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 29 

Abstract 30 

This study investigated the influence of experienced reward distributions on the shape of utility 31 
functions inferred from economic choice. Utility is the hypothetical variable that appears to be max-32 
imized by the choice. Despite the generally accepted notion that utility functions are not insensitive 33 
to external references, the exact occurrence of such changes remains largely unknown. Here we 34 
benefitted from the capacity to perform thorough and extensive experimental tests of one of our 35 
evolutionary closest, experimentally viable and intuitively understandable species, the rhesus ma-36 
caque monkey. Data from thousands of binary choices demonstrated that the animals' preferences 37 
changed dependent on the statistics of recently experienced rewards and adapted to future expected 38 
rewards. The elicited utility functions shifted and extended their shape with several months of 39 
changes in the mean and range of reward distributions. However, the adaptations were usually not 40 
complete, suggesting that past experiences remained present when anticipating future rewards. 41 
Through modelling, we found that reinforcement learning provided a strong basis for explaining 42 
these adaptations. Thus, rather than having stable and fixed preferences assumed by normative eco-43 
nomic models, rhesus macaques flexibly shaped their preferences to optimize decision-making ac-44 
cording to the statistics of the environment. 45 
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 47 

Introduction 48 

Every day we make choices between outcomes that vary widely, sometimes on the order of magni-49 
tudes. In a single morning, we can go from choosing between outfits, to choosing to visit our fa-50 
vourite cafe, to comparing the costs of a train or plane journey for our next holiday destination. Yet, 51 
despite the complexity of representing all of these situations, we manage - with a relatively limited 52 
brain - to mentalise and indeed optimise the majority of our choices. 53 

Prospect Theory (PT), the dominant model in behavioural economics, posits that we optimize our 54 
decisions by calculating the value of our choices relative to a reference-point (Kahneman & 55 
Tversky, 1979; Tversky & Kahneman, 1986). That is, rather than objectively evaluating the out-56 
come of our choices, we perceive our options as gains or losses depending on what we are expect-57 
ing: if an outcome is better than our reference, we treat it as a gain; if is is worse, we treat it as a 58 
loss. Mathematically, PT represents this behaviour with an S-shaped value (or utility) function 59 
where the subjective value of gains and losses is given by concave and convex parts of the function, 60 
respectively. This has important behavioural consequences, particularly for risky-decision-making, 61 
as this normative (utility) framework predicts that people’s tendency to make risk averse decisions 62 
depends on their perception of outcomes as being gains or losses.  63 

While the idea of reference-dependence has been readily adopted by modern decision theory 64 
(Rabin, 2000; Wakker, 2010), economists are still unclear about how reference points form 65 
(Barberis, 2012). In prospect theory (PT), Kahneman and Tversky abstractly define reference-points 66 
as exogenous from the decisions being made. That is, the reference point is not directly explained 67 
by PT and can be shaped by “aspirations, expectations, norms, and social comparisons” (A. 68 
Tversky & Kahneman, 1991, p.157). Alternatively, recent economic models consider reference 69 
points an epiphenomenon of the way in which our mind adapts to the statistics of the task at hand 70 
(Delquié & Cillo, 2006; Köszegi & Rabin, 2006; Sugden, 2003) - a framework more in line with the 71 
findings that, far from being restricted to human reasoning, reference-dependence is a homogeneous 72 
feature of primate decision-making (Santos & Rosati, 2015) and the brain (Carandini & Heeger, 73 
2012; Louie et al., 2013; Padoa-Schioppa, 2009; Tremblay & Schultz, 1999). Along these lines, one 74 
particularly interesting proposal from the epiphenomenon framework is that of range-dependent 75 
utility, or RDU (a play on reference-dependent utility; see Kontek & Lewandowski, 2018). Inspired 76 
by psychology’s range-frequency theory (Parducci, 1965, 2012) and neurobiology’s efficient-cod-77 
ing hypothesis (Laughlin, 1981; Summerfield & Tsetsos, 2015), RDU suggests that decision-makers 78 
evaluate the value of their options relative to not one, but two reference points: the minimum and 79 
maximum rewards available in any given scenario. In this view, what PT identifies as a reference-80 
point could be nothing more than the product of a utility function that adapts to the distribution of 81 
possible rewards: the point at a sigmoidal curve inflects from convex to concave (mimicking a neu-82 
ron’s tuning curve; Carandini & Heeger, 2012; Webster, Werner, & Field, 2005).  83 

Because studies on reference-dependence generally focus on identifying a unique reference-point 84 
(Baillon et al., 2015), or on describing behaviours under specific reference predictions (Allen et al., 85 
2016; Crawford & Meng, 2011; Wenner, 2015), there is, as of yet, no way of corroborating or con-86 
tradicting the previous hypotheses on the emergence of reference-points. The few studies that con-87 
sider shifts in preferences generally do so in a single distribution, local context: they document ref-88 
erence-point changes following the wins or losses of risky gambles (Arkes et al., 2008, 2010; Shi et 89 
al., 2015); never the impact that changes in expectation have on decision-making. Concurrently, lit-90 
tle is known about the impact of a task’s structure on preferences, nor how different reward statis-91 
tics might translate to reference-points. 92 

Animal experiments allow far higher trial numbers and longer experimental timescales than human 93 
studies do,  they allow us to explore the formation of reference-points both in utmost detail and in 94 
subjects where exogenous factors have minimal impact (i.e. no contribution of language or higher 95 
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numerical ability). To that effect, we investigated how the reward distribution experienced in a bi-96 
nary choice task - defined on different reward magnitudes and spreads - shaped the preferences of 97 
rhesus macaques (a species that displays many, if not most, of the fundamental choice patterns hu-98 
mans display; Heilbronner & Hayden, 2013, 2016; Stauffer et al., 2015). we presented macaques 99 
with several sets of risky choice options in which the distribution of reward magnitudes remained 100 
stable for weeks at a time, then suddenly shifted to a new distribution (higher/lower magnitudes or 101 
wider/narrower spread). On each testing day, we fit the animals’ choices with S-shaped utility func-102 
tions that could explain both risk seeking and risk averse choices (Genest et al., 2016; Stauffer et 103 
al., 2014). We then looked at how the animal’s risk preferences changed as a function of the reward 104 
distribution they experienced. We found that, while utilities stayed relatively put for periods during 105 
which a single reward distribution was experienced, the animals consistently shifted their prefer-106 
ences when a novel reward distribution was introduced. In fact, the shape of estimated utility func-107 
tions mirrored the lowest and highest rewards that monkeys had experienced over the course of the 108 
preceding weeks – even if these now fell outside of possible. From these findings, we suggest that 109 
far from being fixed and abstract, preferences follow the expectation of what animals think might 110 
happen given the knowledge they have accumulated over time. 111 
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Methods 112 

Animals 113 

This research has been ethically reviewed, approved, regulated and supervised by the following UK 114 
and University of Cambridge (UCam) institutions and individuals UK Home Office, implementing 115 
the Animals (Scientific Procedures) Act 1986, Amendment Regulations 2012, and represented by 116 
the local UK Home Office Inspector, the UK Animals in Science Committee, the UK National Cen-117 
tre for Replacement, Refinement and Reduction of Animal Experiments (NC3Rs), the UCam Ani-118 
mal Welfare and Ethical Review Body (AWERB), the UCam Biomedical Service (UBS) Certificate 119 
Holder, the UCam Welfare Officer, the UCam Governance and Strategy Committee, the UCam 120 
Named Veterinary Surgeon (NVS), and the UCam Named Animal Care and Welfare Officer 121 
(NACWO). 122 

Three male rhesus macaques (Macaca mulatta) weighing 11.2, 15.3, and 13.2 kg (Monkeys A, B 123 
and C, respectively) participated in this experiment. All animals used in the study were born in cap-124 
tivity, at the Medical Research Council’s Centre for Macaques (CFM) in the UK. The animals were 125 
pair-housed for most of the experiment; monkeys B and C shared an enclosure. The animals ranged 126 
in age from 5 to 8 years old, and all subjects had previous experience with the visual stimuli and ex-127 
perimental setup (Ferrari-Toniolo et al., 2019). 128 

Behavioural task and training 129 

Rhesus monkeys are the most commonplace species of non-human primate found in scientific re-130 
search (Capitanio & Emborg, 2008). There is therefore a rich literature reproducing human eco-131 
nomic choices in rhesus macaques. Most relevant here is that rhesus macaque behaviour can be suc-132 
cessfully predicted using PT (Farashahi et al., 2018; Ferrari-Toniolo et al., 2019; Genest et al., 133 
2016; Stauffer et al., 2015). In addition, macaque experiments allow us to control the pre- and post-134 
experimental environments in ways not possible for human studies – we can ensure that experi-135 
mental variables are independent of rewards and choices made outside of the experiment (Chen et 136 
al., 2006). For this study, the delivery and distribution of rewards experienced were unique to the 137 
experimental setup. The animals experienced nothing comparable outside of the laboratory.  138 

Each animal used a left-right joystick (Biotronix Workshop, University of Cambridge) to make 139 
choices between reward-predicting stimuli presented on a computer screen. After each choice, the 140 
animals received their chosen reward in the form of a specific blackcurrant juice quantity delivered 141 
probabilistically (matching the probabilities indicated by each stimulus).  142 

The animals were presented with a simple visual stimulus consisting of one or two horizontal lines 143 
positioned inside a frame of two vertical lines depicting reward options that varied both in magni-144 
tude (i. e. liquid quantities, ml) and in the probability of a reward being delivered. Reward magni-145 
tudes were represented by the vertical position of the horizontal lines on the screen, whereas reward 146 
probability was represented by the lenght of the horizontal lines inside the framing lines (Fig. 1a). 147 
Safe (riskless) options were represented by singular full-width horizontal lines that touched both 148 
sides of the frames, whereas gambles with multiple risky rewards were signalled by multiple hori-149 
zontal lines within the vertical frame.  150 

The animals were trained to associate these two-dimensional visual stimuli with blackcurrant juice 151 
rewards over the course of >10,000 single-outcome, imperative trials. In these trials, a single reward 152 
option was presented on either the left or right side of the screen. To obtain the cued reward, the an-153 
imals were required to select the side on which the reward was presented. After imperative training, 154 
where only one option was presented, all experimental data were gathered within a binary choice 155 
paradigm in which the animals chose one of two reward options presented simultaneously. One op-156 
tion was always a gamble; the other was always a safe, guaranteed reward. Every choice trial began 157 
with a white cross at the centre of a black screen, followed by the appearance of a joystick cursor. 158 
To initiate a trial the animal had to move the joystick cursor to the center cross and hold it there for 159 

.CC-BY-NC 4.0 International license(which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprintthis version posted May 25, 2020. . https://doi.org/10.1101/2020.05.22.110213doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.22.110213
http://creativecommons.org/licenses/by-nc/4.0/


0.5-1s. After a successful central hold, two reward options appeared to the left and right of the cen-160 
tral cross (Fig. 1a). The animal had 3s to convey its decision by moving the joystick to the side of 161 
its choice and holding it there for 0.1s to 0.2s, after which time the unselected option would disap-162 
pear. The selected option remained on the screen for 1s after reward delivery to strengthen any 163 
stimulus-reward associations with visual feedback. A variable intertrial period of 1–2 s (blank 164 
screen) preceded the next trial. Errors were defined as trials with an unsuccessful central hold, trials 165 
in which the animal failed to hold the selected side, or trials in which the animal made no choices, 166 
and resulted in a timeout of 6 seconds, after which time the trial was repeated.  167 

Reward options were presented in pseudorandom alternation on the left and right sides of the com-168 
puter screen to control for any side preference. Event times were sampled at 2 khz and stored at 1 169 
khz on a Windows 7 computer running custom MATLAB software (The mathworks, 2015a; Psych-170 
toolbox version 3.0.11), and all further analyses were done using custom Python code (Python 171 
3.7.3, Scipy 1.2.1, Oliphant, 2007). Over the course of 63, 43 and 57 sessions an average of 259 ± 172 
154 (mean ± STD) trials, 317 ± 118 trials, and 131 ± 75 trials were collected for Monkeys A, B and 173 
C, respectively. Crucially, animals received the reward they selected after each trial. This ensured 174 
that they experienced the rewards they selected with minimal and constant delay, and contrasts with 175 
human studies where only a randomly selected subset of trials are rewarded at the end of experi-176 
mental sessions. Delivering rewards after every trial also allowed us to capture preferences that 177 
were contingent on experiences unique to the task - similar delivery method and reward distribu-178 
tions were not experienced in the housing environment.  179 

Measuring preferences for specific reward distributions 180 
To examine the degree at which preferences are shaped by available rewards, binary choice data 181 
were collected from choices between reward options affixed to different reward distributions (Fig. 182 
1b). Three reward distributions were defined in terms of their mean reward magnitude and the 183 
spread of possible options i) low-narrow distribution, where tested magnitudes were generally set 184 
between 0 ml and 0.5 ml; ii) high-narrow distribution, with magnitudes between 0.5 ml and 1.0 ml; 185 
and iii) full distribution, with magnitudes between 0 ml and 1.0 ml (0.1 to 1.3 ml for Monkey C). 186 
Importantly, every reward outcome (no matter which distribution) was repeated the same number of 187 
times for each session – thus, every reward was equiprobable (flat distribution).  We set distribu-188 
tions and kept them fixed for multiple weeks, measuring the effects of reward distribution over 189 
weeks rather than blocks in a single session (Fig. 1c). Monkey A experienced a low distribution for 190 
22 days (0 ml to 0.5 ml), a full distribution of rewards for 31 days (0 ml to 1.0 ml), and a high dis-191 
tribution of rewards for 17 days (0.5 ml to 1.0 ml). Monkey B experienced the low distribution for 192 
33 days, then 19 days of high distribution, followed by 18 days of full distribution. Monkey C, quite 193 
uniquely, offered a dataset with a longer timescale. He experienced the full distribution of 0.1 ml to 194 
1.3 ml of reward for 14 days then switched to a low distribution of 0 ml to 0.5 ml for 54 weeks. Af-195 
ter this, his preferences were measured over 43 days. 196 

Utility functions were estimated for each probability distribution by presenting individual animals 197 
with a series of choices between a safe reward (probability of reward, p (reward) = 1.0) and a bi-198 
nary, equiprobable gamble (each reward p = 0.5) from which Von Neumann–Morgenstern type util-199 
ities were estimated. Probability distortions are symmetric and usually minor at p = 0.5 (Stauffer et 200 
al. 2015; Ferrari-Toniolo et al. 2019); therefore, to obtain utility functions with least fitting errors, 201 
we neglected probability distortions and thus assessed EU = p • u(ml). To estimate utility functions, 202 
we used the fractile-bisection procedure (Machina, 1987), which involves successively dividing the 203 
distribution of possible utilities into progressively smaller halves (or fractals) and estimating at each 204 
step the magnitude of safe reward at which choices were indifferent against the specific gamble be-205 
ing tested, as done in our laboratory before (Genest et al., 2016; Stauffer et al., 2014). This magni-206 
tude is termed certainty equivalent (CE), and represents the subjective value of safe reward that is 207 
equivalent to the value of the gamble. 208 
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The first step of the procedure involved presenting the animals with choices between this gamble 209 
and varying safe rewards (in 0.05 ml increments); in these choices, the safe reward that was equiva-210 
lent to the gamble in utility terms was identified (i.e. the safe reward chosen in equal proportion to 211 
the gamble; see Fig. 2a, b). To estimate this safe reward, the following logistic sigmoid curve was 212 
fitted to the proportion of safe choices versus gambles for each of the gamble/safe pairing:  213 

𝑃!"##$%&'(% 	= 1/(1 +	𝑒)*
!"#$%$&"'()*	,	-.

/ +)        Eq. 1 214 

The probability of the animal choosing a safe reward over the 0.5 utility gamble (P(ChooseSafe)) was 215 
contingent on the safe option’s magnitude (SafeRewardml)	and the two free parameters, x0: the x-216 
axis position of the curve’s inflection point, and σ: the function’s temperature. Importantly, this 217 
function’s inflection point represented the exact safe magnitude for which the animal should be in-218 
different between the set gamble and a given safe reward. Then we assigned utility to the lowest 219 
juice reward amount (0.0 utils) and highest juice amount (1.0 util) for the currently tested distribu-220 
tion (Fig. 2b). Since the animals only experienced trials set between these reward magnitudes, this 221 
constrained all utility estimates between 0 utils and 1 utils. The x0-parameter could thus be used as a 222 
direct estimate of the gamble’s CE: at choice indifference, the safe reward had the same utility as 223 
the equiprobable gamble (p = 0.5 each outcome) formed of these two magnitudes, which amounted 224 
to 0.5 = [0.5 * 0 utils] + [0.5 * 1 utils]). In the subsequent step, a new equiprobable gamble was set 225 
between 0 ml and the first CE’s ml value and the CE elicitation procedure was repeated (logistic fit-226 
ting, Fig. 2a); their CE had a utility of 0.25 utils (1/4 of maximal utility). In the next step, two new 227 
equiprobable gambles were set between the first CE’s ml value and the maximum magnitude of the 228 
currently tested reward distribution, i. e. 0.5 ml; their CE had a utility of 0.75 utils (3/4 of maximal 229 
utility). Crucially, gamble/safe pairings for both gambles were interwoven in the same sequence – 230 
to ensure a similar spread in the presented rewards. Only sequences that contained a minimum of 231 
three different choice pairs (repeated at least 4 times) were used in the elicitation of CEs, and only 232 
the fractile sequences where at least 3 utility values could reliably be estimated were used in further 233 
analyses. The CEs assigned to each utility level, in each reward distribution, were compared via 234 
two-way ANOVA. 235 
 236 
Parametric estimation of utilities from aggregate and single choices 237 
Parametric utility curves were fit onto the CE-Utility data to capture and predict an animal’s choice 238 
preferences over the entire distribution of rewards. These utility curves served as a direct signal of 239 
the animals’ risk attitude over the tested reward distribution: if the fitted utilities were convex (i. e. 240 
increasingly curving upwards) the animals had demonstrated risk seeking behaviour; if the curves 241 
were instead concave (i. e. gradually flattening), the animals had demonstrated risk aversion. Sev-242 
eral parametric utility models were compared to ensure the most reliable utility predictions; the 243 
best-fitting functions would then be used for all further analyses. In accordance with the assump-244 
tions of the fractile method, each of these functions had to be anchored at 0% to 100% on the y-axis 245 
–– and we normalized the CEs on which they were fit to be between 0 and 1. Finally, because CEs, 246 
not utilities, were the measured data (i. e. the error was relative to the x-axis), orthogonal distance 247 
regression was used to fit each and every function (Boggs & Rogers, 2012). We fit two 1-parameter 248 
functions (U1-Power, U1-Tversky),  249 

𝑈.)/#0%1(𝑚) 	= 	𝑚2           Eq. 2 250 

with 𝑚 for juice magnitude (in ml) of a given reward outcome and α as power parameter of the 251 
function (if α < 1 utility function is convex, if α > 1 utility function is concave).  252 
 253 

𝑈.)34%1$56(𝑚) 	= 	
70

(709(.)7)0)1 02
         Eq. 3 254 

with α as temperature parameter of the function (if α > 1 utility function is S-shaped, if α < 1 utility 255 
function is inverse S-shaped). 256 
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 257 
Two 2-parameter functions (U2-Prelec, U2-SCDF), 258 
𝑈;)<1%=%>(𝑚) 	= 𝑒)?×() =A(7))0         Eq. 4 259 

with α-parameter as temperature parameter of the function (generally, if α > 1 utility function is S-260 
shaped, if α < 1 utility function is inverse S-shaped), and the β-parameter controls the height (or lo-261 
cation) of the function’s inflection relative a 45° line across the x- and y-axes of the function. 262 
 263 

𝑈;)&!BC(𝑚) 	= 7
𝛽 × :7

D
;
./2

, 𝑓𝑜𝑟	0 ≤ 	𝑚 ≤ 	𝛽

1 −	(1 − 𝛽) × :.)7
.)?

;	./2 , 𝑓𝑜𝑟	𝛽 < 𝑚 ≤ 1
    Eq. 5 264 

with α as the power of the function’s curvature (if α > 1 utility function is S-shaped, if α < 1 utility 265 
function is inverse S-shaped), and the β-parameter controls the x-axis position at which the func-266 
tion’s curvature inverts. 267 
 268 

And one 3-parameter function (U3-Power) 269 

𝑈F)/#0%1(𝑚) 	= 	 D
(𝑚 − 𝛾)2 , 𝑓𝑜𝑟	𝑚 ≥ 	𝛾

−𝛽 × (𝛾 − 𝑚)2 , 𝑓𝑜𝑟	𝑚	 < 	𝛾      Eq. 6 270 

with α as the power of the function (generally, if α > 1 utility function is S-shaped, if α < 1 utility 271 
function is inverse S-shaped), the β-parameter accounts for any loss aversion. 272 

Sets of daily Bayesian Information Criterions (BIC) were then calculated from the orthogonal resid-273 

uals of each fitted model (	𝐵𝐼𝐶G&& 	= 	𝑛 × 𝑙𝑛 :1%$HIJ'=$
A

; + (𝑘 × 𝑙𝑛(𝑛))	). We selected the best fit-274 

ting function using a one-way Friedman test followed by pairwise Wilcoxon signed-rank tests (Bon-275 
ferroni-Holm corrected) and compared the estimated parameters specific to each reward distribution 276 
using a one-way MANOVA.  277 

Since the fractile method relied on stepwise, chained measurements (where later metrics depend on 278 
earlier ones), utility functions were also estimated using a discrete choice model (DCM) fitted to 279 
single trials for comparison. By fitting a model on individual choices rather than aggregate CE se-280 
quences, we avoided the propagation of estimation errors from earlier steps onto the next and there-281 
fore reduced estimation biases for individual utility functions (Abdellaoui, 2000).  282 

As is commonly done (McFadden, 2001; Stott, 2006), the likelihood that animals would choose the 283 
left option over the right one, given a set noise level and side bias, was modelled using a logit func-284 
tion:  285 

𝑃>"##$%K%(L 	=
.

(.9%,3(567$#8,56%9:;8	,	<)
        Eq. 7 286 

The probability of choosing the left option was, therefore, in the DCM, a function of the expected 287 
utility difference between the left and right options, the temperature (or noise) parameter, 𝜆, and 𝜃 288 
which captured side bias parametrically. The expected utility of each option (euleft, euright), as a 289 
function of their probability (p) and the utility function U(m), was given by the functional form: 290 

EU(p,m) = p × U(m)             Eq. 8 291 

The model’s best-fitting parameters were estimated by minimizing the following cumulative log-292 
likelihood function: 293 

−𝐿𝐿(𝜃|	𝑦) 	= −R∑ 	𝑦HA
H	N	. × 𝑙𝑜𝑔(𝑃!"##$%	O'7P=%) +	∑ 	𝑦HQA

H	N	. × 𝑙𝑜𝑔R𝑃!"##$%	&'(%UU  Eq. 9 294 

.CC-BY-NC 4.0 International license(which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprintthis version posted May 25, 2020. . https://doi.org/10.1101/2020.05.22.110213doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.22.110213
http://creativecommons.org/licenses/by-nc/4.0/


Where y and y’ indicated a left or right choice (0 or 1), respectively, for each trial i; n was the total 295 
trial number for the session.  296 

Again, the best-fitting discrete choice model was selected via BIC comparisons, this time defined 297 
on the likelihoods (	𝐵𝐼𝐶KK 	= 	 (𝑘 × 𝑙𝑛(𝑛))	 − (2 × 𝐿𝑜𝑔𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑)	). The parameters estimated in 298 
each reward distribution were also using a one-way MANOVA. 299 

Validating utility predictions from out-of-sample certainty equivalents 300 
To validate the predictions of the utility functions, CE measures were gathered from binary choices 301 
presented outside of the utility estimation sequences testing gambles not employed for the utility 302 
estimation. These gambles were used to corroborate the risk attitudes predicted by the fractile- or 303 
DCM-derived utilities. Two of the three animals were presented with three sets of four gambles 304 
unique to each reward distribution for which we estimated CEs. We used these 12 CEs to validate 305 
the risk-attitude predictions of the utility function estimated in each distribution. The gambles in the 306 
narrow reward distributions had a spread of 0.15 ml, while gambles in the full distribution had a 307 
spread of 0.30 ml – keeping the relative spreads equivalent across the distributions. Gamble means 308 
were also, once normalized, centred around the same relative values. In percentage points, each 309 
gamble spread over 30% of the reward distributions, and gamble was centred at a value representing 310 
25%, 45%, 65%, or 85% of the reward distribution (Fig. 2c). 311 

Taking the difference between the CEs of these gambles and their expected value (EV) as a proxy 312 
for risk attitude (CE – EV), the risk-attitude estimated from these CEs were compared with the pre-313 
dictions from the fractile-estimated and discrete-choice utility curves. If the CE – EV metric were 314 
positive, it signalled that the animals were risk seeking. If instead the measures were negative, the 315 
animals could be seen as being risk averse. Because of this, if the utility models imposed an S-shape 316 
that was unrealistic (and a consequence of the function used) the CE – EV fits would expose it right 317 
away: they would not go from risk seeking to risk averse. These measures were repositioned rela-318 
tive to the inflection point at which fractile- and DCM-derived utilities predicted reversal of risk-319 
attitudes (i. e. the point of risk neutrality. Linear regressions were fit to the repositioned CE – EV 320 
metrics in order to identify which of the two inflections proved most reliable in predicting out-of-321 
sample behaviour (fractile or DCM-derived): 322 

 CE – EV = 𝛽R +	𝛽.(𝐸𝑉	 − 	𝑖𝑛𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛)        Eq. 10 323 

In the model, 𝛽R Indicated the point at which CE measures became risk-neutral, and 𝛽. Paralleled 324 
the ‘depth’ of utility’s curvature. The R2-value associated with both regressions was compared to 325 
see which of the two utility estimation procedures most reliably matched out-of-sample behaviour. 326 
Put simply, these regressions allowed both the validation of predicted risk-attitudes, and the selec-327 
tion of the better-fitting procedure. 328 

Defining preference adaptation metrics 329 
Comparing the utilities estimated from choices in different reward distributionswas done in one of 330 
two ways: the first, assuming that preferences were fixed and did not adapt to the distribution of 331 
possible rewards in a task; the second, assuming that preferences fully adapted to the reward spread 332 
and magnitude of the task at hand. To test for the former, utilities estimated in narrow distributions 333 
(i. e. low- and high-distribution) were compared to the full-distribution ones. For the assumption of 334 
full adaptation, utilities were compared sequentially - looking for differences in the shape of the 335 
utilities between different distributions.  336 

The parametric utility functions had a unique inflection point, defined as a single point where the 337 
utility function’s curvature reversed, and where the function’s first derivative was maximal. This 338 
inflection identified the precise reward magnitude for which the animals’ risk-attitude changed, and 339 
served as a good indicator for where and how the animals’ preferences would change depending on 340 
the variance and mean of the reward distribution. The inflection points elicited in different 341 
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distributions were compared using a Kruskal Wallis test with Bonferroni-Holm corrected post-hoc 342 
analysis (Wilcoxon test).  343 

Another metric, the curvature ratio (CR) was defined as the normalized area under the utility func-344 
tions (the function’s area divided by the total area in each distribution). The CR provided a direct, 345 
normalized metric of the convexity/concavity interplay of daily utility estimates – reflecting overall 346 
risk attitude to a greater degree than inflection points. A linear utility function would have a CR of 347 
0.5, as would perfectly symmetric S- or inverse S-shaped utilities. A CR above 0.5 indicated that 348 
the functions fell above the diagonal and predicted risk averse choices; conversely, a CR under 0.5 349 
reflected more risk seeking choices. The CRs measured in the different distributions were also com-350 
pared using a Kruskal Wallis test followed by pairwise Wilcoxon rank sum comparisons (Bonfer-351 
roni-Holm corrected). 352 

A final series of metrics, defined as adaptation coefficients, allowed for the quantification of rela-353 
tive changes in CRs. Between utilities that had been estimated in consecutive reward distributions. 354 
A sequential adaptation coefficient (SAC) was calculated as: 355 

𝑆𝐴𝐶	 =
*∫ T>(7) I7)	∫ T>,1(7)

)"-
)9> 	I7	)"-

)9> +

∫ T>,1(7)
)"-
)9> 	I7

       Eq. 11 356 

And it captured changes in the median utility of a given reward distribution n (𝑈A(𝑚)), where m 357 
represented every reward between the minimum and maximum rewards in the tested distribution, 358 
relative to the median utility function in distribution n-1 (𝑈A).(𝑚)). Since all parametric functions 359 
were defined from 0 to 1, comparing the area under each curve gave us a direct measurement of the 360 
difference between the utilities that captured preferences in consecutive reward distributions.  361 

A second coefficient, the general adaptation coefficient (GAC), compared the utility of low- and 362 
high-reward distributions to the utility estimated from a animal’s full reward distribution. The GAC 363 
placed the narrow-distribution utilities (i. e. the low and high distribution ones) relative to the shape 364 
of the full-distribution’s utility function. That is, a GAC of 0 would indicate that the narrow-distri-365 
bution utilities are but segments of a fixed full-distribution one, whereas a GAC of 1 suggested that 366 
utilities kept a similar form but fully shifted to represent preferences in the new distribution. For 367 
any GAC where 0 < GAC < 1, utilities had partially adapted. To calculate this, narrow distribution 368 
utilities were rescaled to map onto the full distribution ones: the maximum value of the low-distri-369 
bution became the utility value of the full-distribution utility at 0.5 ml, and the utility value of the 370 
full-distribution utility at 0.5 ml became the minimum value of the high-distribution. Then, the me-371 
dian utility of the full distribution (UFull) was rescaled (into 𝑈'I'/L) to match the domain and image 372 
of narrow distribution utilities (ULow-distribution and UHugh-distribution). The GAC was given by  373 

𝐺𝐴𝐶	 =
*∫ T?"'89"*(7)I7)	∫ T#@**(7)

)"-
)9> 	I7	)"-

)9> +

*∫ T"("?8(7)
)"-
)9> 	I7	)	∫ T#@**(7)

)"-
)9> 	I7+

      Eq. 12 374 

Where 𝑚𝑖𝑛 and 𝑚𝑎𝑥 are the minimum and maximum reward magnitudes in a narrow distribution 375 
condition. A GAC of 1 signalled full adaptation while a GAC of 0 indicated that no adaptation had 376 
taken place. Crucially, the GAC metric took no account of the order in which reward distributions 377 
were tested; it relied instead on full-distribution utility function as a comparison template.  378 

 379 

Results 380 

Experimental design  381 
In order to investigate the adaptation of utility functions to different reward distributions, macaque 382 
monkeys were presented with sequences of binary choices while reward distributions were kept 383 
constant over consecutive days and then suddenly changed. Thus, without other task changes, the 384 
animals experienced periods of relatively low reward reward magnitudes, periods of relatively high 385 
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magnitudes, and periods with a mix of both (Figs. 1c; 3). On each day the animals were presented 386 
with either a utility estimation sequence, an equivariant gamble sequence (out-of-sample valida-387 
tion), or both.  388 

In utility estimation sequences, utility measurements were derived from the choices that animals 389 
made between sets of gambles and safe rewards. Using the fractile method (see Methods), utilities 390 
were derived from the certainty equivalents (CEs) of specific sets of binary, equiprobable gambles 391 
(p = 0.5 each outcome; the magnitude of safe reward that was subjectively equivalent to the gam-392 
ble). In validation sequences, the animals’ risk preferences were measured directly using the CEs of 393 
out-of-sample binary, equiprobable gambles. These measurements were then used to confirm the 394 
utilities estimated in elicitation sequences.  395 

For each reward distribution, sets of daily utilities were estimated using the fractile method. The 396 
way reward magnitudes (CEs) mapped onto these utilities (once normalized to the minimum and 397 
maximum rewards in a distribution) could then be compared within and between the different re-398 
wards distributions. To do so, and because utilities were defined from 0% to 100% regardless of 399 
their distribution, the CEs were normalized relative the maximum and minimum magnitudes in the 400 
appropriate reward distribution (Fig. 3). As expected, higher utility values mapped onto higher re-401 
ward magnitudes (higher CEs), but the way in which they did so differed markedly depending on 402 
the current distribution. The same utility levels (12.5%, 25%, 50%, 75% and 87.5%) in different re-403 
ward distributions did not map onto the same relative magnitudes (i. e. normalized CEs). We con-404 
firmed this statistically using a two-way ANOVA with the main factors being the utility level tied 405 
to individuals CEs and the reward distribution from which they had originated. The ANOVA con-406 
firmed that there was a significant main effect of utility level on the value of the estimated CEs 407 
(Monkey A: F(4,295) = 64.301, p = 4.812× 10)F^; Monkey B, F(4,192) = 50.51, p = 408 
4.107× 10)F^; Monkey C: F(4, 295) = 609.547, p = 3.254× 10)._. ). The distribution in which 409 
utility-specific CEs had been estimated also had a significant main effect on the value of the esti-410 
mated CEs (Monkey A: F(2,295) = 356.415, p = 1.991× 10)`^; Monkey B, F(2,192) = 8.994, p = 411 
0.003× 10)F; Monkey C: F(1, 295) = 16.204, p = 7.235× 10)a). Together, these corroborated what 412 
we could see graphically (Fig. 3): higher CEs correlated with higher utilities in all distributions, but 413 
these CEs were all relatively lower once a shift from low- to full- or high-distribution had occurred. 414 
Supporting the two other main effects, there was a significant interaction effect of utility level and 415 
distribution on the estimated CEs, in two of the three animals (Monkey A: F(8,295) = 1.156, p = 416 
0.326; Monkey B, F(8,192) = 5.217, p = 1.829× 10)a; Monkey C: F(4, 295) = 8.488, p = 417 
1.707× 10b). That is, the steepness of the utility-CE pairings changed between the different reward 418 
distributions – rather than simply shifting and recalling, utilities in different distributions seemed to 419 
follow different patterns. 420 

S-shaped utilities best fit choices 421 
Parametric utility functions were fitted to the daily utility measurements to better compare and un-422 
derstand the relationship between the utilities estimated in each distribution. To do so, several dif-423 
ferent functional forms of utility were first compared; the most reliable function was then used for 424 
all further analyses. Power functions are commonly used to model utility functions. We therefore fit 425 
a 1-parameter power (U1-Power), 2-parameter CDF of a two-sided power (U2-SCDF), and a 3-parameter 426 
anchored power functions (U3-Power) to the animal’s CE-utility pairings. In addition to power-type 427 
functions, we looked at functions typically reserved for probability distortion modelling (Ferrari-428 
Toniolo et al., 2019; Stott, 2006): the 1-parameter Tversky function (U1-Tversky), and the 2-parameter 429 
Prelec (U2-Prelec) – two functions that could readily take on the s-shape prescribed by PT. All func-430 
tions mapped reward magnitudes onto utility values from 0 to 1 (i. e. 0% to 100% of normalized 431 
utilities), and all but the 1-parameter power function could capture risk seeking and risk averse be-432 
haviour, as well as any inversion in the animals’ risk attitudes within a reward distribution.  433 

Because of the fractile method’s reliance on aggregate, chained datapoints (Farquhar, 1984; 434 
Machina, 1987), utility functions were also fit using a discrete choice model (DCM) applied to 435 
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individual, rather than aggregate, choices (Eq. 7). In line with the fractile-derived utilities, and be-436 
cause previous experiments with the same animals had identified negligible probability distortions 437 
for p = 0.5 (Stauffer et al., 2015), choices in the model were then predicted based on the choices’ 438 
expected utilities (probabilities were treated as objective). The parameters that best described indi-439 
vidual choices in each model were estimated through maximizing the cumulative log likelihoods of 440 
the DCMs defined on individual experimental sessions (Eq. 9; see methods).  441 

To select the utility function that best described both the CEs and individual choices, we used the 442 
Bayesian information criteria (BIC) from all fitted models; the model with the lowest median BIC 443 
would thus represent the best fitting model. Of the five tested utility functions, the 2-parameter Pre-444 
lec proved most reliable in fitting both forms of data (Fig. 4a,b). Though the model is normally re-445 
served for probability distortion models, it presented the lowest BICRSS score as derived from the 446 
residuals of fractile-derived utilities (significantly so, Friedman test; Monkey A: Fr(4,240) = 447 
177.154, p = 3.046× 10)F`; Monkey B: Fr(4,168) = 140.780, p = 1.903× 10);^; Monkey C: 448 
Fr(4,220) = 120.800, p = 3.604× 10);a), and the lowest BICLL score as derived from the log likeli-449 
hoods of the discrete choice fits in 2 of 3 monkeys (Friedman test; Monkey A: Fr(4,240) = 219.091, 450 
p = 2.327× 10)_a; Monkey B: Fr(4,168) = 186.469, p = 2.221× 10)Fc; Monkey C: Fr(4,220) = 451 
180.020, p = 5.298× 10)F`). In Monkey A, the BICLL of the 2-parameter CDF of the two-sided 452 
power distribution and the 2-parameter Prelec proved statistically indistinguishable. From these 453 
BICRSS and BICLL measures, and because the behavioural predictions from each fitting method gen-454 
erally agreed (Fig. 4c), we selected the 2-parameter Prelec function for all further analyses.  455 

Risk preferences adapt to novel reward distributions 456 
Each fitted utility function provided a pair of parameters that could be compared to those elicited in 457 
the same or different reward distributions. The curvature of these utility functions served as a direct 458 
indicator of the animal’s risk attitude for any given magnitude. Convexity reflected risk seeking be-459 
haviour; concavity signalled risk aversion. From these parametric functions, three predictions could 460 
be made: utilities would either i) fully adapt to the novel reward distributions, ii) not adapt and re-461 
main constant (i. e. different parts of the same curve), or iii) utilities would partially adapt in a way 462 
that did not solely rely on the current reward distribution. To test for these predictions, further anal-463 
yses were split into two sets of hypotheses. One set looked at utilities under the assumption that no 464 
adaptation had occurred, the other assumed full utility adaptation between each of the reward distri-465 
butions. In the case of the no-adaptation assumption, the predictions from utilities on identical re-466 
ward magnitudes in the narrow distribution and full distribution were compared (Fig. 5a). For the 467 
full adaptation assumption, the utilities from sequential reward distributions were normalized and 468 
compared, looking at any differences with the previous distribution’s pattern of risk attitude (Fig. 469 
5b, c). If neither assumption proved accurate, then the assumption would be that neither full nor no 470 
adaptation had taken place – that is, preferences would have partially adapted. 471 

Starting with fractile-derived utilities, comparing the functional parameters elicited in the different 472 
reward distributions provided us with a stringent test regarding the full adaptation assumption. In 473 
the 2-parameter Prelec function, the α-parameter represented the temperature of the function, while 474 
the β-parameter captured the relative height of the curve. If these were identical across conditions, 475 
similar patterns of utility reflected preferences regardless of unique reward magnitudes in the differ-476 
ent reward distributions. One-way MANOVA analysis on the log-transformed parameters con-477 
firmed that this was not the case: there was a significant effect of reward distribution on the parame-478 
ters elicited in each condition, for all animals (Monkey A: F(2,59) = 34.913, Wilks’s λ = 0.454, p = 479 
1.116× 10).R; Monkey B, F(2,41) = 13.695, Wilks’s λ = 0.594, p = 2.946× 10)a; Monkey C: F(1, 480 
54) = 9.381, Wilks’s λ = 0.739, p = 3.252× 10)_). Specifically, there was a significant difference be-481 
tween Monkey A and B’s β-, or height-, parameters (Monkey A: F(2,59) = 67.301, p = 482 
2.447× 10)..; Monkey B, F(2,41) = 13.695, p = 2.946× 10)Ra; Monkey C: F(2,54) = 1.120, p = 483 
0.290), as well as a significant difference in Monkey C’s α-, or temperature-, parameters (Monkey 484 
A: F(2,59) = 0.434, p = 0.513; Monkey B, F(2,41) = 2.583, p = 0.116; Monkey C: F(2,54) = 18.858, 485 
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p = 6.236× 10)a). The utilities, in terms of parameters, differed depending on the distribution from 486 
which they were elicited (Fig. 6). 487 

To explore how these parametric differences influenced utility patterns in a way that was directly 488 
comparable between conditions, we compared the position of each utility function’s inflection 489 
points – the reward magnitude at which the behaviour predicted by the utility function flipped from 490 
risk seeking to risk averse (or risk averse to risk -avskseeking depending on the temperature of the 491 
utility function). The inflection crudely summarized choice predictions with a single metric – one 492 
that had been previously used to signal animals’ ‘reference-points’ (Chen et al., 2006; 493 
Lakshminarayanan et al., 2011). Importantly, since this metric was tied to CE values; one could eas-494 
ily observe if inflection points fell on similar magnitudes depending on the distribution in which it 495 
had been measured (Fig. 5a).  496 

From these inflection points, the assumption of no adaptation was tested by comparing both within 497 
and across-distribution inflections. If no adaptation had occurred, the inflections would be the same 498 
within and across the different reward distributions. Testing for the former, i.e. Within distribution 499 
differences in inflection points, no significant pattern of change could be identified – at least for 500 
Monkeys A and B (linear regression analysis, Monkey A: pfull-distribution = 0.160, phigh-distribution = 501 
0.472; Monkey B: pfull-distribution = 0.270, phigh-distribution = 0.714; Monkey C: plow-distribution = 0.009). 502 
And since Monkey C’s low distribution had been tested over a year after changing distributions – 503 
the fact that a significant positive slope was identified (the inflection slowly went up in value over 504 
the days of testing) did little to indicate distribution-swap adaptation. Moving from within distribu-505 
tion to between distribution analyses, there were significant differences between the distribution-506 
specific inflections for all monkeys (Kruskal Wallis test; Monkey A: H(2,58) = 44.281, p = 507 
2.424× 10).R; Monkey B: H(2,40) = 27.973, p = 8.429× 10)`; Monkey C: H(1,54) = 28.397, p = 508 
9.881× 10)c), which translated into significant pairwise differences (Wilcoxon rank sum) for all 509 
but Monkey B’s high and full distribution inflection points (Fig. 6a). Simply put, the inflection 510 
points fell on different reward magnitudes for each of the reward distributions. If preferences had 511 
truly been non-adaptive, no significant difference across any of the conditions would have been ob-512 
served.  513 

Since none of the results corroborated the no-adaptation hypothesis, the next step was to test for full 514 
adaptation. Rather than comparing the absolute position of the utilities’ inflection points, testing for 515 
full adaptation required predicting where inflection points from a past distribution would map onto 516 
the next distribution: the assumption being that if the same utility function simply shifted to a new 517 
distribution (i. e. fully adapted), the relative position of the inflection should be the same. An inflec-518 
tion at 0.3 ml in the low distribution, for example, would be placed at 0.15 ml in the full distribu-519 
tion, and vice versa. However, since an inflection of 0.3 in the low distribution would result in a 520 
negative magnitude when compared with the high distribution, inflections < minimum reward were 521 
set at the minimum, and inflections > maximum reward were set to the maximum. There were sig-522 
nificant differences between all consecutive comparisons in Monkeys A and C, and none for Mon-523 
key B (Fig. 6a; Wilcoxon rank sum test). From a full adaptation perspective, this suggested that, 524 
while Monkeys A and C had not fully shifted their reference to accommodate the new distributions, 525 
Monkey B’s preferences seemed to follow the same relative pattern across all rewards distributions.  526 

From the inflection points, the picture that emerged was one of (at least) partial adaptation. That is, 527 
the significant differences between the inflection points corroborated neither the idea of fully- or 528 
non-adaptative preferences. Nevertheless, because inflection points carried no information about the 529 
risk attitude that followed or preceded them, the inflection points could be similar even if the ani-530 
mals’ choices were not. To counter this, the previous comparisons were repeated using the area un-531 
der each utility curve – a direct indicator of the convexity/concavity patterns within single utilities. 532 
Rather than representing a single point, the area under each curve reflected the order and intensity 533 
of risk seeking or risk averse behaviour throughout the reward distribution. Hereafter defined as 534 
curvature ratios (CRs, see methods), the areas calculated in each distribution were compared 535 
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through Kruskal Wallis test (followed by pairwise Wilcoxon rank sum post-hoc tests). The results 536 
validated the earlier findings from the inflection comparisons: sequentially, there were significant 537 
differences across distributions for Monkey A and B (Monkey A: H(2,58) = 27.973, p = 538 
8.428× 10)`; Monkey B: H(2,40) = 12.124, p = 0.002), but there were no statistical differences be-539 
tween monkey C’s CRs across conditions (Fig. 6b; H(1,54) = 1.872, p = 0.171). In essence, while 540 
the risk attitudes that Monkeys A and B exhibited differed between reward distributions, Monkey C 541 
seemed to exhibit relatively similar behaviour in the two distributions (albeit with a slightly differ-542 
ent inflection).  543 

To validate these fractile-based comparisons, we repeated the full/no-adaptation analyses using the 544 
DCM-derived utilities. Both the inflection points and the CRs of Monkey A reliably mimicked ear-545 
lier findings: significant differences between the distributions meant inflection points were some-546 
what adaptive (Fig. 7a; Kruskal Wallis, H(2,58)= 44.504, p = 2.167 x 10-10), but differences in se-547 
quential predictions also meant that inflections were not fully-adaptive (Fig. 6a; Wilcoxon rank 548 
sum, Z(45)full-distribution: -5.761, p = 8.351 x 10-9; Z(40)high-distribution: -4.790, p = 1.661 x 10-6). Corrob-549 
orating the latter, CRs were again found to be significantly different across all distribution condi-550 
tions (Fig. 7b; H(2,58) = -51.342, p = 7.100x10-12). For Monkey B, the DCM-derived inflection 551 
points also behaved like those estimated from fractile utilities: there were significant differences be-552 
tween all but the high and full-distributions (H(2,40) = 31.103, p = 1.762 x 10-7), suggesting that 553 
inflections were not fixed, which was validated by the finding that there were no significant differ-554 
ences between all consecutive predictions (Z(29)high-distribution = 1.103, p =0.270; Z(20)full-distribution = 555 
1.941, p = 0.052). In terms of curvature ratios, i.e. Test of no adaptation, there again was a differ-556 
ence between the CRs gathered in different reward distributions (H(2,40) = 7.470, p = 0.024), but 557 
this time none of the post-hoc pairwise comparisons reached significance once corrected for multi-558 
ple comparisons (Wilcoxon rank sum; Fig. 6b). This meant that Monkey B’s preferences were much 559 
closer to being fully adaptive than not. Finally, Monkey C’s results, like Monkey A, were consistent 560 
across elicitation methods. Inflection points were significantly different between the two distribu-561 
tions tested (H(1,54) = 30.524, p = 3.297 x 10-8), consecutive inflection predictions were also signif-562 
icantly different (Z(55)low-distribution = 2.076, p = 0.03), and CRs were not (Z(55)low-distribution = 0.0178, 563 
p = 0.897). Inflections differed, but risk attitudes did not. 564 

Taken together, these results suggest that while no animal (except perhaps Monkey B) demonstrated 565 
full adaptation, some form of partial adaptation had occurred across every distribution in every ani-566 
mal. More specifically, while not fully adapted, Monkey A and C’s utilities did shift following 567 
changes in the task’s reward statistics. Their inflection points moved, but not to the degree predicted 568 
by a full shift of the previous distribution’s inflections. Where the two animals differed, however, 569 
was in the fact that Monkey C had maintained a very similar CR across conditions – likely due to 570 
the time elapsed between the different tests. Monkey B, on the other hand, maintained the relative 571 
inflection predicted across conditions and a similar (though different in fractile-estimates) utility 572 
shape.  573 

Predicting distribution-specific preferences from adapting utilities 574 
While the fractile- and DCM-fits generally agreed on the inflection of utility functions (Figs. 6a; 575 
7a), variations in parameter estimates and concavity/convexity patterns (particularly in Monkey B; 576 
see Table. 1) highlighted the need to select the most reliable fitting procedure if quantification of 577 
adaptation was the goal.  578 

To address this concern, we compared the risk attitudes predicted by the utilities of each method to 579 
real risk attitudes measured in different, out-of-sample choices (i. e. validation sequences). The CEs 580 
of equiprobable and equivariant gambles were recorded in each of the reward distributions, and the 581 
differences between these CEs and the gambles’ EVs (CE – EV) were used to indicate the animals’ 582 
risk attitudes. Every gamble had a magnitude spread equivalent to 30% of the respective reward dis-583 
tribution, and their EV were anchored at 25%, 45%, 65%, and 85% of the testing distribution’s 584 
magnitudes (Fig. 2c). If the difference between a gamble’s CE and its EV (CE - EV) was positive, it 585 
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reflected a risk seeking attitude towards the gamble; if, on the other hand, this value was negative, 586 
the animal was said to be risk averse. These ‘validation’ measurements were gathered in two of our 587 
three animals (namely Monkeys A and B). 588 

The CE - EV attitude predictions were compared to the risk attitude predictions from the fractile 589 
and DCM utility estimates. If the S-shaped pattern of utilities elicited for each animal were accu-590 
rate, choices involving magnitudes that fell below the utility’s inflection point should have been 591 
risk-prone, while choices above it should have been risk averse (also validating the S-shape utilities 592 
as more than just an effect of the Prelec functional form). We found that this was indeed the case 593 
and that CEs in all distributions reflected both risk seeking and risk averse behaviour depending on 594 
the relative magnitudes involved (Fig. 8a). Then, to identify the best-fitting utility estimation proce-595 
dure, the CE – EV values were regressed onto the gamble’s relative distance from the median in-596 
flections in each distribution (the distance in EV terms; see Eq. 10). In both animals, positioning CE 597 
– EV values relative the DCM-derived inflection resulted in a better regression fit than using the 598 
fractile-derived inflections (Fig. 8b, c) – the DCM-derived utilities were therefore chosen for further 599 
quantification as they represented a more accurate depiction of the animals’ behaviour.  600 

Partial adaptation to reward distribution shapes risk preferences  601 
Two final metrics served to quantify the degree to which each animal’s DCM-utilities had adapted 602 
between the different reward distributions: a sequential adaptation coefficient (or SAC; Eq. 11) and 603 
a general adaptation coefficient (GAC; Eq. 12). The SAC served to quantify how the utilities 604 
adapted sequentially as a function of the preceding reward distribution, the GAC served to position 605 
utilities elicited in distributions with low and high means relative to adaptive or absolute utilities 606 
elicited from the full distribution. 607 

The SAC represents the percent change in the CRs (the normalized areas under each curve) of suc-608 
cessive utilities. It can be used to quantify differences in utilities within a single distribution, or, in 609 
this case, between the median utilities of different distributions. Importantly, the SAC allowed us to 610 
quantify utility adaptation on a normalized scale: if utility patterns were fully adapting (i. e. fixed 611 
shape regardless of the distribution), the SAC would gravitate to 0. On the other hand, the SAC 612 
would become negative if utilities became more convex (since the area under the utilities would be-613 
come smaller), and more positive if utilities became more concave. The other coefficient, the GAC, 614 
compared the utility of the low- and high-distributions with the full reward distribution’s utility 615 
function (Fig. 2b, dashed lines). Using the full-distribution utility as the ‘default’ utility shape, the 616 
GAC measured how different narrow utilities were – ranging from no or 0% adaptation (i. e. narrow 617 
utilities were but segments of an absolute full-distribution utility) to 100% adaptation (the utilities 618 
had a fixed form that simply adapted to new distributions). We used DCM-derived utilities to calcu-619 
late these adaptation coefficients.  620 

Using the SAC to quantify how median utilities changed between distributions, we found that the 621 
differences between utilities of Monkey A amounted to SACs of 0.37 and 0.35 for the full- and 622 
high-distributions, respectively; 0.11 and -0.14 for Monkey B’s high- and full-distribution, and 0.04 623 
for Monkey C’s low distribution. In utility terms, this meant that Monkey A’s utilities predicted be-624 
haviour that was 37% and 35% more risk averse in consecutive distributions. Monkey B also be-625 
came more risk averse when going from the low distribution to the high distribution but became 626 
more risk seeking again once choosing in the full distribution. The direction of these changes 627 
seemed to reflect the ‘position’ of the tested distributions relative to the past distributions the ani-628 
mals had experienced. In line with this idea, Monkey C had no recent experience with the full-dis-629 
tribution when low-distribution utilities were estimated; the measured utilities were thus almost 630 
identical. 631 

The GACs calculated for each animal were also very informative in positioning low- and high-dis-632 
tribution utilities relative to the full distribution ones (see dotted lines in Fig. 7). Monkey A, for ex-633 
ample, had a GAC of 0.51 for the small distribution, and a GAC of 0.21 for the high distribution. 634 
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The high GAC essentially meant that the low-distribution utility was halfway between being only a 635 
segment of a fixed full-distribution utility and being a fully rescaled versions of the full-distribution 636 
utility; the low GAC suggested that high-distribution utilities were much closer to being segments 637 
of a larger, absolute utility function. For Monkey B, low-distribution utilities matched a GAC of 638 
1.14, i.e. The utilities of the low distribution had an almost identical shape to those in the full-distri-639 
bution, and the high-distribution utilities had a GAC of 0.69, a bit more than halfway between no- 640 
and full- adaptation. Monkey C, corroborating earlier findings, had a GAC between low and full-641 
distributions of 0.87 – they were, for all intents and purposes, identical.  642 

Finally, going back to the original idea that preferences are shaped by one’s expectations, we 643 
looked at the shape of each DCM-utility relative to the task’s daily reward statistics. Though even 644 
the initial distribution’s utility inflections never truly followed the task’s mean reward (one-sample 645 
t-test; Monkey A: t(20)low-distribution = 3.849, p = 0.001; Monkey B: t(23)full-distribution = 2.534, p = 646 
0.019; Monkey C: t(13)high-distribution = 4.267, p = 1.103 x 10-4), the difference between mean rewards 647 
and inflections became markedly larger for Monkeys A and B when they were introduced to new 648 
reward distributions (Kruskal-Wallis test; Monkey A: H(2,58)= `40.052, p = 2.008 x 10-9; Monkey 649 
B: H(2,40)= `16.806, p = 2.242 x 10-4). Importantly, the differences were always skewed towards 650 
past distributions. As reward distributions changed, Monkey A and B’s references appeared to lag 651 
in fully adapting to the new distributions. Monkey C, on the other hand, saw no differences between 652 
its two reward distributions (H(1,54) = 0.021, p = 0.884) – presumably because of the 54-week gap 653 
between the two sets of measurements.  654 

To better understand and quantify the lag in fully adapting to current reward, we built a simple rein-655 
forcement-learning model that predicted the reward distributions most likely to have shaped ani-656 
mals’ utilities (Sutton & Barto, 2018). Assuming the ‘normal’ form and a simple Rescorla–Wagner 657 
learning rule, the model then identified the distributions closest to the one captured by animal’s 658 
daily utility measures (that is, seeing utilities as the cumulative representation of the reward distri-659 
bution the animals most expected). These distributions’ means and standard deviations (STD) were 660 
given by the following rule:  661 

Expected meani = Expected meani-1 + h (real meani - Expected meani-1)  Eq. 13 662 

Expected STDi = Expected STDi-1 + h (real STDi - Expected STDi-1)  Eq. 14 663 

where each day’s ‘expected’ distribution relied on predictions from the previous day (i-1), as well as 664 
the learning rate (h) at which animals learn from the difference between these predictions (ex-665 
pectedi-1) and reality (reali) – the prediction error. Importantly. the first expected parameters were 666 
assumed to be the statistics that the animal first observed, because of this as h would get closer to 1, 667 
it would indicate that predictions adapted instantly to new distributions; if h was closer to 0, it indi-668 
cated preferences had relied only on early observations (i. e. the first distribution of rewards that the 669 
animal experience). The functions were fitted by minimizing the sums of square differences be-670 
tween the cumulative distribution function of these curves and the utility of the CEs that had been 671 
previously measured using the fractile method. 672 

This simple reinforcement model offers insight as to the role that expectations played in shaping the 673 
animals’ preferences. Monkeys A, B, and C had learning rates of 0.62, 0.81, and 0.62, respectively; 674 
that is, their preferences adapted quickly to new reward distributions, but not fully. The recent past 675 
also played a role, albeit marginal, in shaping the relative value of rewards. Figure 9 illustrates both 676 
these ‘expected’ distributions as well as the ‘true’ distributions (as measured by the first derivative 677 
of the utility functions). Notice how the expected distributions spill over reward distribution 678 
changes only for the first couple of days. If preferences are built around expectations, then the utili-679 
ties that best described these preferences point to these animals using mostly present but also past 680 
information to shape them. 681 

Discussion 682 

.CC-BY-NC 4.0 International license(which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprintthis version posted May 25, 2020. . https://doi.org/10.1101/2020.05.22.110213doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.22.110213
http://creativecommons.org/licenses/by-nc/4.0/


The present study investigated the role of task-specific expectations in shaping the preferences of 683 
macaque monkeys. In line with human research on reference-dependent preferences (Arkes et al., 684 
2008, 2010; Koszegi & Rabin, 2007), the animals’ risk preferences shifted following changes to the 685 
reward distribution they could expect from the task at hand. As the rewards that the task delivered 686 
got higher, the reward magnitude at which their risk-attitudes shifted also became higher. Modelling 687 
the utility functions that best captured the animals’ behaviour, we found that changes in their risk-688 
preferences mimicked the changes predicted in models like Prospect Theory (Kahneman & 689 
Tversky, 1979): the points at which utility shifted from convex to concave closely followed what 690 
could be considered plausible expectations in the task.  691 

Taking the position of S-shaped utilities as a proxy for the animal’s expectations, our findings sug-692 
gest that the monkeys partially adapted their preferences to account for new reward distribution in a 693 
task. While they readily adapted to novel rewards, they did not readily ignore (or forget) reward in-694 
formation that was no longer relevant to the task. Rather than relying solely on the current instal-695 
ment of the task to build their expectation, the monkeys appeared to also consider the distribution of 696 
past rewards – particularly the extremes in a distribution - in shaping their preferences (i. e. their 697 
utility curve). This led to partial, not full, adaptation.  698 

Monkeys A and B, for example, reliably shifted their reference point when possible rewards went 699 
from lower to higher magnitudes. When looking at the utility function that best represented their 700 
preferences, the animals’ utilities appeared to scale instantly to represent the now broader realm of 701 
possible rewards. Conversely, when possible rewards were restricted to high magnitudes only (i.e. 702 
high-distribution), the animals did not adjust their preferences in a way that accounted for the una-703 
vailability of lower magnitudes – even after many days. Where they had previously been flexible in 704 
rescaling preferences, the animals’ preferences in the high distribution (where low rewards were 705 
never delivered) stubbornly reflected the higher-half of full-distribution utilities. And while the shift 706 
from low to high distribution seemed to induce partial, almost full adaptation – the shift from full to 707 
high distribution reflected a move along a fixed, absolute utility instead. The data from Monkey C, 708 
where different reward distributions were tested 54 weeks apart, corroborated this expectation-709 
based interpretation by providing a window on the adaption of utilities after a year. While Monkeys 710 
A and B experienced every distribution in the span of just a couple of months, the effects of past 711 
high rewards on Monkey C would have been minimal. In that respect, it came as no surprise that 712 
Monkey C’s lower distribution utilities took the form of fully rescaled full-distribution ones. A sim-713 
ilar effect was seen in previous estimations with Monkey A’s utilities (Genest et al., 2016). 714 

The idea that preferences adapt to fit a given distribution is neither new nor unfounded (Brunswik, 715 
1956; Gigerenzer et al., 1991; Glöckner et al., 2014; Weber & Johnson, 2008). Indeed, while pro-716 
spect theory rests on reference-dependence, several newer models mimic RDU in that they claim 717 
that the values with which we imbue our options rely on the other options we have at our disposal 718 
(Hunter & Gershman, 2018; Loomes & Sugden, 2006; Parducci, 2012; Steward et al., 2003; Yaari, 719 
2006). Likewise, it has long been known in psychology and neuroscience that distribution-adapta-720 
tion is an inherent feature of the brain (Louie & De Martino, 2013). In sensory systems, for exam-721 
ple, neuron’s maximize their efficiency by tuning their firing rates to match the distribution of sen-722 
sory signals (Carandini & Heeger, 2012; Laughlin, 1981) – the same is thought to occur, to varying 723 
degrees, in the brain areas that encode value (Burke et al., 2016; Kobayashi et al., 2010; Louie et 724 
al., 2015; Padoa-Schioppa, 2009; Tobler et al., 2005; Tremblay & Schultz, 1999). Specifically, and 725 
supporting the idea of distribution-dependent utility, neurons in the primate prefrontal cortex have 726 
recently been recorded adapting their firing rate to different reward distributions in a way similar to 727 
our animals’ utility curves. In a study by Conen and Padoa-Schioppa (2019), rhesus macaques only 728 
partially rescaled the value of juice rewards relative to the other possibilities in a given block of 729 
choices. When recording from neurons in monkey orbitofrontal cortex, the researchers found that 730 
the neural code mimicked behavioural measurements in that it partially adapted to match the spe-731 
cific reward distributions of different blocks within the broader context of all past rewards. Cru-732 
cially, two processes seemed to drive this adaptation: the first, a slow and adaptive learning process 733 
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about the outcomes one can expect (e.g., reinforcement learning (Bavard et al., 2018; Rudebeck & 734 
Murray, 2014; Wilson et al., 2014), which involves the orbitofrontal cortex and its interaction with 735 
the dopaminergic system (for review, see Soltani & Izquierdo, 2019) and might explain the role of 736 
experience in shaping current preferences. The second process involves a rapid weighing of rewards 737 
relative the decision-maker's present context (e.g., the canonical process of divisive normalization, 738 
whereby neurons tune their firing rates to match the distribution of available stimuli; Louie et al., 739 
2013; Hiroshi Yamada, Louie, Tymula, & Glimcher, 2018; Zimmermann et al., 2018).  740 

Partial adaptation is likely to underlie the brain’s ability to maximize ‘local’ decisions, all while 741 
placing these decisions in a much broader context (i.e. relative past experiences; Conen & Padoa-742 
Schioppa, 2019; Fairhall, Lewen, Bialek, & De Ruyter van Steveninck, 2001; Rustichini, Conen, 743 
Cai, & Padoa-Schioppa, 2017). When comparing similarly-priced wines, for example, we manage 744 
to select our favourite from relatively narrow distributions (similar prices) while still placing our 745 
selection relative to a much broader price distribution (our past experiences with wines). It has re-746 
cently been suggested that this ability to flexibly optimize ‘local’ decisions while keeping track of 747 
past outcomes underlies the formation of cause-and-effect relationships in our thinking (Bavard et 748 
al., 2018). If this is the case, then the changes observed in our animals’ utility functions point to the 749 
animals building complex expectations, or an internal model, about the rewards they could get in 750 
the task at hand.  751 

Overall, and in line with the current view from neuroeconomics, this study showed that the prefer-752 
ences of macaque monkeys’ scale in a way that reflects both inherent properties (and indeed limita-753 
tions) of the brain and the statistics of the task at hand. Put most poetically by the economists Her-754 
bert Simon, our animals’ decision appeared “… shaped by scissors whose two blades are the struc-755 
ture of the task environments and the computational capabilities of the actor” (Simon, 1990, p.7). 756 
Perhaps it is long time we consider this in the models used to study choice. 757 

 758 
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 904 

 905 

            906 

Figure 1. Experimental design and timescale. 907 

a) Binary choice task. The animals chose one of two gambles with a left-right motion joystick. They 908 
received the blackcurrant juice reward associated with the chosen stimuli after each trial: the re-909 
ward’s magnitude and probability of delivery were signalled by the vertical position and width of a 910 
horizontal line as set between two vertical ones. Times, in seconds, indicate the duration of each of 911 
the task’s main events.  912 

b) Experimental reward distributions. Choices were made in one of three experimental reward dis-913 
tributions. In the low distribution, choice options had juice magnitudes set between 0 ml and 0.5 ml 914 
during preference elicitation sequences. The high distribution involved juice magnitudes set be-915 
tween 0.5 ml and 1.0 ml during preference elicitation sequences (unique to Monkey A and B). The 916 
full distribution was set between 0 ml and 1.0 ml for Monkeys A and B and set between 0.1 ml and 917 
1.3 ml for Monkey C.  918 

c) Monkeys' experienced specific reward distributions for consecutive days. Vertical lines represent 919 
the daily experimental session, in their tested order; the height of these lines signals the reward dis-920 
tribution tested (blue, low distribution; yellow, full distribution; green high distribution). Black dots 921 
indicate the mean magnitude of all rewards experienced on the day, the white dots represent the 922 
standard deviation on the mean.  923 

  924 

.CC-BY-NC 4.0 International license(which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprintthis version posted May 25, 2020. . https://doi.org/10.1101/2020.05.22.110213doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.22.110213
http://creativecommons.org/licenses/by-nc/4.0/


                 925 

                           926 

Figure 2. Estimating certainty equivalents and utility functions.  927 

a) Basic choice behaviour and estimation of certainty equivalents. Animals chose between a safe 928 
reward and a gamble on each trial. The safe rewards alternated pseudorandom on every trial – never 929 
going above or below the highest and lowest magnitudes tested in the daily reward distribution. 930 
Each point is a measure of choice ratio: the animal’s probability of choosing the gamble option over 931 
various safe rewards. We fit psychometric softmax functions (Eq. 1) to these choice ratios, sepa-932 
rately for each day, and recorded the certainty equivalent (CE) of individual gambles as the safe 933 
magnitude for which the probability of either choice would be 0.5 (black arrow). The dashed verti-934 
cal line indicates the expected value (EV) of the gamble represented in the box.  935 

b) Estimation of utility using the stepwise, fractile method. In step 1, the animals were presented 936 
with an equivariant gamble comprised of the maximum and minimum magnitudes in the tested re-937 
ward distribution. the CE of the gamble was estimated and assigned a utility of 50%. In step 2, two 938 
new equivariant gambles were defined from the CE elicited in step 1. The CEs of these gambles 939 
were elicited and assigned a utility of 25% and 75%. Two more gambles are defined in step 3, from 940 
the CEs elicited in step 2. Their CEs were then assigned a utility of 12.5% and 87.5%. Parametric 941 
utility functions, anchored at 0 and 1, were fitted on these utility estimates (see methods).  942 

c) Equivariant, equiprobable gambles presented in out-of-sample validation sequences. Sets of four 943 
gambles, unique to each reward distribution, were used to validate the risk attitudes predicted by the 944 
fractile-derived utilities. The CEs of these gambles were measured (see panel a) and the difference 945 
between CEs and the specific gambles’ EVs signalled the animals’ risk attitudes: if the difference 946 
was positive, the animals were risk seeking, if the difference was negative, the animals were risk 947 
averse. 948 
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 950 

              951 

Figure 3. Utility functions elicited from daily fractile procedures. Order of distributions tested is 952 
captured vertically. Black dots represent CE-utility pairings elicited in individual experimental ses-953 
sions using the fractile method; coloured lines are parametric fits (𝑼𝟐)𝑷𝒓𝒆𝒍𝒆𝒄) to daily CE estimates 954 
(blue, low narrow distribution; yellow, full distribution; green, high narrow-distribution. Utility fits 955 
for Monkey A, from top to bottom, represent 20 days, 26 days, and 15 days. For Monkey B, we 956 
have 23 days, 7 days, and 13 days. Finally, Monkey C has a total of 13 days for the top panel, and 957 
43 days for the lower one. In all cases, convexity of the functional fit signals risk seeking behaviour, 958 
concavity signals risk aversion.  959 
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 960 

                            961 

Figure 4. Model comparisons within and across fitting procedures.  962 

a) Model selection for fractile-derived utilities. We calculated daily Bayesian information Criterions 963 
for each utility function using the orthogonal residuals on each fit (BICRSS). Lower BICRSS scores in-964 
dicated a better fit to the CE-utility pairings, and the 2-parameter Prelec model that was used 965 
throughout this study appears in blue (U2-Prelec).  966 

b) Model selection for discrete choice utilities. We again calculated daily BIC scores for each utility 967 
function, this time using the log-likelihoods estimated to fit each discrete choice models (BICLL). 968 
Lower BICLL scores indicated better fits between the discrete choice model (DCM) predictions and 969 
individual measured choices pairings. Again, the 2-parameter Prelec model that was used through-970 
out this study appears in blue (U2-Prelec), and, in contrast to the fractile-fits, we also compared the var-971 
ious DCMs to predictions based on expected value (seeing if noise alone could explain choices).  972 

c) Curvature ratios (CRs) from each fitting procedure correlate. We calculated CRs as the area un-973 
der the curve of each utility function. Each point represents the CRs from fractile-derived utilities 974 
(x-axis) and DCM-derived utilities (y-axis); their colour captures the reward distribution from 975 
which they estimated (blue: low-distribution, green: high-distribution; yellow: full-distribution). 976 
Significant positive correlations between the fractile-derived CRs and DCM-derived CRs were 977 
found in each of the three animals, and we only observed clear differences between the two proce-978 
dures in Monkey B.  979 
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 980 

               981 

Figure 5. Schematic representation of full-, partial-, and non-adapting utilities estimated in 982 
low- and full-distributions of rewards.  983 

a) Scaled, identical utility functions in different reward distributions: the utility value of a 0.5 ml 984 
reward in the small distribution (blue curve, 100% utility) is scaled to the utility value of 0.5 ml re-985 
ward in the large distribution (yellow curve). From left to right, utilities reshape assuming full-, par-986 
tial-, and no adaptation. The three possibilities differ mostly in terms of the risk-attitudes exhibited 987 
for rewards between 0 ml and 0.5 ml – under full adaptation they should differ, under no adaptation 988 
they should not.  989 

b) Utilities normalised according to the reward distribution from which they were estimated. Utili-990 
ties are set on the same scale by normalizing across the domains of each function. Curves should 991 
overlap if utilities adapt fully (left) and fail to do so if there is no adaptation (right). If functions fail 992 
to adapt the low distribution utility is predicted to be identical to the first half of the full distribution 993 
utility curve.  994 

c) Predicting the direction of risk attitudes (r.a.) from utilities. For an equiprobable gamble made up 995 
of the two outcomes that fall at the edges of each grey shaded area, the horizontal black line depicts 996 
the expected value (EV) and the black dot above or below signals the direction in which we expect 997 
the certainty equivalent (CE). A black dot above the horizontal line signals risk seeking behaviour 998 
(or positive r.a.) and a CE of higher value than the EV, and a dot below the line signals risk averse 999 
behaviour (negative r.a.). From left to right we again have predictions of r.a. given full-, partial-, or 1000 
non-adaptive preferences.   1001 
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 1002 

        1003 

Figure 6. Fractile-derived utilities reflect adaption to different reward distributions.  1004 

a) Scaled utilities estimated from fractile-derived CE-utility pairings. Each curve represents the 1005 
median of daily, distribution-specific parameter estimates; 95% Confidence intervals were 1006 
estimated via boostrapping said parameters (random sampling with replacement, n=10000). Dotted 1007 
blue lines represent predictions full-distribution utilities predicted to fully-adapt to low-1008 
distributions. The dotted green lines represent similar full-adaptation predictions in the high 1009 
distribution. Bar graphs represent the median inflection point, i.e., the reward magntiude at which 1010 
the curve goes from convex to concave – points are daily inflection points. Upper asterisks (*) 1011 
indicate differences between daily inflection estimates in two sequential distributions (Wilcoxon 1012 
rank sum test, p < 0.05); Lower asterisks (*) indicate significant difference between the median 1013 
predicted inflection from the previous tested distribution and the true inflection estimates of the next 1014 
distribution (Wilcoxon rank sum, p < 0.05).  1015 

b) Normalized utilities estimated from fractile-derived CE-utility pairings. Each curve is the median 1016 
of daily, distribution-specific parameter estimates normalized according to the minimum and 1017 
maximum rewards in the tested distribution. Again, 95% confidence intervals were estimated via 1018 
boostrapping. Points represent mean normalized certainty equivalents ± SEMs for each of the 1019 
tested distribution. Bar graphs representmedian curvature ratios (CRs) for each distribution; the 1020 
relative concavity of each utility (concave > 0.5; convex < 0.5) – individual points are daily CRs. 1021 
Upper asterisks (*) indicate significant differences between CRs estimated in sequential 1022 
distributions (Wilcoxon rank sum, p < 0.05). For each panel, blue comes from low-distribution 1023 
utilities, yellow from full-distribution, and green from high-distribution. 1024 
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 1026 

       1027 

Figure 7. Discrete choice utilities reflect partial adaption to reward distributions. 1028 

a) Scaled utilities estimated from discrete choice models (DCM). Each curve represents the median 1029 
of daily, distribution-specific parameter estimates; 95% Confidence intervals were estimated via 1030 
boostrapping said parameters (random sampling with replacement, n=10000). Dotted blue lines 1031 
represent predictions full-distribution utilities predicted to fully-adapt to low-distributions. The 1032 
dotted green lines represent similar full-adaptation predictions in the high distribution. Bar graphs 1033 
represent the median inflection point, i.e., the reward magntiude at which the curve goes from 1034 
convex to concave – points are daily inflection points. Upper asterisks (*) indicate differences 1035 
between daily inflection estimates in two sequential distributions (Wilcoxon rank sum test); Lower 1036 
asterisks (*) indicate significant difference between the median predicted inflection from the 1037 
previous tested distribution and the true inflection estimates of the next distribution (Wilcoxon rank 1038 
sum). 1039 

b) Normalized utilities estimated from DCMs. Each curve is the median of daily, distribution-1040 
specific parameter estimates normalized according to the minimum and maximum rewards in the 1041 
tested distribution. Again, 95% confidence intervals were estimated via boostrapping (random 1042 
sampling with replacement, n=10000). Points represent mean normalized certainty equivalents ± 1043 
SEMs for each of the tested distribution. Bar graphs represent median curvature ratios (CRs) for 1044 
each distribution; the relative concavity of each utility (concave > 0.5; convex < 0.5) – individual 1045 
points are daily CRs. Upper asterisks (*) indicate significant differences between CRs estimated in 1046 
sequential distributions (Wilcoxon rank sum). For each panel, blue comes from low-distribution 1047 
utilities, yellow from full-distribution, and green from high-distribution. 1048 
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                              1051 

Figure 8. Discrete choice utilities better predict out-of-sample risk attitudes.  1052 

a) Differences between the certainty equivalent (CEs) and expected value (EV) of out-of-sample, 1053 
equivariant gambles reflects the risk attitudes predicted by utilities. Each point represents a CE – 1054 
EV measure from individual CE estimates. For CE-EV measures above 0 reflect risk seeking be-1055 
haviour, points below 0 reflect risk averse behaviour. The transition from risk seeking to risk averse 1056 
behaviour should correlate with the inflection points predicted from utility functions: full lines rep-1057 
resent the median inflection as predicted from daily fractile-derived utilities; dotted lines represent 1058 
the median inflection from DCM-derived utilities.  1059 

b) Discrete choice (DCM) derived inflections (better) predict risk attitudes as measured in out-of-1060 
sample gambles. CE – EV metrics positioned as a function of a gamble’s EV position relative the 1061 
median fractile-derived inflection for each distribution. The x-axis captures the relative difference 1062 
between the distribution’s inflection point (in ml) and a gamble’s EV (in ml). Dotted lines represent 1063 
linear regression lines across all CE – EV measurements (Monkey A: p=1.77 x 10-35; Monkey B: 1064 
p=1.90 x 10-31). 1065 

c) Fractile-derived inflections predict risk attitudes as measured in out-of-sample gambles. CE – EV 1066 
metrics positioned as a function of a gamble’s EV position relative the median fractile-derived in-1067 
flection of each distribution. The x-axis captures the relative difference between the distribution’s 1068 
inflection point (in ml) and a gamble’s EV (in ml). Dotted lines represent linear regression lines 1069 
across all CE – EV measurements (Monkey A: p=5.43 x 10-35; Monkey B: p=1.43 x 10-29). 1070 
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                    1073 

Figure 9. Daily inflections in utilities reflect recently experienced reward distributions. Each 1074 
experimental session is represented by a set of horizontal black lines; the first derivatives of fitted 1075 
utilities appear as the coloured ‘violin plots’ on the horizontal lines. Black vertical lines indicate the 1076 
true mean of the rewards experienced by the animals on individual days – smaller black lines indi-1077 
cate the STD on these means. Grey ‘violin plots’ reflect the expected distributions of rewards that 1078 
the animals ‘learned’ over past experimental sessions, based on reinforcement learning predictions 1079 
(Eqs. 13; 14). They are the distributions that best fit utilities, as allowed by a Rescorla-Wagner 1080 
learning rule. Of note, the grey normal distributions are not restricted by reward distributions in the 1081 
way that utilities are. 1082 
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