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Our ability to evaluate an experience retrospectively is important because it allows us to summarize its total value, and this
summary value can then later be used as a guide in deciding whether the experience merits repeating, or whether instead it
should rather be avoided. However, when an experience unfolds over time, humans tend to assign disproportionate weight to
the later part of the experience, and this can lead to poor choice in repeating, or avoiding experience. Using model-based
computational analyses of fMRI recordings in 27 male volunteers, we show that the human brain encodes the summary value
of an extended sequence of outcomes in two distinct reward representations. We find that the overall experienced value is
encoded accurately in the amygdala, but its merit is excessively marked down by disincentive anterior insula activity if the
sequence of experienced outcomes declines temporarily. Moreover, the statistical strength of this neural code can separate ef-
ficient decision-makers from suboptimal decision-makers. Optimal decision-makers encode overall value more strongly, and
suboptimal decision-makers encode the disincentive markdown (DM) more strongly. The separate neural implementation of
the two distinct reward representations confirms that suboptimal choice for temporally extended outcomes can be the result
of robust neural representation of a displeasing aspect of the experience such as temporary decline.
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Significance Statement

One of the numerous foibles that prompt us to make poor decisions is known as the “Banker’s fallacy,” the tendency to focus
on short-term growth at the expense of long-term value. This effect leads to unwarranted preference for happy endings. Here,
we show that the anterior insula in the human brain marks down the overall value of an experience as it unfolds over time if
the experience entails a sequence of predominantly negative temporal contrasts. By contrast, the amygdala encodes overall
value accurately. These results provide neural indices for the dichotomy of decision utility and experienced utility popularized
as Thinking fast and slow by Daniel Kahneman.

Introduction
When considering whether to revisit a previous holiday destina-
tion, economic theory holds that you compare it with other pre-
vious holidays and choose the destination that offered the best
holiday in the past (Von Neumann and Morgenstern, 1947).

However, summarizing the overall value of an experience
that unfolds over time is not trivial. Behavioral economics
and social psychology studies have indicated that our
impression of overall value is often dominated by the out-
come in the final moments for both positive and negative
experiences (Fredrickson and Kahneman, 1993; Redelmeier
and Kahneman, 1996; Baumgartner et al., 1997; Ariely,
1998; Fredrickson, 2000; Schreiber and Kahneman, 2000;
Do et al., 2008). A holiday with steadily improving weather
may be experienced as more pleasant than one with declin-
ing weather, and you may therefore end up preferring the
shorter holiday simply because of the distribution of sunny
days. This effect presents a problem, not only for holidaymakers
but also for everyone else deciding whether a particular previous
experience of any sort merits repeating. While it is well known
that people generally prefer increasing outcomes (Vestergaard
and Schultz, 2015) and that perceived reward trends can be used
to guide foraging decisions (Wittmann et al., 2016), no previous
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study has examined how the human brain summarizes sequences
of experienced rewards.

Inaccurate summary valuation leads to suboptimal choice for
temporally extended outcomes. Poor decision-making is some-
times explained in terms of conflicting intuitions around inter-
temporal choice (Frederick and Loewenstein, 2008), suboptimal
risk aversion (Kuhnen and Knutson, 2005), or competing con-
cerns between short and long-term future goals (Hare et al.,
2009). However, it remains unexplored how these ideas possibly
relate to retrospective valuations. In a previous study, we have
shown that the value experienced while an outcome is received is
not the same as the incentive value later manifested in choices to
consume the outcome again (Vestergaard and Schultz, 2015).
The central idea is that experienced and incentive values embed
independent impressions of an outcome’s hedonic impact, such
as its duration and temporal profile (Kahneman, 2003). Thus, in
the example above, the impression of an outcome’s temporal
decline should be ignored when summarizing experienced value,
and if it cannot be ignored, then it must be encoded in the brain.
Hence, we sought to characterize how brain activity acts to regu-
late the distinct value signals for experienced outcomes and how
these mechanisms can lead to suboptimal choice. Studies of the
neurobiology of different value signals have often focused on the
prefrontal cortex (PFC) and its subdivisions (Hare et al., 2008,
2009; Kuo et al., 2009; Donoso et al., 2014; Rich and Wallis,
2014), and since there are no strong predictions regarding the
neurobiology of retrospective summary evaluations, we focus
broadly on the PFC and limbic system. The ventral striatum
(VStr) receives inputs from amygdala, PFC and insular cortex
that share prominent roles in reward systems (Robbins and
Everitt, 1996; Paton et al., 2006; Morrison and Salzman, 2010;
Haber, 2011). We therefore hypothesize that activity in these
brain structures assigns preferential significance to the summary
value for outcomes that get better over time. We investigated the
neurobiology underlying summary valuation of experienced out-
come, and we examined how these processes differ with optimal-
ity of decision-making.

Materials and Methods
Subjects
Twenty-eight healthy male volunteers participated in the experiments.
Male participants were used to minimize effects of cyclic modulation in
risk attitude (Lazzaro et al., 2016). They were 21–36 years old (average
25.9, SD 3.7), with no history of neurologic or psychiatric disease, closed
head injury, no self-reported substance abuse or use of psychoactive medi-
cation, and with normal or corrected-to-normal vision. One subject was
excluded from the analyses because of excessive movement during scan-
ning (.20 mm). The participants were recruited to take part in a gambling
experiment and they were naive to the main purpose of the study. All par-
ticipants provided written, informed consent. They were paid a fixed fee to
participate (£5/h for the behavioral preexperiment and £10/h for the neu-
roimaging experiment) plus a variable amount of prize money (£5–15)
according to task performance in each experiment (see Reinforcement
schedule).

Experimental rationale and protocol
The subjects attended 2 days of experimentation on a monetary valua-
tion and choice task. We used a monetary incentive because it is known
to engage the PFC and Striatum (O’Doherty et al., 2001; Elliott et al.,
2003; Knutson et al., 2005). On the first day of experimentation, the par-
ticipants received instructions about the tasks, performed the preexperi-
mental valuation task (see below) and practiced the main experimental
task (see below) in an IAC double-walled, sound-attenuated test booth.
The preexperimental valuation lasted approximately 15min in total.

Training on the main valuation task followed the protocol of experiment
2 in the previous study (Vestergaard and Schultz, 2015) and included all
control and experimental conditions. Training on the main experimental
task lasted approximately 2 h and was divided into 12-min blocks between
which the participants were given an optional break. No feedback on per-
formance in the main task was offered at this stage. Following successful
completion of preexperimental valuation and training, the participants
were booked into a scanning slot to take place no more than 7d later.
They then did the main experimental task in the scanner, this time divided
into two scan sessions lasting approximately 30min each. Between the
two scan sessions was an intermission, in which the participants remained
in the scanner and were allowed a pause to rest. After the scan sessions,
they received feedback on their performance, and they received total pay-
ment in cash. The protocol was approved by the Cambridge Research
Ethics Committee under reference number 04/Q108/190.

Stimuli
In the main experimental task, associations were formed between vis-
ual conditioned stimuli (CSs) and unconditioned stimuli (USs). The
CSs consisted of abstract figures composed by arranging randomly
squares and triangles of four different colors of equidistant hue, each
50 � 50 pixels. Thus, the CS was 200 � 200 pixels. The USs consisted
of sequences of gold coins presented at a stimulus onset asynchrony
of 350ms. Each coin was presented on a background with the same
average color as the coin so that scaling of the coin did not result in
variation in the average color spectrum of the stimuli. The coins var-
ied in simulated volume. The temporal profiles were composed by
scaling a sigmoid function to first generate a decreasing reference
profile Qn = F 1 (I� F)/[11exp(s(n�N/2))] with N [ {15:19} ele-
ments, steepness s = 2, initial scale I = 0.7, and final scale F= 0.3. The
experimental profiles were then composed by calculating obfuscated
magnitudes, mn = Qn 1 O where the obfuscation noise O [ N(0,s2)
was added to make less obvious the underlying temporal profile.
Increasing profiles were generated by inverting the decreasing
sequence along the temporal dimension and dominated alternatives
were generated by removing elements from the longer profile.
Following each sequence was a visual mask composed by scrambling
the image of the reference coin on background. The association
between CS and US was constant within one trial only (i.e., new CSs
and USs were used on every trial). In the preexperimental valuation,
single coins of varying size were presented for 350ms.

Preexperimental valuation
Wemeasured the relationship between the physical size and experienced
value of the virtual coins. The experienced value of a reward stimulus
scaled in size to the magnitudem is given by Stevens’ Power Law (Stevens,
1957): x=A ma, where A and a are individual parameters of the observer.
The objective value of a virtual coin is simulated volume (V = 100 m3),
and the value function relating a pot of coins of scalesm(t) to experienced
value is therefore x(t) = K Vk (t) where k = a/3, K = A/(100k). The coins
were presented to the subjects in a 3D projection to simulate variation in
volume (Fig. 1). A coin scaled in diameter by a factor m therefore differs
in simulated volume by m3 compared with an unscaled coin, and insofar
as the specific value of a precious coin is given in prize units per mass unit
(e.g., £/g), the objective value is proportional to volume. Thus, if experi-
enced value corresponded to objective value, there would be a linear rela-
tionship between simulated volume and subjective valuations (i.e., k = 1).
The experienced value of the virtual coins was determined by a Becker–
DeGroot–Marschak (BDM) valuation task, which was designed to secure
the participants an endowment of coins serving as gambling tokens in the
main experimental task (see below) and which measured the participants’
willingness to pay (WTP) for the coins.

The participants were given a 5£ budget, and they were instructed to
place bids on each of 120 coins according to how much they felt each
coin was worth. The coins varied in simulated volume from 1% to 100%
of a reference coin that was shown on the screen before the bidding
started. After the bidding round, a randomly chosen subset of the bids
were drawn to exchange the £5 budget to approximately 30 virtual coins
of varying size and value according to a second-prize auction (Vickrey,
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1961). This set of coins would become the
subject’s endowment in the main experiment
that followed. Before the bidding round, the
reference coin of nominal value 100 pence
(£1) was shown on the screen. A training
round of 20 coins preceded the actual bid-
ding round. Each coin was visible for 350ms
following a response window showing a black
screen with the text “Place a bid for the coin”
for up to 5 s (Fig. 1A).

After the bidding round the participants
watched a computer animation of the BDM
auction, in which one coin at a time was
drawn from the total pool and the associated
bids placed by the participant were shown
against the computer’s bids. For each coin
drawn in this way, the computer placed a
random bid drawn from a rectangular distri-
bution without taking into account the
specification of the coin at stake or the partici-
pant’s bid. If the computer’s bid was higher,
the coin at stake was discarded and a new
coin was drawn from the pool of bids without
replacement. If the participant’s bid was
higher, they would buy the coin and they
would pay the amount bid by the computer.
This amount was then taken from their
budget, and this procedure would continue
until the budget was spent. In this way approx-
imately 30 bids were realized to ensure the par-
ticipants an initial endowment of virtual coins.
This endowment had an expected value of £10
because the coins were obtained in a second-
prize auction (Vickrey, 1961) consistent with
the BDMmethod (Becker et al., 1964).

Main experimental task
In the main experiment, we used a monetary
venture with explicit choice (Vestergaard and
Schultz, 2015). On each trial, the participants
were offered the choice of one of two compet-
ing options indicated by two CSs. They were
instructed to first inspect one of the options
shown by a white arrow. Then followed a
sequence of coins of varying sizes (Fig. 2A).
Then they would inspect the alternative option.
After inspection of each pair of options, the
two CSs were shown again and the participants
indicated which sequence of coins they pre-
ferred in a free choice and in two imperative
choices presented in random order (Fig. 1C).
The free choice served to record their revealed
preference whereas the imperative choices
allowed us to analyze Pavlovian associations
relating to both options. It was explained to
the participants to approach the task in the fol-
lowing way: “two pots of money are on offer;
first you must inspect the contents of each pot
and then choose one or the other.” Each pair
of options consisted of a sequence of gold coins
and a subset from that sequence presented ei-
ther decreasing or increasing. On each trial a
decreasing sequence was in competition with
an increasing sequence and either could be
long while the other was short. Thus, the
options differed quantitatively by the value of
the coins omitted from the longer sequence to produce the dominated alter-
native and qualitatively in the order in which the coins were presented.
Between trials, the long sequences varied in length between 15 and 19 coins,

and to each long sequence, a weakly dominated alternative was created by
removing between zero and four coins creating short sequences of 11–15
coins. Thus, the weakly dominating option was always at least as good as
the alternative (Nurmi, 2006).

Figure 1. Preexperimental valuation and decision phase of the main experiment. A, The experienced value of the virtual
coins was obtained by measuring the participants’ WTP in a BDM auction. B, Individual BDM bids (gray dots), mean value func-
tion (black line), 95% confidence interval (green area), and distribution of estimated value function exponents, k (inset). C,
Imperative and free choice screens in the main experiment.

Figure 2. Inspection task and behavioral results. A, Two alternative coin streams are inspected sequentially. B, The Banker’s fallacy is
the tendency to prefer the growing option. Since the expected value is the same for growing and declining options, preference for growth
leads to diminished profit. Individual mean data (gray dots). C, Prevalence of violation of dominance (VoD) and its relation to the time con-
stant of the leaky integrator (left); observed and predicted VoD (%) for optimal (t . 25 s, gray) and suboptimal (t , 25 s, red) deci-
sion-makers (middle). The bars show VoD including softmax errors; the unfilled part shows cases in which the model predicts VoD
because of leaky integration. Correlation between predicted and observed VoD for optimal and suboptimal choosers (right).
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Two control conditions were used during the preexperimental train-
ing: (1) a decreasing versus an increasing sequence with the same num-
ber of coins (11–19 coins) and (2) a short (11–15 coins) flat sequence
versus a longer (15–19 coins) flat sequence (s=0). The data from the
control conditions were included in the model fitting of the parameters,
t and B in the decision model below. As previously, we observed strong
preference for the longer and for the increasing univariate control
sequences: for the control sequences of same duration the average pref-
erence (6SEM) for the increasing rewards was 0.63 (60.04), and for the
flat sequences, the average preference for the longer reward was 0.81
(60.03). The duration of the inspection epochs varied from 3.85 s (11
coins) to 6.65 s (19 coins).

To obtain insight into the participants’ final understanding of the
structure of the task, we interviewed them after they had received final
payment at the end of the experiments and asked how they had
approached the task. Most participants reported a tendency to rely on a
strategy whereby coins were classified in two or three bins (e.g., small/
medium/large) where the number of large coins became the main deter-
minant of choice. Some participants also reported that sometimes the
large coins seemed to come early and other times later, and they were
mindful not to let that affect their judgment. No participant reported
relying entirely on duration, option order or screen position.

Reinforcement schedule
The total value of a pot of money was the sum of the experienced values
of each coin in the coin stream. One of the streams comprised coins
taken from the participant’s endowment while the other was on offer
from the bank. The preferred pot of money would go back into the
endowment but the coin stream was not shown again. In this way, the
value of the endowment could either increase or decrease by the differ-
ence in total value between the two options, or the participants could
break even depending on their choice and the respective funding sources
for the two options, which they did not know of. At the end of the
experiment, payment was calculated by realizing four randomly chosen
trials. The value of the initial endowment was then adjusted according to
the participants’ performance in the four randomly chosen trials, and
payment was made on the basis of the adjusted value of the endowment
at the end of the experiment. In the main experimental task described
above, the participants all experienced the same amount of identical
coins, but their goal and incentive values were calculated according to
individual parameters as detailed in the decision model below.

Decision model
Value signals
Two prominent value signals that may guide decision-making are goal value
(GV) and decision value. While GV represents the benefit of an outcome in
relation to motivational state, decision value relates this benefit to the cost
or effort involved in acquiring it (Hare et al., 2008). In our study, the sum of
the experienced values in a coin stream is the GV (Eq. 1), but there is no cost
or effort associated with acquiring a coin stream. Instead there is a disincen-
tive manifested in people’s distaste for declining sequences. Below we define
the incentive value (IV) (Eq. 3) as the value revealed by participants to have
motivated their choices, and the disincentive markdown (DM; Eq. 4) as the
penalty imposed by participants on a coin streamwhen they reveal their pref-
erence. The decision model is identical to the one derived in a previous study
(Vestergaard and Schultz, 2015). Thus, the total GV of a coin stream is:

GV¼
ð
xðtÞdt: (1)

The IV of a stream of gold coins is continuously tracked in relation
to historical incentive. The rate of change in IV, dy/dt is the experienced
value x(t) marked down in relation to previously accumulated incentive:

dy=dt¼ xðtÞ � wyðtÞ; (2)

where w is the immediacy of the markdown on the experienced values.
Thus, the total IV of a coin stream of duration T is obtained by leaky
integration of the experienced values:

IV¼
ðT

xðtÞ ewðt�TÞdt; (3)

where t = 1/w is the decay constant of a leaky integrator. In other words,
the salience function (Tsetsos et al., 2012) of the sequence is an exponen-
tial filter. GV and IV differ by the total DM:

DM¼GV � IV; (4)

which represents the quantification of a penalty imposed on a coin
sequence depending on its temporal configuration. The effect can also
be regarded as a contrast effect, and Equation 3 may therefore be called
contrast-guided retrospective valuation. Preference P for one of two
competing options (a, b) is given by logistic discrimination:

log
P

1� P

� �
¼ Bðe 1 b Þ; (5)

where e =�log(IVb/IVa) is the incentive evidence in favor of option a, B
is the inverse temperature of the decision process, and b is its bias. In
discrete notation, IV can also be expressed in its recursive form:

yn ¼ð1� aÞyn�1 1 xn; (6)

where a= 1�exp (�w) as illustrated in Figure 3A.
The leaky integrator has been used as generative model for many dif-

ferent phenomena in a wide range of disciplines within engineering, psy-
chology, and physiology (Hodgkin and Huxley, 1952). It imposes a
greater markdown on long sequences than on short sequences, so for
shorter sequences to become preferable their early elements must be
small.

In a previous study, we considered many alternative models allowing
for bias for increasing options and option order, as well as combinations
of biases with or without leaky integration as described above, and we
discussed biological aspects of their implementation in humans and
other animals (Vestergaard and Schultz, 2015). The result of model com-
parison in the previous study was that bias-free leaky integration was the
most likely mechanism to describe suboptimal preference for temporally
extended outcomes. Specifically, there was no effect of option order indi-
cating any systematic memory effect. Consequently, in the current imple-
mentation b = 0. A functional interpretation of these equations is that the
markdown (DM) describes the varying disincentive effect of the temporal
configuration of an extended outcome. A long sequence will incur a
greater absolute markdown than a short sequence, and an increasing
sequence will incur a smaller markdown than a flat sequence that again
will incur a smaller markdown than a decreasing sequence. It is this differ-
ential markdown that can explain preference for a shorter increasing
sequence over a longer decreasing sequence. Thus, neither the behavioral
results nor the decision model distinguishes whether the differential mark-
down reflects a subjective aversion to decline or a craving for growth.

Compared with bias models or models that involve a different gener-
ative mechanism for increasing and decreasing sequences, our model
(Eq. 2) operates on any sequence, and it is not necessary for the deci-
sion-maker to keep track of whether a sequence is increasing or declin-
ing. This parsimony supports our model’s plausibility over more
complicated mechanisms. Thus, contrast-guided retrospective valuation
as described above remains a biologically plausible mechanism for con-
structing summary valuation of temporally extended outcomes. Using
this model, individual performance in the task is chiefly characterized by
two parameters: k that determines how compressive is the individual
value function, and t that characterizes how leaky is the integration of
experienced value. The lower is the value of t , the more are the early
instances of a temporally extended outcome marked down, and thus the
higher is the risk of committing to the choice of a dominated option. We
can therefore regard t as a marker across a continuum of optimality
with low values associated with a high degree of suboptimality. In this
report, we use the term suboptimal for choices that violate the domi-
nance axiom of economic theory (Barbera et al., 2004).
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We can score performance according to whether
observed choices optimize GV so that any choice that
does not optimize GV is regarded as an error.
Decision errors happen either because of decision
noise in cases where the values under consideration
are very similar (softmax errors) or as a result of the
leaky integration yielding evidence in favor of an in-
ferior option. Thus, the IV model can be used to
predict decision errors, and it can quantify the pro-
portion of decision errors that are simply softmax
errors (Eq. 5). Systematic decision errors, over and
above softmax errors, represent a violation of domi-
nance because the rejected options are at least as val-
uable as the preferred options. Equations 1–4 can
thus be used to characterize cases of violation of
dominance to understand what conditions lead to
suboptimal choices.

Individual value functions
To quantify the experienced value of the gambling
tokens, we fitted power value functions to the data
from the BDM auction (Fig. 1A). The WTP data
themselves are noisy (Fig. 1B) so the power function
is used to obtain a monotonous increasing non-sati-
ated value function. The individual value functions
were all concave within a wide range of exponents
(0.298 , k , 0.759, average 0.438, SD 0.109; Fig.
1B). Using these value functions, we calculated the
total GV of each pot of money inspected in the gam-
bling task (Fig. 2A). We then fitted the IV model to
the choice data. The GV model is simply the sum of
the experienced values for each coin. By contrast, the
IV model marks down the earlier coins in a sequence
leading to relative overvaluation of growing coin streams compared with
declining coin streams. The extent of this markdown is determined by
the time constant (t ) of the leaky integrator. Using the GV model, we
further calculated the gross profit obtained by each participant relative
to the maximum attainable. A disproportionate focus on growth is a
“Banker’s fallacy” when tolerance to experienced decline would result in
a higher profit (Fig. 2B). We characterized the severity of individual
behavior as the proportion of violation of dominance in the choice data.
We found a high correlation between violation of dominance and gross
profit (r2 = 0.96, p= 2.9� 10–19) and between Banker’s fallacy and viola-
tion of dominance (r2 = 0.38, p=0.0006). Moreover, between partici-
pants, the average loss incurred in dominated choices was positively
correlated with the degree of violation of dominance (r2 = 0.54,
p= 0.000011). In other words, those who strongly preferred growth
made more bad choices, and the average loss in their bad choice was
greater than in those who did not strongly prefer growth but still made
occasional bad choices.

As predicted, there was a systematic relationship between the decay
constant (t ) in the IV model and violation of dominance (r2 = 0.75,
p= 5.7� 10–9). In the more optimal decision-makers (t . 25 s), the
gross profit was close to 100% (Fig. 2B) as in these cases the incidence of
violation of dominance was low. In the more suboptimal decision-mak-
ers, there was large variation in decay (2.3 s, t , 25 s) and higher inci-
dence of violation of dominance (Fig. 2C, left). More optimal decision-
makers showed an average (6SEM) error rate of 0.11 (60.017), whereas
the more suboptimal showed an error rate of 0.27 (60.023). The IV
model predicted total error rates of 0.15 (60.012) in optimal and 0.31
(60.02) in suboptimal decision-makers of which 0.002 (60.002) and
0.16 (60.034), respectively, were predicted violations of dominance (Fig.
2C, middle). While the model slightly overpredicts error rates, the corre-
lation between observed and predicted error is high and no different
between the optimal and suboptimal (x 2 = 1.84, p=0.088; Fig. 2C,
right). These results support the notion that violation of dominance in
the optimal decision-makers is not a result of Banker’s fallacy but simply
perceptual errors in cases where the GV of the two options were very
similar.

The mechanism described above assumes that leaky integration is a
feature of sequence evaluation and that the power value function oper-
ates separately on the individual coins regardless of their position in a
sequence. To analyze whether perception of the size of individual coins
was nonetheless affected by past events, we combined the power value
function with the recursive form of IV (Eq. 6), yn � yn-1 = K Vn

k �
ayn�1, where the marginal incentive, yn � yn-1, in this case is taken as the
WTP for the individual coin of size Vn. We then refitted the K and k pa-
rameters of the power value function together with the recursive decay a
to the auction data. If perception of individual coin size is affected by the
historical sequence, this effect can be measured by the recursive decay
parameter, a, in exactly the same way as t measures the effect of leaky
integration, as illustrated in Figure 3A. The distribution of recursive
decay parameter estimates obtained in this way and a comparison
between K and k parameter estimates obtained with and without the re-
cursive value function are shown in Figure 3D–F. This analysis resulted
in negligible parameter estimates for the recursive decay �1.9� 10–3 ,
a, 1.5� 10–3, and convincingly reproduced the parameter estimates for
the power value function (K: r2 = 0.88, p=3.9� 10–13 and k : r2 = 0.95,
p=1.5� 10–17). These results show that when the participants observed
streams of coins in this way, there was no effect of past events. Thus, the
decay parameter cannot account for perception of the size of the single
coins, and it therefore seems unlikely that behavioral and neural effects of
t depend exclusively or critically on perceptual function.

MRI data acquisition and preprocessing
MRI data were acquired at the MRC Cognition and Brain Sciences Unit
(CBU) in Cambridge, UK, on a Siemens Trio Tim 3-Tesla scanner using
a 32-channel head coil. An MPRAGE sequence was used to acquire a
whole-brain T1-weighted structural image (TR=2.25 s, TE= 2.98ms,
flip angle 9°, 192 slices, 1� 1� 1 mm3, FOV 256� 256 mm2), and func-
tional data were acquired with an echoplanar imaging (EPI) sequence
(TR=2.03 s, TE= 30 ms, flip angle = 78°, 33 axial slices of matrix
64� 64, in-plane resolution 3 � 3 mm2, thickness 2 mm, gap 1 mm,
FOV 192 � 192 mm2). To optimize sensitivity in the orbital frontal cor-
tex (OFC), we used a tilted acquisition of 30° relative to the anterior–
posterior commissures line (Deichmann et al., 2003). T2*-weighted EPIs

Figure 3. Dissociation between IV, GV, and experienced value (x), and the potential effects of decay on IV and x.
A–C, GV and IV by leaky and non-leaky integration of experienced value (x). A, Schematic network of the recursive
formulation of IV in Equation 6. B, Two experienced options with equal contents, one stream follows a growing
trend (green) while the other declines (blue) over time. C, Cumulative GV (solid) and IV (dotted). Differential leak
leads to IV in favor of the increasing option. D–F, Effect of integrating decay in valuation of single coins. D,
Distribution of decay estimates (a). E, F, Relationship with non-leaky parameter estimates, k and K.

8942 • J. Neurosci., November 11, 2020 • 40(46):8938–8950 Vestergaard and Schultz · Retrospective Reward Valuation



were acquired over two sessions, resulting in up to 1070 volumes per ses-
sion depending on the duration of the self-paced experimental task.
Field maps (TR=400 ms, TE=5.19/7.65ms, flip angle 60°, 3 � 3 � 3
mm3, FOV 205� 205 mm2) were acquired in the pause between the two
EPI sessions.

Data were analyzed with SPM12 (Wellcome Department of Imaging
Neuroscience, London, UK; http://www.fil.ion.ucl.ac.uk/spm) using AA
4.2 (automatic analyses; Cusack et al., 2014). Preprocessing with a stan-
dard MRC-CBU recipe (Taylor et al., 2017) included image unwarp
using individual field-maps, realignment, slice-time correction, co-regis-
tration of functional images to the T1-weighted structural image, unified
segmentation (Ashburner and Friston, 2005), DARTEL normalization
(Ashburner, 2007) to the Montreal Neurologic Institute (MNI) template
and spatial smoothing using a Gaussian kernel, 8 mm wide at half maxi-
mum. The time-series from each scan session were high-pass filtered
(1/128Hz) and serial autocorrelations were estimated using an AR(1)
model.

fMRI general linear model (GLM)
We used a single GLM to analyze blood oxygenation level-dependent
(BOLD) activity measured during the inspection and choice phases
(Table 1). The GLM used a 2 � 2 � 2 factorial boxcar specification of
the inspection epochs. The factors were: option order (first/second), va-
lence (growth/decline), and choice (prefer/reject). Preference was
assigned to each inspection sequence based on the choice revealed in the
subsequent decision phase of each trial.

Delta events were used to indicate the end of the inspection epochs
(Fig. 2A) and to indicate the free and imperative choices of the decision
phase (Fig. 1C). The two imperative choices were encoded as “preferred”
and “rejected” based on the preference revealed in the free choice.

All regressors were included in the single GLM with parametric
modulators for the different types of values (see below) added to the
delta events. Motion parameters from the realignment preprocessing
step, response times and trial number were used as covariates of no in-
terest, and separate intercepts were estimated for each of the two scan-
ning sessions.

fMRI contrasts
The two inspection epochs differ qualitatively in that a relative valuation
of an option’s content was only possible during inspection of the second
option. We refer to this difference between the first and second inspec-
tion as “naive” or “comparative.” We use the direct contrast of the two
to first ascertain that the inspection task engages known reward circuitry
regardless of whether the inspected coin streams were increasing or
decreasing. To obtain an anatomically meaningful separation of the acti-
vation cluster we used the most conservative family-wise error (FWE)
correction at the voxel level (Extended Data Table 5-1). We then asked
whether the predefined VStr regions of interest (ROIs; see below) were
engaged in encoding preference during inspection, and whether any
region was preferentially engaged for growing sequences (Extended Data
Table 5-2) and whether any region encoded interaction between prefer-
ence and growth (Extended Data Table 6-1). These analyses were
intended to show the neural underpinnings of valuation during inspec-
tion and their specific involvement in encoding preference and option
valence.

We then analyzed the earliest point in time when the total summary
might be encoded. We have assumed that summary value can be con-
structed on the fly (Eq. 2); thus, the end of the cumulative process is the
earliest point for the total summary, and we report the encoding of the
comparative summary (Extended Data Table 7-1) and the parametric
modulation of GV and DM on the end of inspection (Extended Data
Table 7-2).

To analyze overt choice, divorced from any action leading to its exe-
cution, we used the contrast between the free choice (indicating prefer-
ence) and the imperative choice action for the preferred option.
Similarly, to analyze associative aspects of preference, regardless of
choice, we used the contrast between the imperative choice action for
the preferred option and the imperative choice action for the rejected
option (Extended Data Table 8-1). For the connectivity analyses detailed

below, we used the contrasts between the factorial levels of the inspection
to analyze the effect of choice and valence on neuronal co-activation
(Extended Data Tables 7-3, 7-4).

As mentioned above, all of the value regressors were included in the
single GLM, and the GLM contrasts for inspection and choice were per-
formed for these regressors (Table 1).

Connectivity
We report the results of two connectivity analyses using psychophysio-
logical interaction (PPI) during the inspection epochs. The central ques-
tion to investigate is which areas in the brain are the sources of the
differential markdown for increasing and declining sequences that can
lead to suboptimal choice. The PPI analyses thus use the full factorial
design of each inspection epoch assessing effects of the participants’ ulti-
mate qualitative judgment (prefer/reject) in relation to sequence valance
(growth/decline) and their interaction. The seed regions were anterior
insula and amygdala activation identified for the summary evaluation
(Extended Data Table 7-2). Eigenvariates (r=12 mm) were extracted and
the interaction between brain activation and the three design contrasts
(prefer/reject, growth/decline, prefer/reject*growth/decline; Extended
Data Tables 7-3, 7-4) on the whole brain was estimated using the PPI ma-
chinery implemented in SPM. We report random effects for the PPI anal-
yses on the whole brain. Moreover, we display effect size by re-estimating
PPI objects separately for each condition and extracting average slope esti-
mates in 12-mm spheres around the coordinates identified in the random
effects analyses for each PPI.

Statistical analyses
Parametric modulators
GV and IV both vary as a function of the duration of a coin sequence.
This collinearity means that GV and IV are correlated (mean hr2i =
0.83), and it would be difficult to interpret their differential leverage if
they were both used as parametric modulators to analyze the functional
MRI data. To address this problem, we characterized the neural aspect of
the IV model by the difference between GV and IV that is the DM
(DM = GV � IV). The main idea of this operation is to isolate the com-
mon variance because of the duration of a sequence in GV in order that
DMmay explain effects in the BOLD signal that do not depend on dura-
tion. Note that the shared variance stems from the effect of sequence du-
ration that is directly related to the total value. The shared variance
therefore has to be assigned to GV, because that way DM reflects only
the extent to which the sequence declines regardless of how long it is. As
mentioned above, the markdown can be thought of as the chooser’s dis-
like of certain temporal profiles, and this dislike is then imposed as pen-
alty on the incentive compatible GV. To remove residual correlation
between DM and GV, we included the Gramm–Schmidt orthogonaliza-
tion implemented natively in SPM. This configuration of the parametric
modulators does not alter the interpretation of effects of DM, and it
ensures that GV remains unadjusted for effects of duration. This
arrangement, which is the recommended use of orthogonalization
(Mumford et al., 2015), also goes along with a semantic interpretation of

Table 1. GLM events and regressors

Event Indicator Parametric modulator Design Types

Inspection Boxcar 2*2*2 First, second
(4–7 s) Up, down

Preferred, rejected
Summary Delta GV, goal value 2*2*2 First, second

DM, disincentive markdown Up, down
Preferred, rejected

Decision Delta dGV, goal value difference 3 Free choice
dDM, markdown difference Imperative (preferred)

Imperative (rejected)

In each trial, two options are inspected sequentially (first and second), one option is increasing (up) and the
other decreasing (down), and one is subsequently chosen (preferred) while the other is not (rejected). The
summary is defined as the end of the inspection epoch. In the decision phase, one choice is free, while two
are imperative encoded according to the free choice.
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the sort of preference pattern that we would like
to explain, namely, the “duration neglect”
(Fredrickson and Kahneman, 1993).

The orthogonalized markdown remains pos-
itively correlated with the (un-orthogonalized)
difference between GV and IV (mean hr2i =
0.38), and it is negatively correlated with IV
(mean hr2i = 0.17; Fig. 4). We regressed the
BOLD signal at the end-of-inspection events on
GV and DM calculated in each participant
(using individual estimates of k and t as
explained above) and for each inspected option.
After the second inspection, value signals relat-
ing to both options are available so in the deci-
sion phase, we regressed the BOLD signal on the
absolute differences in GV and DM between the
two competing options.

The variation in t and k between partici-
pants causes variation in the scale of the regres-
sors, and SPM only uses mean centering to
normalize parametric modulators. Although
scaling a regressor does not change its predictive
leverage at the first level of analysis, at the sec-
ond level, variation in slope estimates might
be confounded with variation in t and k that
would render between-subject analyses circular
unless the parametric modulator is normalized
at the first level. To address this issue, we z score
normalized the parametric modulators in the
first-level analyses.

Group analyses
To investigate variation in performance across participants, we classified
the participants as either mainly optimal or mainly suboptimal decision-
makers. As mentioned above, we use the term suboptimal for systematic
decision errors that violate the dominance axiom of economic theory
(Barbera et al., 2004). The IV model has the capacity to capture variance
in the choice data reflecting violation of dominance insofar as its basis is
disproportionate preference for increasing coin sequences. Therefore, we
calculated the maximum decay value that would result in a difference in
IV between increasing and decreasing coin streams of the same duration
of at least 5%. This cutoff was chosen arbitrarily and resulted in a cutoff
for t at 25 s. Therefore, we characterized the participants as either
mainly optimal decision-makers (t . 25 s,N= 10) or mainly suboptimal
decision-makers t , 25 s (N=17) based on individual decay time-con-
stant estimates in the IV model. Seven out of the 10 participants in the
optimal group identified in this way had an infinite decay value (t =1).
In the group analyses, we therefore included a binary covariate indicat-
ing the behavioral stratification (t ,. 25 s). This means that our main
results are controlled for variation in t , and slope estimates of the covari-
ate itself indicate the effects of optimality. Results obtained in this way
were robust to alternative group definitions, such as a median split or a
correlation in which participants with infinite decay values were given
an arbitrary high value, t = 50. To analyze the extent to which effects
identified in this way co-varied with t within the full range of estimated
values, we conducted the following analyses: First, we used a leave-one-
out method to estimate the peak coordinates in each participant by leav-
ing out his data in a group analysis. Then, we extracted the average slope
estimates in each participant in 12-mm spheres around the leave-one-
out coordinates and calculated the correlation between average effect
size and t , 1. These analyses were intended to expose the extent to
which interaction identified in the group analyses also more generally
represented varying degrees of optimality within the entire operational
range of the leaky integrator. The leave-one-out method for calculation
of effect sizes aimed to effectively avoid circular analyses via cross-valida-
tion of activation coordinates (Kriegeskorte et al., 2009). For display pur-
poses, we also use the stratification of participants as mainly optimal or
suboptimal decision-makers to illustrate the direction of effects

interacting with the decay constant, but we did not derive group statistics
based on the subgroups.

We report random effects at p, 0.05 that survive whole brain cor-
rection for FWE at the voxel level. Moreover, we estimated the mini-
mum cluster size for FWE whole brain correction at the cluster level
(Slotnick et al., 2003). We used a primary cluster-defining threshold
of p, 0.001, which in some cases was increased to p, 0.0001 or
p, 0.00001 to increase the spatial specificity of anatomically ambiguous
activation. Although cluster-defining thresholds higher than 0.001 avoid
the weakness in random-field theory that spatial autocorrelations are
non-Gaussian (Eklund et al., 2016), we nevertheless adopted the con-
servative approach to increase the FWE threshold to p, 0.01 for analy-
ses using the most liberal cluster-defining threshold p, 0.001. This
procedure gave cluster thresholds ranging from k. 68 to k. 38 ensur-
ing high spatial specificity and low type I error rates (Woo et al., 2014).
We also defined two ROIs in the VStr for which we used small volume
correction (p , 0.05) for a sphere of 16-mm radius. The ROIs were
based on accumbens coordinates reported in a meta-analysis on the
involvement of VStr in reward-related decision-making (Liu et al.,
2011). We used the average coordinates of accumbens activation for
evaluation in their tables 3 and 8, MNI [xyz], RH: [12 8 �7], LH: [�14 7
�9]. These ROIs covered nucleus accumbens (NAc) including sur-
rounding anteroventral putamen and caudate nucleus and extend into
the ventral pallidum. To illustrate time courses of activation during
inspection, a FIR model was used to estimate effect sizes in 12-mm
spheres every TR after inspection onset, and unless otherwise indicated
we show activation of t values at p, 0.001 (unc.) for display purposes.

In the figures, activation maps were overlaid onto a structural image
composed by stripping off the skull of the normalized individual struc-
tural scans in FSL and calculating the mean structural image of the par-
ticipating subjects.

Results
We used fMRI to study neuronal mechanisms in twenty-seven
human volunteers engaged in a monetary valuation and choice
task. The participants inspected two alternative pots of money
each consisting of a flow of gold coins presented one coin at a
time (Fig. 2A). Each pair contained a growing and a declining

Figure 4. Relationships between regressors (mean-centered values) and effects of orthogonalization. Each color shows
data from one participant, and the mean square correlation coefficient ( br 2 ) is shown in each panel. A, B, Relation
between GV and IV and between GV and markdown (DM = GV � IV). Co-variation with sequence duration (number of
coins) causes positive correlation between them. C, D, Relation between DM orthogonalized (with respect to GV) and IV,
and between orthogonalized and unorthogonalized DM. When the correlation between DM and GV is removed, the ortho-
gonalized DM is negatively correlated with IV and remains positively correlated with the unorthogonalized DM. Note that
in participants with low markdown (i.e., high t values), DM contains little information after the common effect of duration
has been removed, whereas in those with high markdown (low t values), there is a more linear relationship between the
orthogonalized and unorthogonalized markdown.

8944 • J. Neurosci., November 11, 2020 • 40(46):8938–8950 Vestergaard and Schultz · Retrospective Reward Valuation



stream of coins; one weakly dominated by the other. After
inspection, the participants indicated which pot of money they
preferred. The total value of any pot was independent of whether
the coin stream was growing or declining, so optimal perform-
ance was achieved by disregarding the order in which the coins
were experienced. Choosing a shorter stream of coins would be a
violation of dominance, which we regard as an error. For a com-
plete description of the task, see Materials and Methods.

Behavioral support of a Banker’s fallacy
In a behavioral preexperiment, the participants first evaluated
the virtual gold coins in a second-price auction (Becker et al.,
1964), and we calculated the GV of a pot of money as the sum of
the individual coin values (Fig. 1). Based on preference data for
coin streams presented along various temporal profiles, we esti-
mated the parameters of a leaky-integrator that computed the IV
of each pot of money. The IV predicts an individual’s preference
for increasing options (Vestergaard and Schultz, 2015). The
difference between the GV and IV is a markdown that acts as
disincentive on declining coin streams. The shorter the decay
constant (t ) of the leaky integrator, the more pronounced is an
individual’s aversion to decline and the higher is therefore the
error rate. We can therefore regard t as a marker across a con-
tinuum of optimality with lower values associated with a higher
error rate. When the integrator leaks very slowly (t . 25 s in
these experiments), the GV and IV are very close to identical, in-
dicative of near-optimal behavior.

Systematic preference for growth is a Banker’s fallacy that
leads to diminished profit (Fig. 2B). Decision errors occur either

because of decision noise, also known as
“late noise” (Tsetsos et al., 2016), or
because of an inclination toward growing
coin streams of lesser total value. Results
show that decision errors in the more
optimal decision-makers are not a result
of the Banker’s fallacy but rather percep-
tual error occurring as a result of decision
noise (Fig. 2C, middle). The leaky integra-
tor predicts the Banker’s fallacy, and indi-
vidual t estimates are correlated with the
error rate (Fig. 2C, left). A functional inter-
pretation of these results is that temporally
extended outcomes are experienced along
two distinct reward representations: (1) the
GV that is incentive-compatible, and (2) a
competing DM on temporary decline.

Neural implementations
We investigated whether brain activation
supported a neural implementation of a
choice model with two distinct reward
representations. We used the most con-
servative FWE correction at the voxel
level as well as whole-brain correction at
the cluster level (Slotnick et al., 2003). We
first show that the task activates the
reward system. Inspection of a sequence
will engage vision and attention as well as
the reward system, and to control for per-
ceptual effects, we contrasted the first
(pure) inspection against the second,
which can be made relative to first.
Results revealed more activation in the
striatum, amygdala, and ventromedial

prefrontal cortex (vmPFC) during the naive inspections and in
the anterior insula and dorsolateral prefrontal cortex (DLPFC)
during the comparative inspections, showing that our coin
inspection task activates known reward circuitry (Fig. 5A;
Extended Data Table 5-1). The initial analysis also confirms that
brain areas often associated with the default mode network (e.g.,
vmPFC) are more active during the naive inspection, while
regions often associated with the task-positive response-selection
network (e.g., DLPFC and insula) activate during the compara-
tive inspection (Fox et al., 2005).

We then examined the specific effects of sequence valence
and preference during each inspection separately and together
(Extended Data Tables 5-2, 6-1). We contrasted preferred over
rejected options regardless of option order, and this contrast
revealed broad activation in the anterior insula, DLPFC, ACC,
and VStr (Fig. 6A; Extended Data Table 5-2). Moreover, the more
suboptimal decision-makers showed a deactivation in the right
dorsal caudate nucleus (dCN) for inspection of growth versus
decline (Fig. 5B; Extended Data Table 5-2) regardless of option
order. In the comparative inspection there was an interaction
between preference and option valence. During the comparative
inspection subjects can begin to form a preference for or against
the inspected option, and this second-order effect interacted with
t . This effect had the direction that the suboptimal decision-mak-
ers showed bilateral hyperactivation in OFC/anterior insula and
ventral pallidum when they preferred a growing rather than
declining sequence (Fig. 6B; Extended Data Table 6-1).

Figure 5. Inspection of coin streams. A, Naive inspection involves bilateral activation in putamen, amygdala and ventro-
medial PFC, whereas comparative inspection specifically is correlated with anterior insula activation (Extended Data Table
5-1). B, Inspection of growth differentially activates dCN (Extended Data Table 5-2). Time-resolved effects are shown for illus-
tration purposes. More suboptimal decision-makers show a downregulation in dCN for increasing coin streams compared
with more optimal decision-makers, and the differential dCN activation correlates with the decay (t ) in individual incentive-
value models.
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The transition from experience to
summary valuation was defined at the
end of the inspection, which importantly
was uncorrelated with the inspection
onset because the coins streams varied
widely in duration. Contrasting the end
of the second inspection over the first, we
found that the comparative summary was
encoded bilaterally in putamen, caudate,
vmPFC, lateral OFC, and cingulate cortex
(Fig. 7A; Extended Data Table 7-1). This
result seconds studies examining auto-
matic computation of value in the ab-
sence of choice (Lebreton et al., 2009)
and studies showing that subjective valua-
tion engages medial PFC and striatum
(Levy et al., 2011) with experienced value
encoded in the anterior vmPFC (Smith et
al., 2010). To investigate the role of the
two distinct reward representations, we
regressed brain activity at the end of both
inspection epochs on GV and markdown.
This analysis showed a considerable effect
in the medial occipito-temporal area indi-
cating the involvement of perceptual
function in the inspection and analysis
of the conditioned summary value. More-
over, bilateral activity in amygdala at the
end of inspection was strongly correlated
with GV in all participants, whereas
in the suboptimal decision-makers, the
markdown was strongly correlated with
anterior insula activation. The result that
only the suboptimal decision-makers
encode the markdown is unsurprising
given that there is very little variance in
DM for high values of t . Furthermore,
the more optimal the decision-maker, the
stronger was GV encoded and the weaker
was the markdown encoded (Fig. 7B,C;
Extended Data Table 7-2).

Because the task is self-paced, there
may be a difference between participants
in the rate at which they experienced the rewards. To address
this issue, we calculated the reward rate in two ways: (1) GV
experienced per minute (GV/min) defined as the sum of the
individual GVs for the chosen options relative to the self-paced
duration of the task, and (2) rewards experienced per minute
(Rwd/min) defined as the number of rewards relative to the du-
ration of the task. Results showed that GV/min was negatively
correlated with k (r 2 = 0.86, p= 4.6� 10–12); that is, the more
compressive was the value function the lower was GV/min
(because GV is lower in these participants). GV/min and Rwd/
min were also correlated (r2 = 0.32, p=2.3� 10–3), but the cor-
relation between Rwd/min and k was insignificant. To analyze
the effect of reward rate regardless of the effect of value function,
we therefore included Rwd/min as covariate at the second level
and repeated all the neuroimaging analyses. None of these analy-
ses changed the main effects reported in Figures 5-7 or revealed
any interaction with reward rate.

To identify areas involved in the modulation of the distinct
reward representations, GV and DM, we computed the PPI of
neural activity during the inspection in the amygdala and

anterior insula. Since we wanted to look for areas in the brain
that down-modulate value responses for and lead to rejection of
decreasing sequences, the PPI analyses look for changes in func-
tional coupling as a function of sequence valence and preference.
The PPI analysis for the anterior insula revealed strong func-
tional coupling with a considerable portion of the dorsal caudate
(Fig. 7D; Extended Data Table 7-3). The more suboptimal the
decision-maker, the more negative was the correlation for the
rejected option, whereas in the more optimal decision-makers
this relationship held for the preferred option (Fig. 7E). The RH
caudate cluster identified in the PPI for the right insula includes
the caudate activation reported in Figure 5B. Moreover, for
increasing sequences there was functional coupling between the
anterior insula and some posterio-temporal and occipito-tempo-
ral areas in suboptimal decision-makers (Extended Data Table 7-
3). The PPI analysis for the amygdala revealed functional
coupling with the VStr. Brain activity in the anterior aspect of
the pallidum, the antero-ventral caudate and putamen correlated
with amygdala activation for rejected sequences and this effect
was more so when the sequence was increasing (Extended Data
Table 7-4). There was no statistically significant coupling for

Figure 6. Striatopallidal activation during valuation and time-resolved effects gradually building up over time after stimu-
lus onset. A, Bilateral VStr encoding preference during inspection (Extended Data Table 5-2). B, Preference for growth
encoded differentially in optimal and suboptimal decision-makers in bilateral anteroventral pallidum and VStr (Extended
Data Table 6-1). The more suboptimal decision-makers exhibit a downregulation of the ventral pallidum when preferring a
declining option, whereas the more optimal decision-makers show no different activity. The differential pallidum activity cor-
relates with the decay (t ) in individual incentive-value models (excluding t =1; when the two outliers are removed the
correlation remains�0.47, p= 0.018).
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sequence valence alone and no functional coupling between the
anterior insula and the amygdala within the parameters of the
factorial design.

These results show that incentives such as GV and growth,
and disincentives such as the markdown, as well as preference
are all encoded during the inspection. To investigate the extent
to which these aspects of an experience also mediate the expres-
sion of preference, we analyzed brain activity at the time of
choice and we examined the effect of t (Extended Data Table 8-
1). We first analyzed the contrasts overt choice (free versus im-
perative preferred) and preferred versus rejected. The overt
choice contrast indicates the actual choice itself separated from
its execution, whereas the preferred versus rejected contrast indi-
cates associative aspects of the options separated from the choice
itself. Using this delineation, we found that the overt choice was
encoded in cingulate cortex, DLPFC, and anterior insula (Fig.
8Ai). We then regressed the BOLD contrast between the pre-
ferred and rejected options on the value difference signals and
found that GV was encoded in vmPFC (Fig. 8Aii). Finally, we
examined interaction between brain activity at the time of choice
(vs implicit baseline) and t and found that for the free choice the

more suboptimal the decision-maker, the
stronger was activity in the DLPFC (Fig.
8B). In other words, although the differ-
ence in GV between the two options
was encoded robustly in vmPFC, some
decision-makers still make suboptimal
choices, and the brain activity in the sub-
optimal decision-makers is characterized
by increased recruitment of DLPFC as
they reveal their preference in the free
choice.

Discussion
Our results reveal a diverse role for the in-
sular cortex in summing up experience.
The anterior insula contains so-called von
Economo neurons abundant with dopa-
mine receptors (Allman et al., 2005), and
the distinct agranular frontoinsula is
thought to be functionally related to the
OFC (Morel et al., 2013). It has been pro-
posed that the anterior insula integrates
interoceptive and motivational informa-
tion and that the right anterior insula is
more involved in this process than the left
insula (Craig, 2009). Furthermore, physi-
ology studies have indicated that the
human insula is part of the visceral nerv-
ous system encoding homeostatic state
(Craig, 2003). Thus, the encoding in the
anterior insula of a DM for a declining
sequence of rewards may serve to inform
intuitive decision-makers of their “gut
feeling.”

The insula is one of the most com-
monly activated regions in fMRI research
and it can therefore be difficult to identify
the specificity of its role. A pragmatic
approach would be to note that the ante-
rior insula is known to consistently and
selectively engage with working memory
and emotional tasks (Phan et al., 2002;
Yarkoni et al., 2011), and to speculate that

the dynamic anterior insula activation in our study therefore
reflects selective recruitment of emotive and working memory
functions as necessary to encode the IV of an experience.
However, this perspective disregards other established roles of
the anterior insula in encoding risk and uncertainty (Huettel et
al., 2005; Kuhnen and Knutson, 2005; Symmonds et al., 2010),
attention switching (Phan et al., 2002), disgust (Calder et al.,
2007), etc. Below we therefore focus on the robust encoding of
the DM and the link between dorsal caudate and anterior insula.

Our results show that the neural underpinning of duration
neglect is a separate encoding of two distinct reward representa-
tions, GV and DM (Fig. 7A,C). GV and IV share variance related
to sequence duration, and we did not want to remove the effect
of duration from GV. To isolate the common variance in GV, we
considered the DM, from which the shared variance was
removed in order that the markdown captured the extent to
which a sequence declined (its “downness”) regardless of its du-
ration. Using GV and DM as regressors we found that GV was
encoded in the amygdala; it is the objective value of a sequence

Figure 7. Summary valuation. A, Comparative summary engages bilateral putamen, caudate, vmPFC (BA10/11), posterior
cingulate and lateral premotor (BA6/8; Extended Data Table 7-1). Encoding of GV involves bilateral amygdala, and encoding
of DM involves anterior insulae (Extended Data Table 7-2). B, Dynamics of anterior insula activation during inspection and
summary valuation. C, The more optimal is the decision-maker, the stronger is GV encoded (LH: p= 0.044; RH: p= 0.027);
encoding of the markdown showed the opposite pattern (LH: p= 0.011; RH: p= 0.0005). D, PPI (Extended Data Tables 7-3,
7-4). Differential preference-dependent coupling between anterior insula (left, cold; right, hot) and dorsal caudate in optimal
and suboptimal decision-makers. E, Effect sizes for the RH PPI analysis in panel D shown for illustration purposes. The differ-
ential coupling between anterior insula and dorsal caudate correlates with the decay (t ) in individual incentive-value models
(excluding t =1; when the outlier is removed the correlation remains�0.51, p= 0.008).
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including the effect of duration. By contrast,
the activation in the anterior insula that cor-
relates with the markdown may be because
of the displeasing effect of decline regardless
of outcome duration.

The mechanistic interpretation of the
DM is potentially twofold: the t parameter
can be seen to quantify either a leak in a
memory integration process or a penalty
imposed on the reward sequence based on
its temporal configuration. We favor the lat-
ter because of its theoretical alignment with
the computational model, it squares with
the conceptual conflict between long and
decreasing reward sequences and it is sup-
ported by the neuroimaging data. The theo-
retical foundation for the computational model is that people
continually discount an experienced reward in relation to histori-
cal cumulative reward. In other words, the mechanism we exam-
ine is Equation 2 (not the solution to Eq. 2). The reason why
humans and other animals discount perceived reward in relation
to past events supports a theoretical problem related to the
bounded dynamic range of the nervous system. When evaluating
an experience of unknown future duration, the brain would need
to constantly scale the cumulative reward in an adaptive fashion
to encode the sum. Equation 2 proposes a simpler mechanism
whereby summary evaluation for sequences of unknown con-
tinuing duration is possible without running the neural code
out-of-bounds. Under uncertainty, people are known to rely on
simple judgmental operations according to the so-called avail-
ability heuristic (Tversky and Kahneman, 1974). Our neural
results are also aligned with the interpretation that the temporal
configuration of a sequence imparts a penalty on the sequence;
that penalty is the DM and it is encoded robustly in the anterior
insula. If the markdown was merely a leak it is not obvious why
the brain would retain a robust encoding of it. The fact that the
markdown is encoded separately in the brain also supports the
notion that it is not merely a distortion of the internal represen-
tation of GV. While the markdown in these experiments is a
disincentive similar to a monetary acquisition cost, it is not
incurred as a discount on the GV of the outcome; rather, it is a
psychophysical construct which may well be experienced by de-
cision-makers and which is encoded in the anterior insula of the
brain

Wittmann et al. (2016) showed that the human brain can
encode simultaneous representations related to historical
rewards and foraging behavior. The DM in our study is also an
index of the outcome’s trend, and in light of that view, our results
support the notion that outcome trends not only inform deci-
sion-making but also that they are encoded in neural circuitry
separate from primary reward structures. We have thus demon-
strated a neural dissociation between experienced values and
reward trends. We have shown that the amygdala encodes the
total GV of extended outcomes, whereas the anterior insulae en-
codes a DM penalizing temporary decline and leading to overval-
uation of experience involving temporary growth (Fig. 7A,C).
The engagement of the dorsal striatum during inspection sug-
gests a tangible role for learning from experience (Dolan and
Dayan, 2013), and the downregulation of dorsal caudate activa-
tion indicates that this process may be suspended in suboptimal
decision-makers who are too favorably impressed by the experi-
ence of growth (Fig. 5B). This speculation could be taken to sug-
gest that when the people who are most susceptible to a

favorable appreciation of increasing outcomes observe a favor-
ably impressive option, they suspend the commission of a delib-
erate analysis to memory. This effect seems to be more
categorical and therefore not a direct neural index of the cumula-
tive markdown (Fig. 2C). The differential coupling between the
anterior insula and dorsal caudate (Fig. 7D) accords with these
perspectives and suggests that suboptimal decision-makers may
primarily encode aspects of the unwanted option whereas the
more optimal decision-makers tend to encode aspects of the pre-
ferred option stronger (Fig. 7E).

Hare et al. (2009) showed that brain activity in vmPFC corre-
lated with GVs, whereas activity in DLPFC correlated with the
self-control that dieters exercise when they integrate competing
concerns relating to healthiness and tastiness of foods. We found
that brain activity in vmPFC correlated with the difference in
GV between the preferred and rejected option (Fig. 8A), whereas
activity in DLPFC was negatively correlated with an index of
optimality (Fig. 8B). While it is well known that vmPFC encodes
the GV difference signal (Boorman et al., 2009; Rushworth et al.,
2011), DLPFC is part of a network that has been implicated in
flexible control of attention to competing attributes (Leong et al.,
2017; Tusche and Hutcherson, 2018). Thus, suboptimal deci-
sion-makers may be more likely to be switching attention
between GV and DM and integrating both considerations, in a
way that optimal decision-makers are not.

Previous studies have argued that amygdala activation medi-
ates emotional responses that can lead to suboptimal behavior
(De Martino et al., 2006; Roiser et al., 2009). While the amygdala
is known to encode a wide range of signals relating to emotional
experience, decision-making, and reward processing (Adolphs,
2010; Rutishauser et al., 2015), our results do not support the
notion that suboptimal decision-making is underwritten by
amygdala activity. The amygdala has also been shown to act as a
reliable integrator of future rewards encoding the outcome of
extended saving actions (Zangemeister et al., 2016), and our
results are more compatible with a rational role for the amygdala
in decision-making.

Although it is clearly suboptimal to discount declining
sequences in the current experimental setting, in the real world
and in other contexts, it might be optimal for the brain to attend
to whether reward values are declining or increasing. The idea
that increasing reward values signal that something better is
coming up is ecologically plausible. Thus, reward contrasts may
be honest indicators of the prospect for slowly varying events
(Ossmy et al., 2013) serving as reliable signals optimizing fitness.
According to this notion, there would be survival value in the
repulsion to declining reward sequences. Such a mechanism con-
curs with the strong tendency of animals to approach stimuli

Figure 8. Successive aspects of choice (Extended Data Table 8-1). A, Overt choice involves cingulate, DLPFC, and ante-
rior insula (i; DLPFC shown in panel B, left, anterior insula not shown); GV encoded in vmPFC (ii). B, Differential recruit-
ment of DLPFC during free choice in optimal and suboptimal decision-makers.

8948 • J. Neurosci., November 11, 2020 • 40(46):8938–8950 Vestergaard and Schultz · Retrospective Reward Valuation

https://doi.org/10.1523/JNEUROSCI.2130-19.2020.t8-1


associated with rewards and to withdraw from stimuli associated
with danger (Dickinson and Mackintosh, 1978). Therefore con-
trast-guided evaluation may be an ecologically beneficial strategy
for future events. However, for retrospective valuations, an incli-
nation in favor of persistent growth is clearly disadvantageous.

Taken together, our results show that suboptimal choice can
be the result of robust neural representation of a displeasing as-
pect of the experience such as temporary decline. The study also
challenges a popular belief that suboptimal decision-making is
somehow routed in primitive neural structures whereas more as-
tute reasoning is thought to emerge from the more evolved fron-
tal executive system. Rather, we have here demonstrated that the
summary value of an extended experience, which may be diffi-
cult and/or effortful to calculate, is encoded robustly in the
amygdala, a brain region highly conserved across vertebrate evo-
lution. By contrast, the markdown, a more intuitive construct, is
encoded in the anterior insula, a paralimbic structure function-
ally related to the OFC. This neural correlate of the markdown
may serve as a key discriminator between functional aspects of
Kahneman’s dichotomy of experienced utility and decision util-
ity (Kahneman, 2003). We have shown that the human brain can
encode these aspects in separate neural structures, and the par-
ticipants in our study seem to have recruited this network differ-
entially depending on how optimally they behaved.
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