (2)

with �0 and �1 as coefficients of the general linear regression
(Equation 1).

We obtained single ICs, separately for each individual partici-
pant, from a set of individual IPs by weighted least-mean-square,
nonlinear regression (as opposed to the probit regression for esti-
mating each IP). We applied a weight to account for within-
participant choice variability; the weight was the inverse of the
standard deviation of the titrated amount of the B-component at the
corresponding IP (the IP having been estimated by the probit
regression). We estimated the best-fitting � coefficients from
least-mean-square fitting to obtain the equal-preference IC (that is
a utility level) and wrote the basic hyperbolic equation in our
notation as:

IC � �0 � �1B � �2A � �3BA � � (3)

with A and B as amounts of components A and B (ml) referring to
the x-axis and y-axis, respectively, �1 and �2 as slope coefficients
of the regressors B and A, and �3 as curvature coefficient. The
overall slope of the IC itself (global MRS) is calculated as y/x; as

components B and A extend on the y-axis and x-axis, respectively,
and as � is inversely related to the impact of physical amount of
the respective component, the IC slope is (1/�1)/(1/�2) or �2/�1.

As IC is a constant, we merged the other constants offset (�0)
and error (ε) into a common final constant k. To draw the ICs, we
computed the amount of component B as a function of component
A from the derived equation:

B � k – (�2 ⁄ �1)A � �3A (3a)

To graphically display a fitted IC, we plotted the preset amount
of component A on the x-axis, and the computed fitted amount of
component B (Equation 3a) on the y-axis. The error on the hyper-
bolic curve was measured as 95% confidence interval (CI). The
higher the error around an IP the less weight was given to this
point when the IC was calculated. This model resulted in good fits
in earlier work (Pastor-Bernier et al., 2017). In this way, the IPs of
five equally revealed preferred but differently composed bundles
aligned as a single fitted IC. The three ICs representing increasing
revealed preference levels (low, medium, and high) were located
increasingly farther away from the origin (Figure 1F). The indif-
ference map of 3 � 5 IPs was unique for each participant (online
Supplemental Materials Figure S1).

The IC shape was derived from hyperbolic fit and was quanti-
fied by two coefficients: slope and curvature. The IC slope coef-
ficient, derived from the ratio of regression slope coefficients
(�2/�1), reflected the currency relationship between the compo-
nents and described the participant’s preference for component A
relative to component B. For example, an IC slope of �60°
indicated that component A was valued twice as much as the same
milliliter amount of component B. The curvature coefficient (�3)
quantified the constancy in the trade-off between bundle compo-
nents. A linear curve (curvature coefficient � 0) indicated a
constant rate of exchange for the bundle components, suggesting
that the components were perfect substitutes. A more convex IC
(curvature coefficient �0) indicated a varying rate of exchange,
suggesting that the participant was giving up lesser amounts of
component B to obtain one unit of component A when advancing
on the IC from top left to bottom right. For a more intuitive
measure, we quantified the curvature by measuring the largest
perpendicular distance between the IC and the line between the
x-axis and y-axis intercepts:

d � max (BIC � BlinearIC) (4)

with d as maximal perpendicular distance (milliliter; whereas �3

was a best-fitted, estimated parameter and, thus, less conservative),
BIC as amount of component B on the IC (ml), and BlinearIC as
amount of component B at the line connecting the x- and
y-intercepts (constant amount of component A, x-axis; milliliter).
This simplified curvature measure reflected the change in trade-off
between the two components across the tested range of reward
amounts, in milliliter of component B.

We used logistic regression on trial-by-trial choices to confirm
that the measured choices were explained by bundle components
rather than other factors. In a random-effects analysis, we fitted a
logistic regression to the data from each individual participant and
then averaged the obtained � coefficients and p values across all
participants. We used the following regression:
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y � �0 � �1RefB � �2VarA � �3VarB � �4RT � �5VarPos

� �6PChoice � � (5)

with y as either 0 or 1 (not-choice or choice of Variable Bundle),
A and B as amounts of bundle components A and B (milliliter),
RefB as amount of component B in the Reference Bundle (milli-
liter), VarA and VarB as amount of components A and B in the
Variable Bundle (milliliter), RT as RT (millisecond; interval be-
tween appearance of the two bundle stimuli and participant’s com-
puter button press), VarPos as left or right position of the Variable
Bundle on the computer monitor relative to the Reference Bundle (0
or 1), and PChoice as choice in the previous trial (0 or 1). Each �
coefficient was standardized by multiplication with standard deviation
of the respective independent variable and division by standard devi-
ation of y (dependent variable). A subsequent one-sample t test
against 0 served to assess the significance of the beta (�) coefficients
in the population of the 24 participants.

Satiety may have occurred and could have affected the prefer-
ences for the two bundle components in an uncontrolled manner,
even though the bundle rewards were only paid out on every fifth
trial on average and were limited to a total of 200 ml. A prime
suspected effect might have been differential devaluation between
the two bundle components that would result in changed currency
relationship between the two components. We assessed such
change between the two components by searching for gradual
change in instantaneous choice probability above and below the
IPs over six repeated test steps of 2 � 12 trials each (4 IPs on each
of 3 ICs; total of 144 choices). We calculated the instantaneous
choice probability at each test step, separately above and below the
IP, as:

y � � (n � 1 to12)(CV ⁄ 12) (6)

with y as instantaneous probability (p � 0.0 to 1.0), CV as choice
of Variable Bundle (0 or 1).

To analyze the BDM bidding data, we first assessed the basic
question whether the monetary bids increased for higher valued
bundles (between revealed preference levels) but were similar for
equally valued bundles (that constituted IPs; along the same pref-
erence levels), using two-way analysis of variance (ANOVA)
between and along preference levels, respectively, and confirma-
tion by Spearman rank correlation analysis between preference
levels. In addition, we performed a random-effects analysis with a
general linear regression with a normal (Gaussian) link function on
separate data from each participant and averaged the obtained �
coefficients and their p values across participants. We used the
following regression:

y � �0 � �1PrefLev � �2AmBundle � �3TrialN � �4PrevBid

� �5Consum � � (7)

with y as monetary bid, PrefLev as revealed preference level (low,
medium, and high), AmBundle as summed milliliter amount of
components A and B in the currency of component A (A � (k -
(�2/�1)A � �3A) as in Equation 3a), TrialN as trial number,
PrevBid as BDM bid in previous trial (U.K. pence), and Consum
as accumulated drinks consumption for component A and compo-
nent B up to this point in the experiment (milliliter). We included
PrefLev and AmBundle as separate regressors to account for their
distinction because of partial physical nondominance of bundles on

different preference levels, combined with currency differences be-
tween the two components. Each � coefficient was standardized by
multiplication with standard deviation of the respective independent
variable and division by standard deviation of y (dependent variable).
A subsequent one-sample t test against 0 assessed the significance of
the � coefficients in all 24 participants.

Finally, we compared hyperbolically fitted BDM isolines di-
rectly with hyperbolically fitted revealed preference ICs (rather
than with revealed preference levels just described), separately for
each individual participant (note that the BDM data were acquired
in the human imaging scanner and the IC data used in this analysis
were acquired in a prior session with the binary choice task outside
the scanner). This procedure required to present BDM bids on the
same scale as revealed preference ICs. To this end, we fitted
isolines of same BDM-bids in analogy to fitting same-preference
ICs. We fitted a hyperbolic function to the measured mean BDM
bids in analogy to Equation 3:

BDMBid � �0 � �1B � �2A � �3BA � � (8)

with �1 and �2 as regression slopes, and �3 as curvature coeffi-
cients, and A and B as amounts of components A and B (milliliter),
respectively. Coefficients �1 and �2 were standardized by multi-
plication with standard deviation of components B and A, respec-
tively (independent variables), and division by standard deviation
of BDMBid (dependent variable). We obtained separate � coeffi-
cients from all participants and averaged them and their p values
across participants. A subsequent one-sample t test used the indi-
vidual � coefficients from all 24 participants to test overall sig-
nificance against 0.

To compare BDM bids with ICs, we graphically displayed BDM
isolines along which all mean BDM bids were equal. As a BDM
isoline is a constant, we merged the constants offset (�0) and error
(ε) into a common final constant k. To draw the BDM isolines, we
computed the amount of component B as a function of component
A from the derived equation:

B � k � (�2 ⁄ �1)A � �3A (8a)

To display a three-dimensional map, we graphed colored BDM
isoline zones on the z-axis as a function of the amounts of com-
ponents A (x-axis) and B (y-axis). For a two-dimensional map of
BDM isolines, we plotted the preset amount of component A on
the x-axis and the amount of component B computed from the
isolines (Equation 8a) on the y-axis. For comparison, we plotted
the revealed-preference ICs on the same two-dimensional map
using the same scale. We also compared numerically, separately
for each participant, CIs and slope and curvature coefficients
between hyperbolically fitted BDMBids (Equation 8a) and hyper-
bolically fitted revealed preference ICs (Equation 3a), using the
paired Wilcoxon’s test.

Comparison With Monkeys

To compare the results of this human study across a closely
related species, we reanalyzed existing data from a previous ex-
periment on rhesus monkeys; all methods of this study have been
described (Pastor-Bernier et al., 2017). That study tested in an
analogous manner the same notions of revealed stochastic prefer-
ences stated above. Each monkey chose with a hand touching a
horizontally mounted monitor between two visually presented
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bundles composed of the same two liquids (fruit juices or water) in
varying amounts. We used analogous psychophysical procedures
and statistics to estimate IPs and ICs. For the current comparisons,
we assessed the accuracy of integration of the two option compo-
nents by the monkeys with two measures: (a) the 95% CIs of the
psychophysical fits to the choice probabilities used for estimating
each IP, which indicated how well the animals had estimated the
IPs; (b) the CIs of the hyperbolic fits of ICs to all equally preferred
IPs, which indicated the accuracy of the trade-off between the two
bundle components that how well the animals had estimated the I
characterizes the value integration from both bundle components.

Results

Human Revealed Preferences Follow the Graphic
Scheme of IC

We obtained individual ICs from each set of five equally re-
vealed preferred IP bundles by hyperbolic fitting (Equations 3 and

3a; Figure 1E and 1F). Such an IC defined the trade-off between
the two components of an equally preferred bundle: it indicated
how much of component B a participant gave up for obtaining one
more unit of component A without a change in utility. Thus, the IC
characterized the orderly integration of both bundle components
into a single-dimensional estimate. The continuous ICs were asym-
metric between the x-axis and y-axis, indicating different subjec-
tive weighting of the two milkshakes; the convex IC curvature
suggests that lower amounts of both milkshakes together were as
much preferred as higher amounts of singular milkshakes (possibly
reflecting gradually flattening, concave utility functions, and/or
complementarity between high-sugar and high-fat components).
Although the ICs varied in slope and curvature between partici-
pants, the ICs of bundles with larger reward amounts were located
farther away from the origin (for two example participants, see
Figure 2A and 2B; for all participants, see online Supplemental
Materials Figure S1; the subjective, individual nature of ICs does
not allow to assume a common preference and utility scale, which
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Figure 2. Empirical indifference curves (IC) representing revealed preferences. (A) Typical convex ICs from
an example participant, as seen in 18 of the 24 participants. Component A was a low-sugar high-fat milkshake;
component B was a high-sugar low-fat milkshake. Solid lines show hyperbolically fitted ICs, dotted lines show
95% confidence intervals of fits. Dots show bundles that are equally preferred on the same IC (IPs). Inset:
psychophysical assessment of indifference point (IP) marked on highest IC (test points in blue, IP estimated by
probit regression in red). (B) Typical linear ICs from another example participant, as seen in six of the
24 participants. (C, D) Distributions of slope and curvature, respectively, of hyperbolically fitted ICs from all 24
participants (coefficients �2/�1 and �3 in Equation 3, respectively). N � number of participants. (E) Scheme of
intuitive numeric assessment of IC curvature: maximal vertical distance (milliliter of component B on y-axis)
between fitted IC (curve) and a straight line connecting the x-axis and y-axis intercepts. A distance of �0.0 ml
indicates convexity, whereas a 0.0 ml distance indicates perfectlinearity. (F) Distribution of convex curvature,
as measured using the scheme shown in E. The two peaks indicate six participants each with similarly near-linear
ICs and similarly convex ICs, respectively. (G) Specificity of bundle choice, as opposed to unrelated parameters.
Bar graph shows standardized beta (�) regression coefficients for choice of Variable Bundle over Reference
Bundle (Equation 5), as assessed for each individual participant and then averaged across all 24 participants.
RefB � component B in Reference Bundle; VarA and VarB � components A and B in Variable Bundle; RT,
RT � VarPos, left-right position of Variable Bundle stimulus; PChoice � choice in previous trial. Error bars
show standard error of the mean (SEM). � p � .02. See the online article for the color version of this figure.
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precludes averaging ICs across participants). The three ICs were
well ordered and failed to overlap. Only the 95% CI overlapped
partly in four of the 24 participants (17%).

Closer inspection of Figures 1F, 2A and 2B, and online Sup-
plemental Materials S1 shows a typical feature of ICs. During the
psychophysical assessment of individual IPs, the Variable Bundle
was preferred to the Reference Bundle (choice p � .5) even when
component B of the preferred bundle had lower amounts compared
with the Variable Bundle at the y-axis anchor (Figure 1F, arrows),
indicating partial physical nondominance (Notions 7 and 8; involv-
ing overcompensation by higher amount of component A). As with
the trade-off, such preferences for bundles with one physically
lower component indicate the integration of the values of both
bundle components into single-dimensional utility.

Taken together, the maps of systematic and continuous ICs
reflect well the integration of both bundle components into single-
dimensional utility and preference relationships. As an alternative
to these well integrated ICs, lexicographic preferences would not
show such integration but follow only a single bundle component,
manifested as lines parallel to one of the graph’s axes. Taken
together, the true, multicomponent-integrating ICs corresponded
well to and, thus, seemed to validate empirically, the intuitive
graphic schemes of Revealed Preference Theory. The following
tests will address the validations numerically.

IC Coefficients

The shape of ICs reflects the trade-off between the components
and can be quantified by slope and curvature coefficients of
hyperbolic fits (Equation 3a). The global IC slope, between y-axis
and x-axis intercepts, was measured as ratio of the two regression
coefficients �2/�1 in Equation 3; it indicated how much the par-
ticipant was globally willing to give up to obtain one unit of the
other component; the measure reflected the relative utility (cur-
rency; global MRS) of the two bundle components. The IC slopes
steeper than �45° indicated that a participant gave up a higher
physical amount of component B (high-sugar, y-axis) for a smaller
amount of component A (high-fat, x-axis); thus, indicating higher
subjective value of fatty than sugary milkshake per unit of ml. The
IC slope was �71° � 6.5° (mean � SEM; range �45° to �76°;
N � 24 participants; Figure 2C). The higher valuation of high-fat
component A over high-sugar component B amounted to a factor
of 3:1 in 18 of the 24 participants (75%). The predominantly
asymmetric trade-off between the two milkshake components doc-
uments that each component contributed to bundle preference in its
own distinct way.

The IC curvature showed substantial convexity in 18 of the 24
participants (75%), as indicated by �3 coefficients from the hy-
perbolic fit (Equation 3) that were significantly larger than 0.0
(8.89; mean � 5.9 SEM; p 	 .05, t test; Figure 2D). For graphi-
cally assessing IC curvature, we measured the distance between
the IC center and a straight line connecting equally revealed
preferred bundles at the x-and y-intercepts, in units of milliliter on
the y-axis (Figure 2E). This distance ranged from 0.09 ml (quasi-
linear IC) to 3.76 ml (most convex IC; mean of 1.28 ml � 0.19
SEM; Figure 2F). The distribution of the IC distance was overall
similar to that of the �3 curvature coefficient from Equation 3. The
two highest histogram bars in Figure 2F show data from six
participants with rather similar, considerably convex IC, and from

six other participants with rather similar but quasi-linear IC. Thus,
the coefficients confirmed numerically the well-ordered nature of
the ICs representing revealed preferences.

Control for Other Choice Variables

To test whether the choices reflected the components of the
bundles rather than other, unrelated factors, we performed a logis-
tic regression analysis separately for each of the 24 participants,
using the following regressors: amount of each bundle component,
RT, Reference Bundle position on participant’s monitor, and pre-
vious trial choice (Equation 5). Median RTs were 2.10 and 1.98 s
with �1 ml milkshake difference above or below IP, respectively,
and 2.58 s with 	1 ml difference from IP. The standardized �
coefficients and p values were assessed for each participant and
then averaged across all 24 participants; they demonstrated that the
choice of the Variable Bundle was negatively correlated with the
amount of component B in the Reference Bundle (RefB:
� � �0.43 � 0.16, mean � SEM; p � .020 � 0.005; component
A was constant 0.0 ml, see Method) and positively correlated with
both components A and B in the Variable Bundle (VarA: � �
0.67 � 0.16; p � .009 � 0.004; VarB: � � 0.94 � 0.33; p � .012
� 0.009; Figure 2G). The � coefficients for these three variables
differed significantly from 0 (p � .012, p � .00088, and p �
.00028, respectively; one-sample t test), confirming the validity of
the �s. Thus, the Variable Bundle was preferred with increasing
amounts of either of its components and with lower amounts of the
Reference Bundle. The result suggests that both bundle compo-
nents, rather than a single component alone, were important for the
observed preferences. The remaining variables, including RT, po-
sition of Reference Bundle on the monitor and previous trial
choice, failed to significantly account for current choice of the
Variable Bundle (p � .754 � .003 to p � .988 � .290). Thus, the
revealed preference relationships concerned the bundles with their
two components rather than other task factors.

To assess potential consumption effects derived from the flow
of the milkshake during the experiment, we searched for signs of
satiety. We followed choice probability across the total test dura-
tion in each of the 24 participants. We selected two bundles that
were situated above and below the IP, respectively. These two
bundles contained high-sugar low-fat (above IP) and low-sugar
high-fat (below IP) milkshakes. We plotted choice probability over
six repeated test steps. Choice probabilities fluctuated without
conspicuous upward or downward trend (see Figure 3) and varied
only insignificantly (above IP: F(5, 41) � 0.28, p � .05; below IP:
F(5, 41) � 1.53, p � .05; one-way repeated measures ANOVA).
Even at the final, sixth step, choice probability differed only
insignificantly from any other step. Thus, the revealed references
did not seem to be importantly confounded by satiety for neither
sugar nor fat within the amounts and concentrations used in our
experiment.

Internal Validation of IPs and ICs

We assessed the contribution of individual IPs to the hyperbol-
ically fitted ICs with three tests. (a) Using a leave-one-out analysis,
we compared ICs fitted to all five IPs with ICs fitted with one IP
left out and found good correspondence in all of four tests (online
Supplemental Materials Figure S2). (b) Using a previously devel-
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oped single-dimensional linear support vector machine (SVM)
algorithm (Grabenhorst, Hernadi, & Schultz, 2016; Tsutsui, Gra-
benhorst, Kobayashi, & Schultz, 2016), and (c) a two-dimensional
linear discriminant analysis (LDA), we assessed the accuracy of
reversely assigning individual IPs to their original preference level.
Both decoders reported between-IC accuracies largely in the 70–
100% range, and the LDA showed only random distinction along-
ICs (online Supplemental Materials Figure S3 and Table S3 left);
as a control, shuffled data did not discriminate between preference
levels (SVM accuracies of 44.7–54.6%; online Supplemental Ma-
terials Table S4 left). These procedures confirmed that the hyper-
bolically fitted ICs captured the IPs consistently and provided
valid representations of the revealed preferences for two-
component choice options. For details, see online supplementary
material.

Mechanism-Independent Validation

The ordered representation of revealed preferences can be fur-
ther validated by comparison with utility inferred from a different
estimation mechanism. We used a monetary BDM auction-like
bidding task that estimates participants’ utility on a trial-by-trial
basis. The property of truthful revelation (incentive compatibility)
makes BDM an indispensable tool for experimental economics and
explains its increasing popularity in neuroscientific studies of
human decision making (Medic et al., 2014; Plassmann et al.,
2007). We ran this task independently from the binary choice task
in an fMRI scanner (fMRI data to be reported separately) and
obtained BDM bids in U.K. pence for each of the 15 IP bundles
(Figure 4A). Although BDM bids are assessed as single shots, we
repeated each Trial 12 times to approach the nature of stochastic

choice for IP estimation. We compared the 12-trial averaged bids
to preference levels rather than to ICs to avoid fitting inaccuracies.

A two-way ANOVA showed that BDM bids varied between the
three revealed preference levels in all 24 participants (p � 5.37 �
10�40 to p � 5.38 � 10�116) but rarely between the five equally
revealed preferred bundles (IPs) on each level (p 	 .05; except for
three participants; Figure 4B; red, green, blue; online Supplemen-
tal Materials Table S5). This variation pattern was confirmed with
separate one-way ANOVAS between the three preference levels
(p � .038534 to p � 6.86 � 10�16) and the five IPs along the same
preference levels (p � .055 to p � .951; except for three partici-
pants p 	 .05). A Spearman rank analysis confirmed and refined
the result between preference levels; it showed a positive mono-
tonic correlation between bids for bundles on the same preference
level (means from all five bundles) and the three levels (
 � 0.60
� 0.05; M � SEM; N � 24 participants; p 	 .01). Thus, the
ANOVAS and Spearman correlation showed higher BDM bids
between the three increasing revealed preference levels but mostly
similar bids for bundles on same preference levels (with the
ANOVA being sensitive to bundle amounts, as shown by increas-
ing bids between levels). This BDM result confirmed the pattern of
revealed preference seen with binary choice: higher value for
bundles on higher preference levels, and similar value at trade-off
between bundle components.

A random-effects analysis separately for each of the 24 partic-
ipants (Equation 7) confirmed the relationship of BDM bids to
preference level (PrefLev: � � 0.47 � 0.09, mean across all 24
participants � SEM; p � .016 � .015; �-coefficient difference
from 0: p � .000026, one-sample t test) and bundle amount
(AmBundle: � � 0.15 � 0.13; p � .020 � .017; p � .0278;
AmBundle varied separately from PrefLev because of partial phys-
ical nondominance of bundles on different preference levels com-
bined with currency differences between components), rather than
trial number (TrialN: � � �0.10 � 0.25; p � .726 � .354),
previous trial bid (PrevBid: � � 0.12 � 0.11; p � .676 � .427) or
consumption history (Consum: � � 0.12 � 0.11; p � .224 � .185;
all �s were standardized; Figure 4C). A specific analysis (Equation
8) demonstrated that the BDM bids reflected both bundle compo-
nents (component A: � � 0.6534 � 0.0866, M � SEM; p � .0324
� .0150; � difference from 0: p � 1.1613 0884 � 10�7, one-
sample t test; component B: � � 0.6425 � 0.0585, p � .0289 �
.0202; � difference from 0: p � 1.2770 � 10�10). Thus, the BDM
bids followed well the revealed preference levels and took both
bundle components into account.

Using SVM and LDA decoders, we assessed the accuracy of
reversely distinguishing original preference levels from individual
BDM bids. Both decoders reported discrimination accuracies
largely in the 50–70% and the 88–100% range, respectively,
between preference levels (online Supplemental Materials Table
S3 right), but the LDA showed only random distinction between
bundles on same preference levels (43–51%; online Supplemental
Materials Figure S4); shuffled data did not discriminate between
preference levels (SVM accuracies of 45.8–54.7%; online Supple-
mental Materials Table S4 right). Thus, decoding accuracy con-
firmed well the two-dimensional scheme of revealed preference
represented by the ICs. For details, see online supplementary
material.

A stronger mechanism-independent validation of the IC scheme
may be achieved by direct graphic comparison between BDM bids
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and hyperbolically fitted ICs. To this end, we estimated isolines
that were fit to BDM bids using Equations 8 and 8a and compared
them with ICs that had been hyperbolically fitted to IPs (Equations
3 and 3a). The BDM isolines represented BDM bids from 12
averages, and the revealed preference ICs derived from fits to IPs
estimated from 42 stochastic choices. The BDM isolines increased
for IPs on increasing preference levels (farther away from the
origin), but were similar for IPs on the same revealed preference
level (Figure 5A). The BDM isolines matched the revealed pref-
erence ICs within their 95% CIs in every one of the 24 participants
(Figure 5B). Statistical comparisons showed significantly higher
CIs of BDM isolines compared with revealed preference ICs
(Figure 5C; p 	 .0884 � 10�8, Wilcoxon’s paired test; N � 24
participants). Despite their larger variability, both BDM isoline
slope and curvature coefficients, derived from the respective �2/
�1-ratio and �3 regression coefficient in Equation 8, failed to differ
significantly from the respective slope and curvature coefficients
of revealed preference ICs (Equation 3; Figure 5D and 5E; both
p � .05, Wilcoxon’s test on BDM vs. IC coefficients paired from
each participant; N � 24). Thus, despite larger variability, the
BDM bids matched well the revealed preference ICs when as-
sessed in a comparable way.

Taken together, the mechanism-independent validation with
BDM bids provided good confirmation of the graphic representa-
tion of revealed preferences by the ICs and, thus, strengthens the
validity of these conceptual schemes.

Performance Comparison With Nonhuman Primates

The systematic IPs reflecting the trade-off between the two
bundle components resulted in well-ordered ICs of our human
participants that reflected systematic integration of utilities of all
option components. The question arises to what extent these basic
measures of multicomponent integration in humans compared with
nonhuman primates whose lack of verbal interaction makes their
behavior primarily dependent on experienced reinforcement. Us-
ing the same economic concepts and experimental design as in our
human participants, we had tested two rhesus monkeys during
several months and estimated �600 IPs that conformed to three to
six convex or linear, negatively sloped ICs with each of five
different types of two-component bundles containing blackcurrant
juice, grape juice, water, and strawberry juice (Figure 6A–E;
Pastor-Bernier et al., 2017). The ICs were consistent, as shown by
out-of-sample prediction, transitivity, and independence of number
of choice options; thus, reflecting the animals’ extended laboratory
experience and allowing comparison with human performance.

We used two measures for the decision process underlying
revealed preferences for multicomponent choice options. First, to
assess the accuracy of the estimated IPs, we computed the 95% CIs
of the psychophysical fits to the choice probabilities when assess-
ing individual IPs (which were used for constructing ICs). The CIs
for IPs in humans were in a similar range but slightly smaller in
comparison with all but one of the five bundle types in monkeys
(Figure 6: compare F with G–K); the higher human accuracy was

* * * 

Level 1 Level 2 0 

5 

10 

15 

BD
M

 B
id

s 
(p

en
ce

) 

Bundle  

B 

Level 3 

A 

Component A (ml) 
0 2 4 6 0 

4 

8 

C
om

po
ne

nt
 B

 (m
l) 6 

2 

BDM Bidding 

UK pence 
1 10 20 B 

A 

Be
ta

 (s
ta

nd
ar

di
se

d)
 

C 

-0.1 
0 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 

-0.2 
-0.3 

Figure 4. Characteristics of Becker-DeGroot-Marschak (BDM) bids for bundles at different revealed prefer-
ence levels. (A) Schematics of positions of bundles used for eliciting BDM bids at psychophysically estimated
points of equal revealed preference (indifference points, IPs, connected by dotted lines). Following the schemes
of trade-off and revealed preference, BDM bids should be similar for equally valued bundles (along the dotted
lines) but higher for bundles farther away from (origin) We tested five bundles per level, three levels, 12
repetitions, total of 180 bids. Inset: BDM task. Each participant bid for the visually presented two-component
(A, B) bundle by moving the black dot cursor using the leftward and rightward horizontal arrows on a computer
keyboard. Numbers indicate example bids (in U.K. pence). (B) Mean BDM bids from a typical participant. The
bids were rank-ordered between increasing revealed preference levels (blue, green, and red; Spearman 
 � 0.83,
p 	 .001) and differed significantly between levels but not within levels (online Supplemental Materials Table
S5). Data are shown as M � SEM, N � 12 bids per bar. (C) Specificity of monetary BDM bids, as opposed to
unrelated parameters. Bar graph showing the standardized beta (�) regression coefficients for BDM bids
(Equation 7), as assessed for each individual participant and then averaged across all 24 participants. PrevLev �
revealed preference level (low, medium, and high); AmBundle � summed currency-adjusted amount of both
bundle components; TrialN � trial number; PrevBid � BDM bid in previous trial; Consum � accumulated
drinks consumption. Error bars show SEMs. � p � .020. See the online article for the color version of this figure.

378 PASTOR-BERNIER ET AL.

http://dx.doi.org/10.1037/xan0000269.supp
http://dx.doi.org/10.1037/xan0000269.supp


overall significant (p � .000461; Kolmogorov–Smirnov test; Fig-
ure 6L). Second, we tested the accuracy of the fit of ICs to the IPs
that were derived from the trade-off between the two bundle
components; this trade-off critically reflected the integration of the
two bundle components into single-dimensional measures. To this
end, we computed the CIs of the hyperbolic IC fits to the estimated
IPs. A narrow CI would indicate a good match of ICs to IPs and,
thus, a good trade-off and utility integration between the two
bundle components. The human participants showed slightly
smaller CIs and, thus, higher accuracy, than the monkeys (p �
.0018; Figure 6M).

Thus, despite differences in number of participants (N � 24 for
humans, N � 2 for monkeys), task experience (single days for
humans, several months for laboratory monkeys) and reward
(milkshakes for humans, fruit juices and water for monkeys), the
CI comparisons for IPs and ICs suggested comparable, although
slightly better, choice accuracy in humans compared with the
monkeys. Besides these encouraging results, the species compar-
ison suggests robust correspondence of empirical ICs to the sche-
matic graphs; thus, validating the theoretical concepts.

Discussion

This study used formalisms of Revealed Preference Theory to
empirically investigate decisions for multicomponent rewards.
We measured stochastic choices of small, tangible, and imme-

diately consumable milkshake rewards that were delivered in
repeated trials in a controlled, nonverbal laboratory setting. The
estimated ICs were systematic and corresponded well to graphic
economic schemes that are used for interpreting human choices
(Kreps, 1990; Laidler & Estrin, 1989; Mas-Colell et al., 1995;
Perloff, 2009; Varian, 1992). The similarity in performance
accuracy with monkeys suggested maintained preference mech-
anisms across evolutionarily gaps. Further comparisons be-
tween the two species, in particular concerning the nature of
preferences indicated by IC shape, should be done with caution,
as IC shape was also influenced by bundle composition that
differed between the species. The experimental feasibility
opens the possibility for concept-driven, empirical neuroimag-
ing studies of rational and irrational behavior in normal and
brain-damaged individuals.

Our experimental controls and comparisons attested to the va-
lidity of these measurements; the ICs were asymmetric and non-
linear, failed to overlap, complied with decoder predictions and
correlated with independent BDM bids. The integration of multiple
bundle components was particularly evident in the continuous,
graded trade-off along ICs. Preference was unchanged when re-
duction in one bundle component was compensated by increase in
another bundle component, and bundles with one smaller compo-
nent could even be preferred to bundles with a larger component
when the other component compensated (partial physical non-
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379PREFERENCES FOR MULTICOMPONENT CHOICE OPTIONS



dominance; Figure 1F). Such choices suggested proportionate con-
tributions of individual bundle components.

The representation of vectorial, multicomponent choice options
by single-dimensional neural signals is an open issue in experi-
mental neuroeconomics. Our behavioral tests provide a formal,
concept-driven foundation for investigating such signals in hu-
mans. The immediately consumed, small payouts facilitate com-
parisons with animal studies and control for temporal discounting.
The tangible payouts after small sets of trials do not rely on
language and should reduce mental ruminations about future re-
wards and assure reliable cooperation by the participants; thus,
reducing interfering and confounding brain activity. Future neuro-
economic work on underlying decision mechanisms should par-

ticularly benefit from the empirical estimation of whole maps of
well-ordered ICs derived from multiple IPs that conform to pre-
dictive mathematical functions; thus, avoiding to test preferences
for a few bundles with limited general validity. For example,
different neurons in the orbitofrontal cortex of monkeys combine
both bundle components into a common scalar neural signal or
code each component separately (requiring later integration for
contribution to the decision; Pastor-Bernier et al., 2019). The
systematic ICs may also help to investigate neural underpinnings
of specific theories, such as the switching of attentional processes
between components conceptualized by multialternative decision
field theory (Roe, Busemeyer, & Townsend, 2001). Finally, our
detailed ICs would be helpful for investigating neural mechanisms
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underlying inconsistent decision making when choice options are
added (independence of irrelevant alternatives, IIA), beyond the
decoy effects already being addressed (Chung et al., 2017; Gluth et
al., 2017).

Our multitrial approach corresponds to the standard psycho-
physical elicitation of choice functions (Green & Swets, 1966;
Sutton & Barto, 1998), allows comparison with animal studies
(Kagel et al., 1975; Pastor-Bernier et al., 2017), and was tailored
to the statistical requirements of neural studies. In humans and
monkeys, these methods deliver systematically varying, graded
choice probabilities rather than single, all-or-none selection. The
visible trial-by-trial variations are assumed to reflect underlying
random processes that make the choice process stochastic, as
captured by well worked-out stochastic choice theories that facil-
itate data interpretation (Luce, 1959; McFadden, 2005; McFadden
& Richter, 1990; Stott, 2006). We appreciate that our multitrial
schedule is at odds with the frequently used, standard, single-shot,
deterministic assessment of ICs in experimental economics (Mac-
Crimmon & Toda, 1969; Thurstone, 1931; but see Mosteller &
Nogee, 1951), and the obtained consistent and robust ICs seem to
validate the approach.

Economic choice often involves substantial but imaginary sums
of money or consumer items, or random, singular payouts
(Rieskamp et al., 2006; Simonson, 1989; Tversky & Simonson,
1993). By contrast, our payout schedule was tailored to require-
ments of neural studies in humans and animals and allowed im-
mediate reward consumption over many trials (while controlling
for satiety). These behavioral choices resembled small daily activ-
ities, such as consuming snacks and drinks, and were met by the
good motivation of our participants. In this way, we obtained
well-ordered ICs without requiring hypothetical items or large
sums of imagined money.

Previous investigations of multicomponent economic choice
have revealed several inconsistencies, including reference biases,
difference between willingness-to-pay and willingness-to-sell, and
violation of independence of irrelevant alternatives such as simi-
larity, compromise, asymmetric dominance, and attraction effects
(Bateman, Munro, Rhodes, Starmer, & Sugden, 1997; Knetsch &
Sinden, 1984; Rieskamp et al., 2006; Simonson, 1989; Tversky,
1972; Tversky & Simonson, 1993). These phenomena may be
because of revealed preferences being constructed at the time of
choice rather being fixed (Dhar & Novemsky, 2008; Kivetz et al.,
2008; Payne et al., 1999; Simonson, 2008; Warren et al., 2011) or
reflect the adaptive nature of biological processes (Li et al., 2018;
Soltani et al., 2012). We aimed to avoid interference from adaptive
processes by designing stable and highly reproducible test condi-
tions in a well-controlled laboratory environment, nonreliance on
verbal report, single, uninterrupted test sessions, singular changes
of bundle components, constant direction of testing (from top left
to bottom right on the revealed preference map), and preventing
satiety by limiting total milkshake intake to 200 ml. These mea-
sures may explain why our IPs remained stable over successive
testing steps. We used the exact same conditions for eliciting BDM
bids, which may have facilitated their correspondence to revealed
preference ICs. With these testing conditions, we avoided known
compromising factors that might hinder identification of basic
factors underlying choice irregularities.

Our experiment used a limited range of closely related, basically
substitutable reward types; thus, the validity of our results is

restricted to that range and might not necessarily generalize to
bundles with more varied kinds of rewards. Apes, monkeys, dogs,
and pigeons may display seemingly irrational preference patterns
for bundles of food items with very different values. According to
the “selective value effect,” an animals may assign value primarily
or exclusively to a preferred reward item and partly or completely
forego less desired items, rather than revealing more graded pref-
erences (Pattison & Zentall, 2014; Silberberg et al., 1998). One
possible explanation might be that consumption of a less preferred
reward item would delay acquisition of the next preferred reward
item (Beran et al., 2009), but many other reasons might exist
(Zentall, 2019). However, none of these tests assessed ICs, and the
results are difficult to compare with ours. With more formal
testing, some of these anomalies may have been comparable with
lexicographic preferences that concern only a single component
and become evident by ICs that run parallel to one of the axes; our
study failed to find lexicographic preferences. Further, our study
only observed preference ratios up to 3:1, which suggested rea-
sonable acceptance of both bundle components rather than gener-
ating selective value effects (see the IC slopes in Figures 2A and
2B and online Supplemental Materials S1). Our parallel study on
monkeys tested a wider range of liquid rewards and found similar
two-dimensional ICs and no evidence for major violation, refuting
possible reasons in species difference. Taken together, choices of
multicomponent bundles may be more prone to irregularities than
choices of single-component options, but our experiment was too
limited to address this tissue in an exhaustive manner.

The coefficients of hyperbolic fits to the ICs characterize nu-
merically the representation of revealed preferences. The slope
coefficient indicates the relative weighting of the two bundle
components. For example, the amount of equally revealed pre-
ferred single milkshakes (graphed at the respective x-axis and
y-axis intercepts of the two-dimensional map) was lower for high-
fat (component A) than high-sugar (component B) milkshakes in
our participants, which was represented by a IC slope steeper
than �45 degrees; thus, participants would have revealed preferred
high-fat over high-sugar milkshakes if they came in same amounts.
Such asymmetric IC slopes are also seen with various bundles in
monkeys (Pastor-Bernier et al., 2017). Key reasons for the visible
asymmetry on the graphic axes may be the physical amount scale
and the absence of a simple common physical scale for the fat and
sugar content of the milkshakes. Further, the slope for identical
bundle compositions varied between our participants, which dem-
onstrates an additional subjective component in revealed prefer-
ences. Despite these scaling and subjectivity issues, our estimated
ICs had well-ordered slopes and failed to overlap.

The convex IC curvature in most participants indicated that
disproportionately smaller amounts of combined fat-sugar milk-
shakes (at IC center) were equally revealed preferred as larger
amounts of milkshakes containing primarily fat or sugar (closer to
the axes). The BDM isolines confirmed the convex curvature for
probably the same reasons. A previous study on food snacks also
found higher BDM bids for fat-sugar combinations than for fat or
sugar alone, despite similar calories (DiFeliceantonio et al., 2018).
However, not all ICs need to be convex; bundles with one unat-
tractive component showed concave ICs in primates (Pastor-
Bernier et al., 2017). The IC convexity may be ascribed to concave
utility of each bundle component (Perloff, 2009); more of the same
component (closer to IC x- or y-intercepts) has lower marginal gain
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and, therefore, the decision-maker is willing to trade in more of an
abundant, undervalued component for one unit of a less abundant,
more valued component. Thus, the defining slope and curvature
coefficients suggest that the ICs reliably represented well-ordered
preferences for the milkshake bundles.

The estimating mechanism of BDM bids differed substantially
from that underlying revealed preference ICs. Bidding occurred
along a single scale and involved the physical movement of a
cursor rather than hitting choice buttons between two simultaneous
options. BDM bidding is incentive compatible, such that erroneous
or deceiving bids lead to suboptimal outcome, as conceptualized
by the expected cost of misbehavior (Lusk et al., 2007); bidders
should state exactly their subjective value to avoid paying an
exaggerated price (with too high bids) or foregoing the desired
object (with too low bids). With these properties, BDM bidding
constituted a well-controlled, authoritative test for eliciting true
subjective values and provided a useful validation mechanism for
preferences revealed by binary choice. Indeed, the obtained SVM-
and LDA-consistent BDM bids followed the preference scheme of
ICs, namely higher bids for revealed preferred bundles and similar
bids with choice indifference despite varying bundle composition.
Most strikingly, hyperbolically fitted BDM isolines closely resem-
bled the hyperbolically fitted revealed preference ICs in graphics
and numerics (see Figure 5). The only notable difference was
higher BDM bid variability. Our data align well with, and extend,
the previously noted correspondence between binary choices and
BDM bids for single-component options and bundle choices on
paper or via verbal communication (Roosen, Marette, & Blanche-
manche, 2010). This correspondence is particular interesting in
light of conflicting and unclear accounts of economic choice and
utility, such as the unresolved distinction between inherent and
constructed revealed preferences (Payne et al., 1999; Simonson,
2008; Warren et al., 2011) and the fundamental question whether
utility, supposedly underlying both revealed preferences and
BDM, may not be a required inferred variable, and choices may
simply involve heuristics (Piantadosi & Hayden, 2015; Vlaev,
Chater, Stewart, & Brown, 2011). Whatever the answer might be,
the BDM bids validated the empirical assessments of the ICs and
confirmed their representation of revealed preferences.

The revealed preferences in humans indicated a similar level of
integration of the two-component choice options as in rhesus
monkeys (Pastor-Bernier et al., 2017) and, in a more general way,
also observed in rodents (Kagel, Battalio, & Green, 1995; Kagel et
al., 1975). In two monkeys, the estimated IPs conformed to three
to six convex or linear, negatively sloped ICs with five types of
two-liquid bundles. Preferences for other bundles were character-
ized by concave or positively sloped ICs reflecting satiety or
disfavored juices. The validity of preference representation by the
consistent and orderly ICs in monkeys was shown by out-of-
sample prediction from homothetic polynomials, various transitiv-
ity tests, axiomatic compliance with independence of number of
choice options, and classifier prediction. In contrast to the unex-
perienced humans, the monkeys had several months of training in
well-controlled, stable laboratory conditions. The reward differ-
ence (milkshakes in humans vs. juices in monkeys) and the dif-
ference in IC estimation (unidirectional IP progression vs. random
alternation) failed to prevent the general similarity of ICs between
the two species, despite known hysteresis issues (Knetsch, 1989).
Only quantitative differences were observed, with higher precision

in humans, and it remains to be seen which of the different factors
might account for these differences: cognition, task experience,
and/or other factors. Thus, the robustness of performance across
species is reassuring for the validity of our experimental proce-
dures and demonstrates the basic and precise nature of this eco-
nomic decision process with revealed stochastic preferences for
multicomponent choice options.
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SUPPLEMENTARY MATERIAL 
 
Supplementary Methods 
 
Leave-one-out analysis of IPs. We used a leave-one-out analysis to assess the meaningful 
representation of revealed preferences by the fitted ICs by testing the accuracy of the hyperbolic IC 
fit to the IPs. In this analysis, we removed one IP per IC (but not the initial Reference Bundle set at 
x = 0) and fitted an IC again with the same hyperbolic model as for the main IC fitting (see 
Methods, Eqs. 3, 3a). In total, for each original IC, we fitted 4 new ICs, each one leaving out a 
different IP. For each new IC, we assessed the deviation between the left-out IP and the refitted IC. 
We measured this deviation as difference of component B between the y-axis position of the 
original (but now left out) IP and the y-axis position of the refitted IC with the IP left out, at the 
same x-position (Figure S2B): 
 
d = BIP - Brefit      Eq. S1 
 
with d as difference (in ml; y-axis), BIP as amount of component B of the left-out IP (ml), and Brefit 
as amount of component B on the refitted IC (ml). Thus, a difference of 0 ml suggested that 
removal of one IP did not affect the shape of the IC at all, thus indicating an excellent representation 
of revealed preferences by the fitted ICs, whereas any difference unequal to 0 ml quantified the 
degree of inaccuracy of this representation. 
 
Decoder analysis of preference levels. To confirm the contribution of each IP to the two-
dimensional representation of revealed preferences, we determined the accuracy (in percent correct) 
with which a randomly selected bundle, defined by the amounts of the two components A and B (in 
ml), could be assigned to its original revealed preference level as opposed to any one other level 
(binary distinction). By definition, each bundle that was psychophysically estimated to be as much 
revealed preferred as the Reference bundle constituted an IP; all bundles to which participants were 
choice indifferent against the same Reference Bundle constituted a series of IPs. In our experiment, 
three different Reference Bundles defined three preference levels (low, medium, high: component 
B: 2.0 ml, 5.0 ml or 8.0 ml, respectively; component A was always 0.0 ml; Figure S3A). The 
decoder used as inputs only bundles at the psychophysically estimated IPs (to which an IC was 
fitted using Eqs. 3, 3a), rather than bundles positioned on the fitted ICs. 
 Our main test employed a binary support vector machine (SVM) decoder separately on each 
individual participant. We used similar methods as previously described for predicting choice from 
neuronal activity (Tsutsui, Grabenhorst, Kobayashi, & Schultz, 2016). The SVM algorithm 
considered 5 IP bundles from each of 2 revealed preference levels (total of 10 IPs that had been 
assessed 12 times at each position in each participant) (Figure S3A). Each of the 2 preference levels 
was associated with a matrix of 2 columns (containing the x- and y-coordinates of bundle 
components A and B, respectively) and 5 rows (containing the 5 bundles). The 5 bundles were 
randomly selected (with replacement) from 60 bundles on each level (due to the random procedure 
with replacement, some bundles may have entered the algorithm multiple times, and not all five 
bundles may have been used for a given analysis). We left out 1 randomly selected bundle from the 
10 bundles, trained the SVM algorithm with the remaining 9 bundles, and assessed whether the 
SVM decoder assigned the left-out bundle to its original revealed preference level or to another 
level. Thus we used 90% of the data for training the decoder and 10% for testing its classification 
performance. We repeated this procedure 10 times with the same selected 2 x 5 bundles but with a 
new randomly selected left-out bundle and calculated decoder accuracy as percent correct 
classification in these 10 trials. We repeated the random selection of the 2 x 5 bundles and the 10-
trial accuracy assessment 150 times. For final decoding accuracy, we averaged the percentages from 



 2 

these 150 iterations (Table S3 left). We applied this procedure separately to all three possible 
combinations of two revealed preference levels (i. e. low and medium, medium and high, low and 
high). For assessing chance decoding, we shuffled the 2 x 5 matrix. Our earlier work has shown that 
increasing the number of analysis trials from 10 to 20 resulted in similar accuracy (Grabenhorst, 
Hernadi, & Schultz, 2016; Tsutsui, Grabenhorst, Kobayashi, & Schultz, 2016). The SVM was 
implemented with custom written software in Matlab R2015b (Mathworks) using the functions 
svmtrain and svmclassify with linear kernel (our previous work had shown that use of nonlinear 
kernels did not improve decoder performance; Tsutsui, Grabenhorst, Kobayashi, & Schultz, 2016). 
 We supplemented the SVM procedure with binary linear discriminant analysis (LDA) that 
provided visualization of the different levels of revealed preference (Figure S3). We used the same 
IPs and the same data matrices as for the SVM analysis (and the same IPs as used for the hyperbolic 
fitting of the three indifference curves, ICs). We obtained two variances; the discriminant 1 
eigenvector captured the best separation between the three revealed preference levels as ‘between-
level variance’ (colors in Figure S3); the discriminant 2 eigenvector captured the best within-level 
separation between five bundles on each of the three preference levels as ‘within-level variance’ 
(symbols in Figure S3). The results indicate visually the discrimination accuracy on the two axes of 
the two-dimensional plots. We also assessed the numeric accuracy of decoding as percent of 
correctly assigning a randomly selected bundle to its original revealed preference level. The decoder 
used the Matlab functions fitcdiscr and predic on z-normalised data from individual participants. 
For the LDA, our limited data required pooling from multiple participants. As revealed preferences 
are private and subjective, and therefore difficult to compare between individual participants, the 
LDA results should be considered as merely supportive and not as stand-alone data. 
 
Decoder analysis of BDM bids. To assess the internal consistency of BDM bids, we used binary 
SVM analysis on bids from individual participants in analogy to SVM decoding of bundles 
according to preference levels. We tested the same IPs as used for hyperbolic IC fitting (Figure 4A). 
Each of the 2 preference levels was associated with a matrix of 1 column (containing the bids to 
each bundle) and 5 rows (containing the 5 bundles). The remainder of the bundle selection, 
repetition procedure and data shuffling was identical to that used for the SVM decoding for 
preference levels (see above). Thus, the SVM decoder for BDM bids assessed the accuracy with 
which the left-out bundle belonged to its original revealed preference level. We supplemented the 
SVM analysis of the BDM bids with analogous LDA for supportive visualization. 
 
Supplementary Results 
 
Leave-one-out analysis of IPs. We performed a leave-one-out analysis to assess the contribution of 
individual IPs to the ICs obtained from hyperbolic fits to the empirically estimated IPs in humans. 
We removed one IP at a time from the set of five IPs per IC (except the initial Reference Bundle at 
x = 0), and then refitted each IC with the remaining four IPs using the hyperbolic model, separately 
for each IC and each participant (total of 3 ICs x 24 participants = 72 ICs, with 4 IPs x 72 ICs = 288 
IPs; see Supplementary Methods). We found consistency in the refitted ICs in four measures (Figure 
S2). First, none of the 72 refitted ICs overlapped with the refitted ICs at different levels in the same 
participant, thus demonstrating maintained IC separation despite one left-out IP. Second, none of the 
72 refitted ICs overlapped with the 95% CIs of original ICs at different levels, confirming IC 
separation despite one left-out IP. Third, most refitted ICs (66 of 72 ICs, 92%) fell inside the 95% 
CIs of the original ICs, and the remainder curves (6 of 72 ICs, 8%) showed only some portions 
outside the 95% CIs of the original ICs, thus refuting possible overweighted influence of individual 
IPs on ICs. Fourth, numeric comparisons showed only insignificant deviations between refitted ICs 
and the IPs that had been left out when refitting the curves (vertical distance of 0.05 ± 0.13 ml in all 
24 participants; mean ± standard error of the mean, SEM; N = 336; P = 0.98 against normal 
distribution; t-test), confirming absence of overweighted IP influence on ICs. These four results 
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suggest that the hyperbolically fitted ICs captured the IPs consistently and provided valid 
representations of the revealed preferences.  
 
Decoder analysis of preference levels. We used a single-dimensional linear support vector 
machine (SVM) decoder as different statistical procedure to confirm the contribution of each IP to 
the two-dimensional representation of revealed preferences by ICs. In each participant, we set a 
given test bundle to one of the psychophysically determined IPs (Figure S3A) and assessed the 
accuracy with which the decoder assigned that bundle to its original preference level (each 
preference level was defined by a series of empirically estimated IPs but was not a fitted IC). SVM 
decoding accuracy ranged largely from 70% to 100% (P = 2.055 x 10-101), although a few lower 
values were observed (Table S3 left); shuffled data failed to discriminate between preference levels 
(accuracies of 44.7% - 54.6%; Table S4 left). 
 We supplemented the SVM analysis by visualization of decoding using two-dimensional 
linear discriminant analysis (LDA). The considerable amount of data necessary for reasonable LDA 
required us to pool data from several participants, which violates a basic tenet of economic theory 
that prohibits pooling of subjective preferences across individual participants. To somewhat contain 
expected inaccuracies, we normalised IPs across participants (z-score normalization for reward B 
along the y-axis; reward A had been experimentally set to identical values on the x-axis) and 
restricted the analysis to specific subsets of participants. The LDA confirmed the SVM results in all 
participant subsets (Figure S3); the first linear discriminant assigned bundles to the three revealed 
preference levels, as shown by spatial separation of the three colored groups, with a numeric 
accuracy of 80-100% (P = 1.148 x 10-97). By contrast, the second discriminant failed to accurately 
assign bundles to different positions on same preference levels, as shown by the mix of the five 
shapes representing bundle position. These characteristics were seen in six participants whose fitted 
ICs showed the highest similarity in convexity (Figure S3B, C), in six participants with linear ICs 
(Figure S3D, E) and, for comparison, in all 24 participants (Figure S3F, G) (for distinction of 
participants based on IC curvature, see two highest bars in Figure 2F). Thus, the two-dimensional 
LDA decoding followed the fundamentals of ICs: preference for bundles on higher ICs but 
indifference along ICs.  
 Taken together, the two decoders confirmed three distinguishable levels of IPs, and LDA in 
addition confirmed indifference between IPs on same levels. As these IPs constituted the basis for 
hyperbolic fitting of the three ICs, the decoder results validated also the fitting procedure and 
confirmed the representation of revealed preferences by the empirically estimated ICs. 
 
Decoder analysis of BDM bids. We used decoders to test the distinction of bundle position 
between but not along preference levels. Using BDM bids, a binary SVM decoder showed good 
accuracy of assigning a test bundle to its original preference level in individual participants (mostly 
50-70%; P = 3.789 x 10-9; Table S3 right) but not with shuffled data (45.8% - 54.7%; Table S4 
right. We used an LDA to decode several levels together and found good visual assignment of the 
test bundles to the three revealed preference levels in our combined population of 24 participants 
(first discriminant; numeric accuracy of 88-100%; P = 9.46 x 10-12; Figure S4; three colored symbol 
groups) but not to different positions on same preference levels (second discriminant; numeric 
accuracy of 43-51%; P = 0.1433; mix of shapes) (note the reservations above when combining data 
from multiple participants). Thus, the two decoders showed together that the participants' BDM bids 
distinguished bundles well between preference levels but not on the same preference level, thus 
confirming BDM validation of the two-dimensional revealed preference scheme of the ICs. 
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Table S1A. Test amounts (ml) of milkshake component A for stepwise psychophysical assessment of 
choice indifference points (IP): lowest indifference curve (IC1).  
 

Participant Step 1 Step 2 Step 3 Step 4 Step 5 
1 0.000 0.053 0.155 0.395 0.870 
2 0.000 0.147 0.320 0.526 0.769 
3 0.000 0.149 0.312 0.492 0.690 
4 0.000 0.184 0.442 0.796 1.250 
5 0.000 0.194 0.392 0.594 0.800 
6 0.000 0.070 0.236 0.685 1.333 
7 0.000 0.070 0.228 0.634 1.250 
8 0.000 0.161 0.371 0.647 1.000 
9 0.000 0.113 0.283 0.548 0.939 
10 0.000 0.067 0.186 0.428 0.870 
11 0.000 0.033 0.104 0.334 0.870 
12 0.000 0.009 0.027 0.436 1.176 
13 0.000 0.058 0.171 0.444 0.952 
14 0.000 0.157 0.358 0.619 0.952 
15 0.000 0.116 0.265 0.460 0.714 
16 0.000 0.046 0.130 0.315 0.714 
17 0.000 0.194 0.392 0.594 0.800 
18 0.000 0.069 0.175 0.355 0.667 
19 0.000 0.053 0.155 0.395 0.870 
20 0.000 0.216 0.490 0.833 1.250 
21 0.000 0.089 0.216 0.405 0.690 
22 0.000 0.143 0.304 0.485 0.690 
23 0.000 0.089 0.216 0.405 0.690 
24 0.000 0.044 0.122 0.285 0.645 
MEAN 0.000 0.105 0.252 0.504 0.894 
SEM 0.000 0.012 0.024 0.030 0.044 

 
Step 1: Reference Bundle set to (x = 0.0 ml; y = 2.0 ml). Steps 1- 5: test amounts of component A 
(x-axis) of the Variable Bundle for psychophysical variation of component B (y-axis). 
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Table S1B. Test amounts (ml) of milkshake component A for stepwise psychophysical assessment of 
choice indifference points (IP): intermediate indifference curve (IC2).  
 

Participant Step 1 Step 2 Step 3 Step 4 Step 5 
1 0.000 0.135 0.391 0.990 2.174 
2 0.000 0.359 0.788 1.303 1.923 
3 0.000 0.268 0.618 1.088 1.724 
4 0.000 0.176 0.569 1.585 3.125 
5 0.000 0.426 0.897 1.420 2.000 
6 0.000 0.132 0.482 1.646 3.333 
7 0.000 0.165 0.544 1.567 3.125 
8 0.000 0.446 0.996 1.674 2.500 
9 0.000 0.231 0.610 1.278 2.347 
10 0.000 0.161 0.450 1.051 2.174 
11 0.000 0.025 0.094 0.605 2.174 
12 0.000 0.070 0.270 1.260 2.941 
13 0.000 0.139 0.415 1.094 2.381 
14 0.000 0.269 0.686 1.362 2.381 
15 0.000 0.136 0.370 0.842 1.786 
16 0.000 0.179 0.460 0.944 1.786 
17 0.000 0.426 0.897 1.420 2.000 
18 0.000 0.143 0.378 0.819 1.667 
19 0.000 0.135 0.391 0.990 2.174 
20 0.000 0.534 1.216 2.077 3.125 
21 0.000 0.185 0.467 0.935 1.724 
22 0.000 0.318 0.699 1.161 1.724 
23 0.000 0.185 0.467 0.935 1.724 
24 0.000 0.134 0.357 0.779 1.613 
MEAN 0.000 0.224 0.563 1.201 2.234 
SEM 0.000 0.027 0.052 0.071 0.109 

  
 
Conventions as for Table S1A, but Reference Bundle (Step 1) set to (x = 0.0 ml; y = 5.0 ml).  
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Table S1C. Test amounts (ml) of milkshake component A for stepwise psychophysical assessment 
of choice indifference points (IP): highest indifference curve (IC3).  
  

Participant Step 1 Step 2 Step 3 Step 4 Step 5 
1 0.000 0.299 0.809 1.781 3.478 
2 0.000 0.535 1.199 2.031 3.077 
3 0.000 0.552 1.185 1.915 2.759 
4 0.000 0.402 1.174 2.732 5.000 
5 0.000 0.630 1.361 2.210 3.200 
6 0.000 0.281 0.948 2.745 5.333 
7 0.000 0.394 1.155 2.714 5.000 
8 0.000 0.637 1.473 2.577 4.000 
9 0.000 0.492 1.203 2.256 3.756 
10 0.000 0.244 0.689 1.649 3.478 
11 0.000 0.035 0.129 0.933 3.478 
12 0.000 0.096 0.380 1.976 4.706 
13 0.000 0.323 0.886 1.974 3.810 
14 0.000 0.397 1.035 2.121 3.810 
15 0.000 0.212 0.581 1.334 2.857 
16 0.000 0.292 0.747 1.522 2.857 
17 0.000 0.630 1.361 2.210 3.200 
18 0.000 0.134 0.391 1.029 2.667 
19 0.000 0.299 0.809 1.781 3.478 
20 0.000 0.844 1.929 3.311 5.000 
21 0.000 0.353 0.856 1.610 2.759 
22 0.000 0.445 1.016 1.766 2.759 
23 0.000 0.353 0.856 1.610 2.759 
24 0.000 0.189 0.514 1.175 2.581 
MEAN 0.000 0.378 0.945 1.957 3.575 
SEM 0.000 0.039 0.081 0.119 0.175 

 
Conventions as for Table S1A, but Reference Bundle (Step 1) set to (x = 0.0 ml; y = 8.0 ml).  
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Table S2. Amounts of milkshake component B (ml; y-axis) at the 7 test points for psychophysical 
estimation of indifference points for the lowest, intermediate and highest indifference curves (IC1 - 
IC3).  
 

Test point 1 2 3 4 5 6 7 
IC1 0.000 0.333 0.667 1.000 1.333 1.667 2.000 
IC2 0.000 0.833 1.667 2.500 3.333 4.167 5.000 
IC3 0.000 1.333 2.667 4.000 5.333 6.667 8.000 
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Table S3. Accuracy (in %) of assigning bundles and BDM bids to original preference levels, using 
support vector machine decoder. 
 

 Bundles BDM bids 
Participant 
C – convex IC 
L – linear IC 

Lev1 
vs. 

Lev2 

Lev1 
vs. 

Lev3 

Lev2 
vs. 

Lev3 

Lev1 
vs. 

Lev2 

Lev1 
vs. 

Lev3 

Lev2 
vs. 

Lev3 
C1 83.9 100.0 68.8 70.6 81.0 54.4 
C2 86.8 99.8 68.7 44.0 51.0 47.4 
C3 72.7 96.0 58.7 56.6 71.3 59.3 
C4 88.0 99.5 67.6 67.7 76.3 62.5 
C5 99.1 100.0 81.4 64.8 69.9 49.8 
C6 93.7 99.5 61.9 53.5 65.9 54.0 
C7 66.2 75.5 49.5 70.0 72.2 43.6 
C8 72.9 81.8 52.6 49.8 67.2 62.6 
C9 80.0 100.0 80.0 68.4 83.8 62.1 
C10 99.6 100.0 69.8 47.0 46.6 43.7 
C11 90.2 99.5 55.4 68.9 75.7 53.1 
C12 96.8 100.0 71.2 47.3 57.9 47.1 
C12 86.1 87.7 56.7 58.7 60.9 48.2 
C14 80.0 100.0 80.0 63.2 74.3 56.8 
C15 99.8 100.0 85.5 67.8 78.6 54.8 
C16 100.0 100.0 90.0 57.8 62.5 50.4 
C17 100.0 100.0 100.0 44.8 70.9 68.4 
C18 99.0 99.9 55.3 68.1 75.3 51.7 
L19 100.0 100.0 88.6 43.5 65.8 59.6 
L20 100.0 100.0 95.9 69.2 84.9 70.1 
L21 100.0 100.0 100.0 62.2 66.0 44.4 
L22 100.0 100.0 83.6 54.8 52.5 45.9 
L23 100.0 100.0 100.0 63.2 58.4 47.8 
L24 100.0 100.0 80.0 61.4 68.5 57.7 

 
Accuracy is shown in % of numbers of bundles and BDM bids correctly assigned to one of the two 
tested revealed preference levels (averages from 150 iterations of classification of 10 
pseudorandomly selected bundles / BDM bids from two tested revealed preference levels). Bundles 
were tested at psychophysically assessed choice indifference points (IP) on one of three revealed 
preference levels (corresponding to the three indifference curves, IC, fitted to the IPs). The tested 
bundles had been pseudorandomly selected from 5 unique estimated IPs on each of two revealed 
preference levels under study. BDM: Becker-DeGroot-Marschak auction-like bidding mechanism. 
Lev1, Lev2, Lev3: revealed preference levels, numbered according to distance from origin. The 24 
participants were labelled as C or L according to their IPs being fitted best to convex or linear ICs.  
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Table S4. Chance decoding accuracy of shuffled data by support vector machine. 
 

 Bundles BDM bids 
Participant 
C – convex IC 
L – linear IC 

Lev1 
vs. 

Lev2 

Lev1 
vs. 

Lev3 

Lev2 
vs. 

Lev3 

Lev1 
vs. 

Lev2 

Lev1 
vs. 

Lev3 

Lev2 
vs. 

Lev3 
C1 53.5 50.9 51.3 45.8 49.1 52.0 
C2 49.6 48.9 50.0 50.1 51.7 53.2 
C3 50.2 52.5 51.0 50.3 50.2 50.8 
C4 48.6 48.2 52.0 53.1 50.2 50.1 
C5 48.8 51.8 51.2 51.6 50.7 50.0 
C6 46.8 50.3 53.2 48.4 49.2 50.2 
C7 48.3 51.3 49.2 49.7 50.2 49.7 
C8 48.9 48.9 49.2 50.2 51.6 50.1 
C9 50.3 52.0 46.9 52.0 50.0 49.9 
C10 49.7 52.4 49.4 47.2 53.0 51.4 
C11 48.6 52.2 44.7 49.2 50.4 49.6 
C12 49.5 53.1 46.9 52.3 48.7 50.5 
C12 49.6 48.9 49.5 50.3 53.1 50.3 
C14 52.1 51.7 51.3 52.3 52.0 50.4 
C15 49.2 53.0 47.2 52.4 49.5 47.7 
C16 53.4 52.5 47.2 46.5 51.1 47.1 
C17 49.8 53.0 50.7 52.9 52.0 51.0 
C18 49.8 48.2 52.0 51.4 48.4 49.9 
L19 48.4 53.7 52.6 50.0 50.7 47.0 
L20 50.0 53.4 49.8 49.7 54.1 52.2 
L21 54.6 53.4 48.5 54.2 52.4 54.7 
L22 47.0 52.7 51.1 51.9 48.9 47.7 
L23 51.4 53.1 47.2 50.4 51.2 50.1 
L24 49.3 50.3 48.6 49.7 49.9 49.5 

 
The support vector machine analysis used the shuffled matrix of 2 columns (containing the x- and 
y-coordinates of bundle components A and B, respectively) and 5 rows (containing the 5 bundles).  
Conventions as for Table S4. 
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Table S5. Two-way Analysis of Variance (ANOVA) of BDM bids. 
 

 1st factor F(2,179) 2nd factor F(4,179) Interaction F(8,179) 
Participant P F MSE P F MSE P F MSE 
1* 9.98 x 10-46 128.68 1656.30 0.01* 2.07 26.70 0.99 0.45 5.78 
2 5.37 x 10-40 109.15 1829.07 0.53 0.93 15.51 1.00 0.34 5.74 
3 5.63 x 10-63 194.16 2148.07 0.61 0.86 9.47 0.70 0.84 9.32 
4* 5.68 x 10-79 265.03 2585.34 0.02* 1.99 19.37 0.90 0.67 6.50 
5* 3.53 x 10-56 167.10 2300.07 0.03* 1.84 25.28 0.71 0.84 11.51 
6 2.13 x 10-49 141.75 1773.60 0.64 0.83 10.39 0.96 0.58 7.30 
7 8.67 x 10-41 111.79 1620.12 0.83 0.64 9.28 1.00 0.20 2.85 
8 4.25 x 10-58 174.57 1793.40 0.97 0.41 4.24 1.00 0.21 2.18 
9 8.04 x 10-60 181.39 1716.27 0.98 0.39 3.65 1.00 0.14 1.30 
10 9.28 x 10-34 89.04 1656.30 0.80 0.68 12.63 1.00 0.27 5.10 
11 9.81 x 10-53 154.02 1681.34 0.88 0.58 6.31 1.00 0.26 2.79 
12 5.38 x 10-116 475.79 4001.40 0.98 0.38 3.22 1.00 0.21 1.78 
13 6.88 x 10-49 139.91 1956.07 0.38 1.08 15.07 0.99 0.46 6.37 
14 1.27 x 10-65 205.17 2160.00 0.93 0.51 5.39 1.00 0.19 2.04 
15 5.86 x 10-63 194.09 2527.41 0.79 0.69 8.97 1.00 0.34 4.37 
16 7.10 x 10-52 150.82 2383.27 0.77 0.70 11.09 0.99 0.49 7.68 
17 1.82 x 10-74 243.99 2574.67 0.69 0.78 8.20 1.00 0.19 1.99 
18 2.81 x 10-70 225.21 2667.23 0.68 0.79 9.40 0.99 0.48 5.72 
19 2.13 x 10-48 138.15 2005.07 0.83 0.64 9.27 0.99 0.45 6.52 
20 4.82 x 10-58 174.35 1865.36 0.87 0.59 6.32 1.00 0.25 2.69 
21 1.61 x 10-72 235.16 2486.40 0.43 1.02 10.82 1.00 0.28 2.99 
22 2.67 x 10-56 167.56 1658.40 0.07 1.63 16.15 0.60 0.91 8.98 
23 4.61 x 10-108 424.33 4768.92 0.05 1.70 19.15 0.37 1.07 12.07 
24 1.49 x 10-73 239.83 2029.07 0.39 1.06 9.00 0.40 1.05 8.89 

 
F(df1, df2): 1st factor: df1 = 2 (n - 1, n = 3 preference levels), df2 = 179 (n - 1, n = 5 IPs x 3 levels 
x 12 trial repetitions = 180); 2nd factor: df1 = 4 (n - 1, n = 5 IPs per preference level), df2 = 179; 
Interaction: df1 = 8 ((n - 1 ) x (m - 1), n = 3 preference levels, m = 5 IPs per preference level), df2 = 
179. df: degree of freedom; IP: bundle at indifference point; MSE: mean square error; * Exceptional 
3 participants with significantly different BDM bids in 2nd factor (P < 0.05). 
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Figure S1. Empirical indifference curves (IC) from all 24 participants. Note the fanning out of the 
confidence intervals towards the bottom right in each graph (thin lines), which likely reflects the 
progression of choice testing: the Reference Bundle was kept constant at the y-axis intercept (x = 
0), whereas testing with the Variable Bundle progressed from top left to bottom right. Same 
conventions as for Figure 2. 
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Figure S2. Leave-one-out validation of estimated indifference curves (ICs).  
(A) Graphic assessment with an example participant: hyperbolically refitted ICs with one left-out 
indifference point (IP) (solid lines), plotted together with 95% confidence intervals of the original 
hyperbolically fitted ICs (dotted lines). The refitting resulted in 4 new ICs (partly overlapping) at 
each of three levels. None of the refitted IPs fell outside the original confidence intervals. 
(B) Scheme of numeric assessment: distance in ml (in ml on y-axis, red) between the left-out IP on 
the original IC (heavy black dot on black curve) and the refitted IC (green).  
(C) Histogram of distance between refitted ICs and left-out IPs across all subjects. Skewness was -
0.12, suggesting rather symmetric distribution around the mean (modeled in red).  
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Figure S3. Visualization of bundle decoding using Linear Discriminant Analysis (LDA).  
(A) Schematics of bundle decoding at psychophysically estimated points of equal revealed 
preference (indifference points, IPs, plotted along the dotted lines). Following the notions of 
revealed preference, LDA should show accurate decoding between the three preference levels 
(green, blue, red) but not along each level. 
(B) LDA bundle distinction between three levels of revealed preference (81-100% binary numeric 
decoding accuracy between two levels; first discriminant) but not along same preference levels 
(second discriminant) in N = 80 bundles from six participants (6P) with similar convex ICs (same 
convention applies to all panels). Bundles on the three preference levels are colored blue, green and 
red according to distance from origin, red being highest. The five bundles on each preference level 
are marked from top left to bottom right with ‘o’, ‘*’, ‘+’, ‘x’ and ‘□’ symbols. Due to the 
arbitrariness of the scale, numbers are not indicated.  
(C) As B but for partly physically non-dominating bundles (one lower component in preferred 
bundle than in alternative bundle (97-100% accuracy; first discriminant). 
(D) As B but for six participants with linear ICs (90-100% accuracy). 
(E) As D but for partly physically non-dominating bundles (96-100% accuracy). 
(F) As B but for all 24 participants (18 with convex IC, six with linear ICs) (83-100% accuracy). 
(G) As F but for partly physically non-dominating bundles (97-100% accuracy). 
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Figure 4. Visual decoding by Linear Discriminant Analysis (LDA) of BDM bids for bundles on 
different revealed preference levels (first discriminant; 88-100% numeric decoding accuracy; P = 
9.46 x 10-12) and along same preference levels (second discriminant; 43-51% accuracy) (N = 243 
bundles; all 24 participants). The LDA used scalar BDM bids for bundles positioned at IPs shown in 
Figure 4A. 
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