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Humans and other primates share many decision biases, among them our subjective distortion of objective probabilities. When making
choices between uncertain rewards we typically treat probabilities nonlinearly: overvaluing low probabilities of reward and undervaluing
high ones. A growing body of evidence, however, points to a more flexible pattern of distortion than the classical inverse-S one, highlight-
ing the effect of experimental conditions in shifting the weight assigned to probabilities, such as task feedback, learning, and attention.
Here we investigated the role of sequence structure (the order in which gambles are presented in a choice task) in shaping the probability
distortion patterns of rhesus macaques: we presented 2 male monkeys with binary choice sequences of MIXED or REPEATED gambles
against safe rewards. Parametric modeling revealed that choices in each sequence type were guided by significantly different patterns of
probability distortion: whereas we elicited the classical inverse-S-shaped probability distortion in pseudorandomly MIXED trial se-
quences of gamble-safe choices, we found the opposite pattern consisting of S-shaped distortion, with REPEATED sequences. We
extended these results to binary choices between two gambles, without a safe option, and confirmed the unique influence of the sequence
structure in which the animals make choices. Finally, we showed that the value of gambles experienced in the past had a significant impact
on the subjective value of future ones, shaping probability distortion on a trial-by-trial basis. Together, our results suggest that differ-
ences in choice sequence are sufficient to reverse the direction of probability distortion.
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Introduction
Choices between uncertain rewards require decision-makers to
evaluate each option along multiple dimensions. At the very least,

a decision-maker needs to simultaneously consider the reward’s
quantity and probability of occurrence if he is to evaluate its
attractiveness in relation to other choice prospects. The von Neu-
mann and Morgenstern Expected Utility (EU) theory was the first
axiomatic model of rational behavior capable of describing peo-
ple’s choices in these situations (von Neumann and Morgenstern,
1944). EU theory rigorously introduced the concept of utility as a
representation of a decision-maker’s subjective value for an ob-
jective reward quantity. Through the metric of utility, EU theory
was able to describe different risk attitudes, such as the risk-
seeking behavior of a gambler or the risk aversion of an insurance
buyer; it was, however, soon challenged by the various experi-
mental results of behavioral economics (Weber and Camerer,
1987; for review, see Machina, 1987; Starmer, 2000). Attempts to
resolve some of these challenges led to the development of several
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Significance Statement

Our lives are peppered with uncertain, probabilistic choices. Recent studies showed how such probabilities are subjectively
distorted. In the present study, we show that probability distortions in macaque monkeys differ significantly between sequences
in which single gambles are repeated (S-shaped distortion), as opposed to being pseudorandomly intermixed with other gambles
(inverse-S-shaped distortion). Our findings challenge the idea of fixed probability distortions resulting from inflexible computa-
tions, and points to a more instantaneous evaluation of probabilistic information. Past trial outcomes appeared to drive the “gap”
between probability distortions in different conditions. Our data suggest that, as in most adaptive systems, probability values are
slowly but constantly updated from prior experience, driving measures of probability distortion to either side of the S/inverse-S debate.
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generalized expected utility theories, many of which (notably
prospect theory, rank-dependent utility theory, and cumulative
prospect theory) incorporated the concept of probability distor-
tion (Kahneman and Tversky, 1979; Quiggin, 1982; Tversky and
Kahneman, 1992). While maintaining the nonlinear relationship
between subjective utility and objective reward magnitudes, these
theories made use of subjective probability weightings, or prob-
ability distortions, to account for the idea that reward probabili-
ties were also treated nonlinearly during choice.

Experimental measures of probability distortion in humans and
monkeys typically show that, whereas small probabilities tend to be
overweighted by decision-makers, large probabilities are instead un-
derweighted (Kahneman and Tversky, 1979; Gonzalez and Wu,
1999; Stauffer et al., 2015). There is, however, dramatic variation in
this pattern of distortion across both different subjects (Gonzalez
and Wu, 1999; Bruhin et al., 2010; Burke et al., 2018) and between
different task contexts (Hertwig et al., 2004; Wu et al., 2009;
Farashahi et al., 2018). While the causes of such variability have yet to
be identified, differences in probability distortions could relate to the
way in which probability information is presented to decision-
makers (Hertwig et al., 2004), or the way in which probability knowl-
edge is acquired and stored by the decision-maker (Camilleri and
Newell, 2013). Some studies suggested that prospect theory might
altogether be incapable of explaining differences in risk attitudes
across these contexts (Kellen et al., 2016).

Here we investigated the role of choice context, specifically
sequence structure, as a possible source of probability distortion
variability in rhesus macaques, animals known to show quantifi-
able and reproducible probability distortions (Stauffer et al.,
2015). To achieve this, we first measured the certainty equivalents
(CEs) of specific gambles, defined as the amount of reward for
which the animal was choice-indifferent with regards to said
gambles; the CE therefore indicated the subjective value of the gam-
ble in the “currency” of the safe reward. We then simultaneously
estimated the contributions of utility and probability distortion to
these subjective values, allowing us to model the shape of the mon-
keys’ probability distortion independently from utility.

We used this technique to investigate the possible influence of
trial sequence structure on the shape of the probability distortion
in two different task situations: randomly intermixing the trials
required for the CE measurements of all gambles, or determining
the CEs of different gambles via separate blocks of trials. We
performed an out-of-sample test to validate and extend the re-
sults of our main task, and investigated the contribution of trial
history as a possible correlate of probability distortion variance.
Our data showed that a change in the presentation order of prob-
ability information indeed altered the observed probability dis-
tortion pattern, inducing a reversal in probability distortion
shape.

Materials and Methods
Animals and experimental setup. Two male rhesus macaques (Macaca
mulatta) were used in this study (11.2 and 13.2 kg). During experiments,
the monkey sat in a primate chair (Crist Instruments) and made choices
between two rewarding stimuli presented on a computer monitor posi-
tioned 30 cm in front of them. The animals reported their choices be-
tween options with a left-right motion joystick (Biotronix Workshop).
Joystick position and task event times were sampled and stored at 1 kHz
on a Windows 7 computer running custom-made software written in
MATLAB (The MathWorks) using Psychtoolbox (version 3.0.11). All
experimental protocols were assessed and approved by the Home Office
of the United Kingdom.

Experimental design. We trained the monkeys to associate visual stim-
uli with specific juice rewards that varied along two dimensions: the

quantity of juice delivered (reward magnitude, m) and the delivery prob-
ability of the reward (reward probability, p). To capture both dimensions
descriptively, the visual stimuli consisted of a horizontal bar or of a pair
of horizontal bars framed between two vertical lines. The vertical posi-
tion of the horizontal bars signaled the magnitude of juice delivered; the
width of the bar signaled the probability of their delivery from no bar (no
reward) to touching the frame on both side (certain reward). To ensure
that the bar’s edge position relative to the frame was not used as a cue for
the gamble’s mathematical expected value (EV; i.e., the product of m and
p), the bars were randomly shifted horizontally on each trial. This guar-
anteed that magnitude and probability information were independently
presented and used to make choices. Multiple partial bars found between
the vertical frames signaled gambles between “risky” rewards, whereas a
singular, full-width horizontal bar signaled a safe, riskless reward. Across
all trials, monkeys experienced rewards ranging from 0 ml to 0.5 ml in
0.05 ml increments, and gamble probabilities varying between 0.1 and 1
in decimal increments (0.1).

The animals learned to associate rewards and magnitudes with the
visual stimuli schema through �10,000 single-outcome, or imperative,
trials. In these trials, only one option was presented on either side of the
screen. To obtain the cued reward, the animals were required to select the
side on which the reward was presented. All reward options were re-
peated on both the left and right sides of the computer screen, alternating
pseudorandomly to control for any side preference.

Following imperative training, we presented the animals with a binary
choice paradigm where they had to choose one of two reward options
presented simultaneously. Most binary choice trials pitted a safe reward
against a gamble. All gambles consisted of two probabilistic rewards: the
monkey could either get a fixed 0.5 ml of juice with probability p, or 0 ml
of juice with probability 1 � p. Safe options varied in terms of reward
magnitude only. In separate sets of trials, we presented the animals with
choices between two gambles with two outcomes each (possible out-
comes: 0, 0.25, 0.5 ml). In these trials, one of the gambles could have two
non-zero outcomes (0.25 and 0.5 ml). In all cases, reward was delivered
probabilistically, matching the probabilities cued by each stimulus.

Trials began with a white cross at the center of a black screen, followed by
the appearance of a joystick-driven cursor. The cursor had to be moved to
the center cross in order for a trial to begin. After successfully maintaining the
cursor on the central cross for 0.5–1 s, two visual option cues appeared left
and right of the central cross (see Fig. 1a). In the case of imperative trials, only
one option appeared while the other side remained dark. The animal had 3 s
to convey his decision by moving the joystick to the selected side, after which
the unselected option would disappear. The animal’s response time (RT; i.e.,
the time interval between the cues appearance and the beginning of the
joystick movement) was collected for individual trials. Reward delivery oc-
curred after the holding time (0.1–0.2 s), and the selected option lingered on
the screen for 1 s postreward delivery to reinforce stimulus–reward associa-
tions with visual feedback. A variable intertrial period of 1–1.5 s (blank
screen) led to the next trial onset. Unsuccessful central hold, side selection
hold, or trials where no choices were made resulted in a 6 s timeout for the
animal, after which the trial would be repeated.

Psychometric elicitation of CEs. The likelihood of a monkey choosing a
specific, individual gamble over different safe options was assessed
through the binary choice paradigm (see Fig. 1b). The resulting choice
ratios were then used to fit a logistic sigmoid function, or psychometric
curve, to estimate choice likelihoods for every possible safe-gamble pair-
ing within the tested reward range as follows:

PChooseSafe � 1/�1 � e��SafeRewardml�x0

� �� (1)

These psychometric curves captured the likelihood of choosing a safe
option over a gamble through two free parameters: x0, measuring the x
position of the curve’s inflection point, and �, the function’s temperature
parameter, reflecting the steepness of the curve. Importantly, only se-
quences that contained choices between a gamble and a minimum of
three different safe options (repeated at least 4 times) were used in the
analysis.
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The point of choice indifference between gamble and safe options,
corresponding to the inflection point x0 of the resulting model, repre-
sented a gamble’s CE: the certain safe reward that was of equal subjective
value to the gamble. CEs could then be used to categorize behavior.
Gambles where the CEs were of greater value than the predicted EV
signaled risk-seeking behavior for that gamble’s probability value. Gam-
bles with CEs lower than their EVs indicated risk-averse behavior for that
option. For cases where CEs were equal to EVs, the animals were seen as
being risk-neutral.

To explore the role of task structure on the variability of one’s proba-
bility distortion pattern, we measured CEs in one of two elicitation con-
ditions: MIXED or REPEATED trial sequences (see Fig. 1c– e). In the case
of MIXED sequences, multiple CEs were elicited through single blocks of
randomized choice trials involving different gambles and safe options.
Such blocks were repeated until each gamble-safe pair had been pre-
sented a minimum of 4 times each. In the case of REPEATED sequences,
CEs were elicited using blocks of trials that contained a unique gamble.
These REPEATED trial blocks pitted multiple safe options against a sin-
gle gamble for the elicitation sequence. Other than these sequence de-
signs, everything from visual cues to timescales was identical. The only
difference between elicitation conditions was the number of different
probabilities of reward (gambles) experienced within a trial block. Test-
ing for each elicitation condition was done consecutively over multiple
days, with each monkey receiving imperative training before their daily
elicitation sessions. We collected on average 172.95 � 20.24 (SEM) trials
per daily session over 56 sessions for Monkey A (22 REPEATED and 34
MIXED sessions, in consecutive days), and 414.63 � 27.87 trials over 59
sessions for Monkey B (31 REPEATED and 28 MIXED sessions, in con-
secutive days).

Analysis of behavioral data. All data were collected, stored, and ana-
lyzed using custom MATLAB and Python (SciPy 1.1.0) (Oliphant, 2007)
software. Analyses were run on trial-by-trial choice data, and on the CEs
elicited psychometrically from these trial-by-trial choices. The data were
stored and analyzed separately for the 2 animals.

Before any comparative analyses, the use of visual stimuli to guide the
monkeys’ decision behavior was verified through analyzing all CE elici-
tation trials (excluding error trials where the animals made no choices) in
a logistic regression model as follows:

y � �0 � �1�EVGamble� � �2�EVSafe� � �4�Risk� � �3�PositionLR� � �

(2)

The dependent variable took a value of y � 1 if the gamble was chosen
and y � 0 if the safe option was chosen instead. As had been previously
done (Stauffer et al., 2015), we fitted four independent variables: option
values (EVgamble, EVsafe) were defined as the EVs of gamble and safe
rewards; gamble position (PositionLR) as 0 for left, 1 for right screen side;
and the outcome’s risk value (Risk) was defined as �p*�1 � p�, a pro-
portional representation of probabilistic variance. We fitted individual
testing days separately, fully standardizing the � coefficients and then
testing for statistical significance (one-sample t test, p � 0.05) to identify
relevant decision variables. Positive regression coefficients indicated an
increase in the likelihood of choosing a gamble over a safe option with
increasing independent variable value; negative regression coefficients
indicated a decrease in the likelihood of choosing the gamble.

Once the use of onscreen stimuli to guide choices had been confirmed,
CEs were measured using the aforementioned psychometric fit. CEs
gathered in the MIXED condition were compared with CEs gathered
under the REPEATED condition using a two-factor ANOVA with gam-
ble probability and elicitation condition as main factors. The ANOVA
also captured any interaction between the two factors, highlighting any
condition effects present at a sequence level.

We used trial-by-trial choices to parametrically model the respective
effects of utility and probability distortion on single choices, and more
generally, on the subjective value of gambles (CEs). For each daily testing
session, we simultaneously estimated both the utility and probability
distortion functions from within a standard discrete choice model. Func-
tional parameters that best described choices between gamble-safe pairs
were elicited in this way, capturing the individual effects of nonlinear

utility and probability distortion. The model ran on trial-by-trial choice
data, with data binned into several sets containing one gamble and all safe
options presented against it on the day (CE elicitation sequence). The
discrete choice (softmax) function returned the probability of choosing
the gamble option based on the subjective value of both the gamble (VG)
and the safe reward presented (VS).

PchooseGamble � 1/�1 � e���VG�VS�� (3)

The softmax parameter, �, defined the likeliness of choosing the better
prospect; each option’s value (V ) was defined according to prospect
theory (Kahneman and Tversky, 1979), as the product of utility (u) and
probability distortion (w) outputs as follows:

V� p,m� � w� p� * u�m� (4)

Utility was modeled through a power function as follows:

u�m� � �moutcome

mmax
� 	

(5)

where 	 � 1 captured risk-seeking choice behavior, 	 � 1 captured
risk-averse choice behavior (	 � 1), and 	 � 0 implied risk neutrality
(Hsu et al., 2009). Magnitude values were divided by 0.5 ml (mmax), such
that the maximal reward a monkey could get was anchored at 1 unit of
utility.

We compared four functional models of probability distortion in an
attempt to best capture changes in probability distortion across condi-
tions. Of these classical models, two had a single fitting parameter: the
one-parameter Prelec function (Eq. 6, Prelec-1, parameter: 
) and the
Kahneman and Tversky probability weighting function (Eq. 7, Tversky,
parameter: �); the others had two fitting parameters: the two-parameter
Prelec function (Eq. 8, Prelec-2, parameters: 
, �) and the Gonzalez and
Wu log-odds model (Eq. 9, Gonzalez, parameters: �, �). Formally:

w� p� � e�(�ln(p))a
(6)

w� p� �
p�

� p� � �1 � p���1/� (7)

w� p� � e��(�ln(p))a
(8)

w� p� �
�p�

�p� � �1 � p)� (9)

Using a maximum likelihood estimation (MLE) method, we simultane-
ously estimated the functional parameters (	) from the experimental
data. We defined the log-likelihood function as follows:

LL�	�y� � �i�1

n
yi � log(PChoose Gamble) � �i�1

n
yi


 � log(PChoose Safe)

(10)

The log-likelihood function was defined on all trials in a session (n), the
trial number (i), and the choice outcome variable for the gambles and
safe options (y and y
, respectively). The outcome variables took a value
of 1 if their respective option was chosen; 0 otherwise. We used an un-
constrained Nelder–Mead search algorithm (MATLAB: fminsearch) to
compute the functional parameters that minimized the negative log-
likelihood (�LL). This MLE approach allowed for the simultaneous es-
timation of the model’s free parameters, placing no constraints on their
values (Abdellaoui, 2000; Pelé et al., 2014; Stauffer et al., 2015).

The algorithm identified the best fitting softmax, utility, and probabil-
ity distortion parameters with respect to each monkey’s daily choices in
CE elicitation sequences. Four complete models were parametrized, ac-
counting for the different probability distortion functions investigated.
From these, we calculated the Bayesian Information Criterion (BIC) to
pinpoint the probability distortion function most reliable in capturing
behavior. Four sets of parameters and their BIC were estimated for every
testing day, independently for each model. We selected a single model for
further analysis, based on the flexibility of the functional model, its com-
parative BIC score (one-factor ANOVA with repeated measures, Green-
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house-Geisser– corrected p values: pGGc), and the deviance between the
model’s predicted CEs and the experimental ones (one-factor ANOVA
with repeated measures, Greenhouse-Geisser– corrected p values)
(Greenhouse and Geisser, 1959).

We further validated the parameter estimation procedure by running
10 simulated choice datasets within the fitting algorithm. Datasets used
for testing were generated by fixing the utility parameter (	) and varying
the probability distortion parameter (
), or vice versa. The softmax tem-
perature parameter was kept constant (� � 10), as we specifically wanted
to test the robustness of the estimation procedure in relation to variabil-
ity in the utility and probability parameters. These fixed models were
used to simulate individual trial choices. We simulated 6 trials for every
gamble-safe pair (safe magnitude levels: 0 – 0.5 ml in steps of 0.05 ml).
Five datasets varied in terms of utility (	 � 0.20, 0.50, 1.00, 1.50, 3.00),
and five in terms of probability distortion (
 � 0.33, 0.67, 1.00, 1.50,
3.00). We measured estimation accuracy as the 95% CI on estimated
parameters from Monte Carlo simulations on the parameter-derived
datasets.

The final estimated parameters were first log-transformed to account
for the asymmetric distribution of the utility and probability distortion
parameters (ranging from 0 to �, with a value of 1 defining the linear
case). We then compared the parameter estimates via one-way
MANOVA with elicitation condition as main factor. From this multivar-
iate analysis, we identified any significant effect of individual decision
functions while recognizing the collective role all three parameters in
capturing risk preference. More specifically, the MANOVA identified
which model function parameters (choice softmax, utility, or probability
distortion) differed significantly between CE elicitation conditions.

In the REPEATED condition, the gamble option did not change for
long sequences of trials and could, theoretically, be ignored. To test the
possibility of an attentional shift toward the safe option in this condition,
we defined a model with different weights applied to the two options’
values as follows:

Pchoose Gamble � 1/�1 � e����1�k�VG�kVs�� (11)

The weight parameter (k) captured the attentional shift toward one op-
tion, if significantly �0.5. The options’ values (VG, VS) were computed,
as in the previous model, using the power utility function and the selected
probability distortion function (Prelec-1).

Evaluation of probability distortion in the Marschak–Machina triangle.
We introduced the Marschak–Machina triangle (Marschak, 1950;
Machina, 1982) to compare the choice behavior between the MIXED and
REPEATED conditions in an out-of-sample test, and to evaluate the
theoretical predictions of the discrete choice model vis-à-vis utility and
probability distortions.

The Marschak–Machina triangle defines a 2D space where any prob-
abilistic combination of three fixed reward magnitudes m1 � m2 � m3

can be represented (for details, see Results). The x and y axes correspond
to the probability of obtaining the lowest ( p1) reward m1 and the highest
( p3) reward m3, respectively. The probability of the middle magnitude is
not explicitly represented in the diagram, but it can be readily obtained as
p2 � 1 � ( p1 � p3). Points on the horizontal axis therefore correspond to
gambles with outcomes m1 and m2, whereas points on the vertical axis
identify gambles with m2 and m3 as possible outcomes; the hypotenuse
comprises all gambles containing outcomes m1 and m3 only. In our ex-
periment, we set the fixed magnitude levels to m1 � 0 ml, m2 � 0.25 ml,
and m3 � 0.5 ml.

We characterized Monkey A’s behavior within the Marschak–
Machina triangle, by defining indifference lines between points on the
triangle edges as follows: we presented choices between a fixed gamble
(A), defined on one of the axes, and a set of gambles (Bi) located on the
triangle’s hypotenuse; by fitting a psychometric curve to the ratio of Bi

and A choices, we identified the indifference point on the hypotenuse as
the probability p3 corresponding to a choice ratio of 0.5. We then defined
an indifference line as the segment connecting the fixed gamble on the
axis with its corresponding indifference point. This procedure was re-
peated for four fixed gambles on the x axis ( p1 � 0.2, 0.4, 0.6, 0.8) and for
another four fixed gambles on the y axis ( p3 � 0.2, 0.4, 0.6, 0.8), resulting
in 8 indifference lines.

Such indifference lines characterized points on the triangle edges
(two-outcome gambles): they did not represent complete indifference
curves within the Marschak–Machina triangle (three-outcome gambles).
Nevertheless, the slopes of the indifference lines univocally identified a
directional property a monkey’s risk preference pattern: a gradual change
in the slope (fanning-in or fanning-out) of indifference lines has been
extensively used in the economic literature to characterize choice behav-
ior, particularly in relation to the predictions of generalized expected
utility theories. This property allowed us to quantify behavioral changes
across elicitation conditions and to compare the observed data with pre-
dictions from the theoretical economic model.

Crucially, gambles resting on the two axes were never used in the
elicitation of CEs, representing an out-of-sample test. As a consequence,
the choice behavior observed in the Marschak–Machina triangle could be
used as independent validation for our previous results.

We computed the theoretical indifference lines by calculating, for each
of the eight fixed gambles defined above, the probability p3 for which the
theoretical subjective value of the fixed gamble was equal to that of the
gamble on the hypotenuse. The subjective value of a two-outcome gam-
ble was defined according to cumulative prospect theory as follows:

V�gamble� � u�m3� � w�p3� � u�m1� � �1 � w�p3)) (12)

where m3 and m1 represent the magnitude of the highest and lowest
outcome, respectively, p3 the probability of occurrence of the highest
outcome, u the power utility function, and w the Prelec-1 probability
distortion function.

The indifference point was defined as the point on the hypotenuse
with subjective value �u�m3� � w�p3�� equal to the subjective value of the
fixed gamble (V(gamble)). Thus, knowing the value of the fixed gamble,
one could identify the indifference point as the probability p3 satisfying
the equation u(m3) � w(p3) � V(gamble) as follows:

p3 � w�1�V� gamble�

u�m3�
� (13)

where w�1 represents the inverse of the probability distortion function:
that is, w�1 � exp(�(�ln(w))1/
).

Each daily set of indifference points was elicited after CE elicitation
sequences, for both the MIXED and REPEATED CE elicitation sessions.
This resulted in two sets of indifference lines, distinctly associated with
the REPEATED and MIXED conditions. Both datasets were obtained
using intermingled gamble sequences, so any difference in the pattern of
indifference lines could only be attributed to the effect of the previous
block of trials (i.e., REPEATED or MIXED CE elicitation).

The directional pattern of the indifference lines was characterized by a
measure of the “fanning” direction, corresponding to a gradual change in
the slopes of indifference lines. When moving from the lower right to the
top left corner of the Marschak–Machina triangle, indifference lines de-
creasing their slope would fan-in, whereas indifference lines increasing
their slope would fan-out, much like the structural slats of a folding fan.

A linear regression analysis on the indifference line slopes was used to
statistically characterize the fanning pattern. A positive regression coef-
ficient identified fanning-out of the indifference lines, whereas a negative
regression coefficient identified fanning-in. It should be noted that the
relation between the slopes of the indifference lines, as we defined them,
was not expected to be linear, but the linear regression served as a rea-
sonable description of the expected theoretical pattern and was then used
to characterize the measured behavior.

To statistically compare the predicted and observed sequence effects
on the steepness of the indifference lines, we first calculated the shift of
indifference points (change in p3 value) between the REPEATED and
MIXED conditions; we did this for each of the eight indifference lines, for
both the measured data and the model’s predicted lines. We then per-
formed a correlation analysis on the modeled and measured shifts.

Trial history effects. Because gamble presentation order was the only
difference between the MIXED and REPEATED elicitation sequences, we
sought to categorize the effects of said order on the subjective distortion
of probabilities. Using past gamble EVs as a quantitative measure of past
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experiences (specific to probabilities) we compared the distribution and
use of previous gamble EVs across elicitation condition.

We first compared the variability of consecutive gamble probabilities
in both conditions using a two-sample t test. We used the absolute value
of consecutive gamble EV differences to contrast order in an unsigned
manner, as signed differences would amount to 0 in both cases. We then
assessed the use of past gamble EVs using the following logistic
regression:

y � �0 � �1�EVGamble� � �2�EVSafe� � �3�EVGamble�1� � . . .

� �n�EVGamble�n� � � (14)

Again, the dependent variable took a value of y � 1 if the gamble was
chosen and y � 0 if the safe option was chosen instead. The EV of both the
current gamble and safe (EVgamble, EVsafe), as well as the gamble EV of up
to 8 trials in the past (EVgamble�n), served as independent variables. Trials
that did not have a minimum of 8 previous trials, in individual sessions,
were removed for this analysis. We again standardized regression coeffi-
cients and identified how many past gamble EVs had a significant impact
on current choice (one-sample t test, p � 0.05). Refining the analysis to a
singular preceding trial, we investigated the use of a win-stay/lose-shift
(WSLS) strategy by the animals. A common strategy for human and
nonhuman primates alike, a WSLS choice pattern involves repeating a
“winning” choice until it results in a “loss,” after which one would shift
and try their luck on another choice option. Because choice options in the
CE elicitation sequences involved many different values for both the
gamble and the safe options, we instead explored a more relaxed WSLS
model as follows:

y � �0 � �1�EVGamble� � �2�EVSafe� � �3�Outcomepast�

� �4�PositionLR� � � (15)

If the previous choice had been that of a gamble, and that gamble had
won (i.e., resulted in a 0.5 ml reward), the third independent variable
(Outcomepast) took a value of 1; if the past chosen gamble had instead
been unsuccessful, Outcomepast was 0. By including current EVGamble,
EVSafe, and PositionLR, we could identify the relative effect of a previous
gamble’s outcome on current choice. The logistic regression analysis was
only applied to trials in which the previous trial’s gamble was chosen. A
positive regression coefficient for Outcomepast implied a greater likeli-
hood of picking the gamble after a “win”, regardless of its value. A nega-
tive coefficient would, instead, capture a decrease in the likelihood of
picking the gamble, whatever it may be, after a “loss.”

To compare the performance of this model with the previously defined
model (Eq. 2), which did not include the contribution of past trials, we
computed the BIC scores of the two models only in trials in which the
previous gamble was chosen. After this trial selection, we removed 5
sessions in Monkey A’s data, as they had fewer than 4 trials per gamble-
safe pair.

To further investigate the effect of past outcomes on the risk patterns,
we defined a reinforcement learning model, in which each gamble value
was updated, starting from its EV, by adding or removing a fixed amount
following a win or a loss, respectively. Formally, choices were evaluated
according to the discrete choice model defined earlier (Eq. 2), in which
the safe value (VS) was the certain option’s magnitude (linear coding of
magnitudes), whereas the gamble value (VG) was updated on each trial
according to the following rule:

VG � VG �  � preWin �  � preLoss (16)

Where preWin and preLoss are variables encoding the last trial’s outcome:
preWin � 1 if a gamble was won in the previous trial, 0 otherwise, and vice
versa for preLoss. The value-updating parameter  represents the amount
of “value” (in milliliters) added or removed to the gamble value based on
the previous outcome. According to this model, the gamble value was not
updated if the safe option had been chosen on the previous trial.

We retrieved the  parameter value using MLE, and used the resulting
average value to simulate choices and compute the resulting CEs. The
simulation was run on MIXED and REPEATED sequences separately, to

compare the effect of a value-updating model on the CEs in the two
sequence conditions.

Statistical analysis. We used MATLAB and/or Python for all statistical
analyses. Logistic regressions were computed per session, and results
were standardized by multiplying each coefficient with the ratio of the
corresponding independent variable’s SD over the SD of the predicted
variable (Menard, 2011). Standardized regression coefficients were
tested for statistical significance through one-sample t test. Two-factor
ANOVA, one-factor MANOVA, linear regression, and t test results were
considered significant at p � 0.05, whereas one-way repeated-measures
ANOVAs were Greenhouse–Geisser corrected (degrees of freedom ad-
justment) to account for sphericity violations (Mauchly’s test p � 0.05;
Greenhouse and Geisser, 1959). Post hoc analysis with Bonferroni–Holm
correction for multiple comparisons was applied to ANOVA results. Co-
hen’s d values were used as a measure of effect sizes. In all analyses of data
from single sessions, we reported mean � SEM across sessions.

Results
Design
We tested whether the shape of the probability distortion would
be influenced by the order in which probability information is
presented in a sequence of decisions.

Once the animals had been extensively trained with the
reward-predicting stimuli (�10,000 trials), we presented them
with sequences of binary choices between different probabilistic
rewards (or gambles) and safe rewards (Fig. 1). We then used the
choice ratios to measure the value of gambles relative to certain
rewards, pinpointing the certain rewards that were subjectively
equivalent to gambles, or a gamble’s CE. This procedure revealed
the animals’ attitude toward risky choices: gamble CEs larger
than said gamble’s objective EV reflected risk-seeking behavior;
risk-aversion was characterized instead by gamble CEs smaller
than the gamble’s EV.

By simultaneously estimating the individual contributions of
utility and probability distortion to these measures of risk atti-
tudes, we could model the shape of the monkeys’ probability
distortion regardless of the utility function.

Basic behavioral performance
A logistic regression analysis demonstrated that the monkeys
used the information from the visual stimuli to guide their deci-
sions on all daily testing sessions (Fig. 2a). A positive regression
coefficient for gamble EV (one-sample t test, Monkey A: t(55) �
29.41, p � 2.5  10�35; Monkey B: t(58) � 30.16, p � 3.9 
10�37) indicated that animals were more likely to choose higher
probability gambles than lower probability ones; conversely, the
negative coefficient for safe reward EV (Monkey A: t(55) �
�44.65, p � 6.8  10�45; Monkey B: t(58) � �58.61, p � 2.6 
10�53) indicated that monkeys chose the safe option more fre-
quently when its value was of higher magnitude. Both animals
preferred gambles of higher over lower probabilistic variance
(i.e., they preferred gambles that were more uncertain, regardless
of the outcome) (positive coefficient for risk; Monkey A: t(55) �
4.58, p � 2.7  10�5; Monkey B: t(58) � 7.79, p � 1.4  10�10).
Monkey A, but not Monkey B, showed a side bias (positive coef-
ficient for the position variable), which was taken into account by
balancing the positions of gambles and safe rewards: every option
was presented the same number of times on each side of the
computer monitor.

Estimation of subjective values using different
sequence structures
We used a binary choice paradigm to estimate the monkeys’ sub-
jective valuation of specific gambles. We measured the choice
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ratios between different safe rewards and gambles ranging in
probabilities from p � 0.1 to p � 0.9. Fitting a softmax curve to
each of these gamble-safe groups allowed us to estimate the CEs
corresponding to different gamble probabilities (see Materials
and Methods). These CEs served as a measure of subjective value
for unique probabilities and provided us with a precise measure
of an animal’s risk preference over the range of probabilities
tested.

We elicited CEs in both monkeys using two different elicita-
tion conditions: MIXED and REPEATED gamble sequences (Fig.
2b). In the MIXED condition, we estimated CEs from sequences
of binary choices containing several different gambles pitted
against safe rewards. All gamble and safe options presented were
randomly intermixed, and multiple CEs were estimated from
these sequences, one for each gamble. In the REPEATED condi-
tion, we elicited CEs from blocks of trials that contained a single,
unique gamble versus different safe rewards. In this way, we elic-
ited a unique gamble’s CE for each given block. Importantly, the
two conditions used the same visual stimuli; any difference be-
tween estimated CEs would therefore be due to the elicitation
sequence in which CEs were estimated.

We aggregated the daily CEs of individual monkeys, for both
conditions, to determine the risk-preference pattern derived
from the CEs measured in each elicitation sequence. The risk-
preference pattern was therefore directly inferred from the rela-
tion between the CEs and the respective EVs, as opposed to being
theoretically derived from the shape of utility and probability
distortion functions. We found a significant difference between
the distribution of CE values elicited in REPEATED versus those
elicited in MIXED sequences (two-way ANOVA, factors: gamble
probability, elicitation condition). As expected, we found a sig-
nificant main effect of reward probability on a gamble’s CE:
higher probability gambles had a higher CE in both animals
(Monkey A: F(8,237) � 444.12, p � 5.2  10�138; Monkey B:
F(8,337) � 241.14, p � 1.4  10�134). We also saw a main effect of
elicitation conditions (Monkey A: F(1,237) � 7.69, p � 0.006;
Monkey B: F(1,337) � 20.21, p � 9.6  10�6), where CEs elicited
in the MIXED condition were significantly different from those
in the REPEATED condition. Adding to this effect, we observed a
significant interaction effect between probability and condition
(Monkey A: F(8,237) � 7.73, p � 3.3  10�9; Monkey B: F(8,337) �
12.56, p � 8.5  10�16), suggesting that the different elicitation
sequences had a more complex effect on CE values than a mere
monotonic increase or decrease. This effect was readily observ-
able from the condition-specific CE distributions (Fig. 2c), where
the concave pattern of the MIXED-condition CEs contrasts with
the S-shaped distribution of the REPEATED-condition CEs.
Analysis of the RTs showed no significant difference across con-
ditions for Monkey A, while monkey B responded faster in the
MIXED than in the REPEATED condition (Fig. 2d). In general,
monkeys showed a consistent RT pattern (Fig. 2-1, available at
https://doi.org/10.1523/JNEUROSCI.1454-18.2018.f2-1): shorter RTs
when choosing higher EV compared to lower EV options, and longer
RTs for smaller EV differences between options.

Sequence-dependent changes in probability distortion
Because CE elicitation rested on reward options that varied in
both magnitude and probability, any risk-preference changes
could be attributed to nonlinear utility, probability distortion, or
a combination of both. To better understand the role of these
decision variables in shaping a gamble’s subjective value, we si-
multaneously estimated the shape of both functions from the
monkeys’ daily binary choices. Using a standard discrete choice

a

b

c

d e

Figure 1. Experimental design. a, Trial sequence. Each trial started with the monkey
moving a white cursor, through left/right arm movements with a joystick, to the center of
the screen. After 0.5–1 s (center holding), two cues appeared indicating the two offered
options (choice period): possible reward magnitudes and probabilities were indicated by
the vertical position and width of a horizontal bar, respectively. A single horizontal bar
represented a sure reward. Two bars represented a gamble with two possible outcomes.
The monkey moved the cursor to the side of the preferred option, within 2 s. After 0.1– 0.2
s (holding time), the juice reward was delivered according to the chosen option’s reward
magnitude and probability. A further 1 s (association period) followed to reinforce the
association between chosen cue and reward. b, Psychometric elicitation of CEs. Left, Three
example gambles with different reward probabilities ( p � 0.3, p � 0.5, p � 0.7) paired
with varying safe magnitudes to elicit each gamble’s CE. Right, Each point represents the
probability of choosing the safe option in choices between a fixed gamble (identified by
the color) and a varying safe magnitude (horizontal axis). Lines are psychometric curves
obtained by fitting a softmax function to the choice ratios. Each line is associated with one
specific gamble and identifies its CE as the magnitude corresponding to a choice ratio of
0.5 (vertical dashed line). c, Task conditions. The CEs were elicited using two sequence
structures: in the MIXED condition, different gambles and different safe options were
randomly intermixed; whereas in the REPEATED condition, the CE measurement for one
gamble was completed before presenting a different gamble. d, Temporal sequence of the
presented gamble EV in the two elicitation conditions for one sample session (first 200
trials). The trial-by-trial variation of the gamble EV highlights the difference in sequence
structure between MIXED (red) and REPEATED (blue) conditions. e, Variability of gamble
EV across consecutive trials. Absolute value of the gamble EV difference (mean � SEM)
between two consecutive trials, showing the main distinction between the two elicitation
sequences: the previous trials’ gamble EV was consistently different from the current one
in the MIXED condition, whereas it stayed constant in the REPEATED condition. *Signifi-
cant difference between conditions (t test).
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model (Eq. 3), we elicited functional parameters that best ex-
plained each animal’s choices between gamble-safe choice pairs
on individual days, assuming nonlinear utility and probability
distortion. The estimation procedure allowed parameters to take
on any value, imposing no constraints beyond the functional
forms of the discrete choice softmax, probability distortion, and
utility curves.

We defined the value of each reward option as the product of
its subjective probability and utility, consistent with prospect the-
ory and other modern decision theories (Kahneman and Tversky,
1979; Tversky and Kahneman, 1992). As is traditionally done, we
modeled utility through a one-parameter power function. The
simple power function accounted well for risk-seeking (	 � 1),
risk-averse (	 � 1), or risk neutral attitude (	 � 1) for the range
of reward magnitudes. We tested only one model for utility, as
magnitude presentations did not differ across conditions. In-

stead, we sought to optimize our choice model with regards to
subjective probability because CE elicitation sequences differed
in terms of the order in which gamble probabilities were experi-
enced. We tested four classical models of probability distortion to
maximize the reliability of our model in capturing real choices;
two of these functions had one free parameter, and the others had
two. Finally, we defined cumulative log-likelihood functions for
each of these models and estimated the best-fitting parameters
for each decision function through MLE (see Materials and
Methods).

Across all testing sessions, the BIC scores of the Prelec curves
were consistently lower than the one-parameter Tversky and
lower than the Gonzalez models in at least monkeys (Fig. 3a).
However, while the two-parameter Prelec had a marginally lower
BIC score in both animals, the one-parameter Prelec showed had
a marginally lower sum of squared errors between predicted and

a b

c d

Figure 2. Basic choice behavior and estimation of CEs. a, Logistic regression of choice behavior. Four task variables (gamble EV, safe EV [magnitude], risk variance, gamble position) were used
as regressors for the gamble choice. Positive standardized coefficients for gamble EV and risk indicated that monkeys preferred gambles with higher EV to gambles with lower EV, and more risky
gambles to less risky ones. Negative coefficient for safe EV confirmed that monkeys preferred higher reward magnitudes to lower ones. The positive position factor for 1 monkey indicated a side bias,
which was taken into account by repeating all choice pairs with inverted left-right positions.* Significant regression coefficient (one-sample t test). b, Psychometric estimation of CEs. CEs of two
example gambles with probabilities 0.1 (top) and 0.8 (bottom), estimated in the two different elicitation sequences: MIXED (red) and REPEATED (blue) sequences. The percentages of safe choices
as a function of safe magnitude (circles) were fitted to softmax functions (curves). Vertical lines indicate the gambles EVs (dashed lines). Filled circles represent the CEs. In both monkeys, low
probability gambles (top) had a lower CE in the REPEATED condition than in the MIXED condition, where the CEs were consistently higher than the EVs, indicating risk seeking behavior. High
probability gambles (bottom) showed the inverse pattern, indicating risk seeking behavior only in the REPEATED condition. c, Pattern of CEs across the two elicitation sequences (MIXED vs
REPEATED). Single session CEs (small data points) and average CEs across sessions (large data points) plotted as a function of gamble EV, with cubic spline interpolated curves. The full pattern of CEs
shows a smooth transition from low to high probability gambles in terms of CE difference across the two elicitation sequences. For low probability gambles, both monkeys showed higher CEs in the
MIXED than in the REPEATED conditions; when increasing gamble probabilities, the CE difference across conditions gradually reduced and inverted, resulting in lower CEs in the MIXED than in the
REPEATED condition for high reward probabilities. Single session data points were shifted horizontally (REPEATED condition: left; MIXED condition: right) for visualization purposes. d, Mean RT (�
SEM across sessions) in the two elicitation conditions. RTs for Monkey A were similar in the two conditions (RT difference � 3.0 ms, t(9088) � �0.59, p � 0.56); Monkey B showed faster response
in the MIXED condition compared with the REPEATED condition (RT difference � 30.0 ms, t(22233) ��15.88, p � 1.77  10 �56) (for RT as a function of the options’ EV, see Figure 2-1, available
at https://doi.org/10.1523/JNEUROSCI.1454-18.2018.f2-1). *Significant RT difference between conditions (two-sample t test).
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average experimental CEs (one-factor ANOVA with repeated
measures, Monkey A: F(3,144) � 6.166, pGGc � 5.7  10 4; Mon-
key B: F(3,168) � 3.699, pGGc � 1.3  10�2). We ultimately
selected the one-parameter Prelec due to this lower sum of
squared errors, lower parameter count, and because of its ease of
interpretation: for the curvature parameter 
 � 1, the function
underweighted low probabilities and overweighted high ones, for

 � 1, low probabilities were overweighted and high ones were
underweighted. With an 
 � 1, probabilities were treated lin-
early. Monte Carlo simulations from predefined parameters con-
firmed the reliability of the MLE method for the selected model:
we recovered accurate parameters for both the utility (Fig. 3b)
and probability distortion (Fig. 3c) functions.

Having selected the one-parameter Prelec as the best-fitting
probability distortion function, we estimated the functional pa-
rameters of our choice model (Eq. 3) using the MLE method. The
model was able to capture the characteristic pattern of risk atti-
tudes observed in our experimental data: CEs of low probability
gambles resulted in larger than the respective EVs in the MIXED
condition, whereas CEs of high probability gambles were larger
than their EVs in the REPEATED condition (Fig. 3d, see
Fig. 3-1, available at https://doi.org/10.1523/JNEUROSCI.1454-
18.2018.f3-1 for the full dataset), in accordance with the mea-
sured behavior (Fig. 2b).

We compared daily estimated parameters across CE elicita-
tion conditions for utility and probability distortion (Fig. 4a).
Both animals exhibited convex utility (	 � 1) in the tested range
of 0 – 0.5 ml accounting for risk-seeking behavior, with linearity
only in the case of Monkey B’s REPEATED condition. Importantly,
probability distortions inverted across elicitation condition. In the
MIXED elicitation condition, both animals overweighted low
probabilities and underweighted high ones (
 � 1), whereas they
instead underweighted low probabilities and overweighted high
ones within the REPEATED condition (
 � 1) (Fig. 4b).
MANOVA confirmed the impact of the different elicitation se-
quences on both animals’ choice pattern (Monkey A: F(1,54) �
24.96, Wilks’s � � 0.41, p � 3.85  10�10,  2 � 0.59; Monkey B:
F(1,57) � 40.78, Wilk’s � � 0.31, p � 5.2  10�14,  2 � 0.69) with
only the probability distortion parameter (
) consistently differ-
ent across conditions (Fig. 4a,c). The change in risk-attitude be-
tween the two conditions could therefore, at least in the case of
gamble-safe choices, be reduced to a reversal in the probability
distortion function.

a

b

c

d

Figure 3. Choice model selection and validation. a, Goodness-of-fit for choice behavior us-
ing four models with different probability weighting functions. Bars represent mean BIC values
(�SEM) across all sessions (Monkey A: N � 56; Monkey B: N � 59). BIC scores for daily
parametric fits differed significantly across models (one-factor ANOVA with repeated measures,
Monkey A: F(3,150) � 8.32, pGGc � 3.1  10 �3; Monkey B: F(3,174) � 13.575, pGGc � 5.3 
10 �08). Lower BIC values for the Prelec weighting functions (Prelec-1, Prelec-2) indicate a
better fit of the data compared with the one-parameter Tversky or two-parameter Gonzalez
functions. BIC values for all model pairs, except for Prelec-1 versus Prelec-2, Prelec-1 versus
Gonzalez, Prelec-2 versus Gonzalez in Monkey A, and the Prelec-2 versus Gonzalez in Monkey B,
were significantly different ( post hoc analysis, p � 0.05) for both monkeys. The sum of squared
errors in CE estimation was the lowest in the Prelec models. b, c, Validation of the parameter

4

estimation procedure using the Prelec-1 probability weighting function. Top, Utility (left) and
probability distortion (right) functions used to simulate choices. Bottom, The functions recov-
ered with the MLE procedure. Monte Carlo simulation of choice behavior (using the same num-
ber of trials and the same step-size for magnitude and probability as in the measured data: 9
gamble probabilities, 11 safe magnitudes, 6 trials per gamble-safe pair) was repeated 1000
times, producing the 95% CIs on the parameter estimates (gray areas). Varying the utility
function parameter (	, 0.2–3) while keeping the probability distortion parameter constant
(
 � 0.67) resulted in an unbiased estimate of the utility shape (b). The probability distortion
parameter (
), varying from 0.33 to 3 while keeping the utility shape fixed (	 � 2), was
recovered consistently and without bias (c). d, Modeled versus measured choice behavior. Com-
parison of estimated (curves) and measured (circles) percentage of safe choices as a function of
safe magnitude, for two example gambles (probabilities 0.2 and 0.8) (for the full dataset, see
Figure 3-1, available at https://doi.org/10.1523/JNEUROSCI.1454-18.2018.f3-1). Estimated
choice percentages were computed using the discrete choice model with the MLE-recovered
parameters (Eq. 3, using the Prelec-1 probability weighting function). Red and blue points
represent estimated CEs. Vertical dashed lines indicate EVs. The estimated psychometric func-
tions closely approximated the measured data points, and differences in estimated CEs across
conditions are compatible with the observed data for both low and high probabilities (Fig. 2b).
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The REPEATED condition was a much less complex decision
situation compared with the MIXED one, theoretically allowing
for a simpler choice strategy: it would have been sufficient to
evaluate the certain option, ignoring the gamble option in the
majority of trials, to make choices. We tested for this possibility
by fitting a model with an attentional parameter to the choice
data (Eq. 11). We found that there was no significant difference in
attention given to the safe compared with the gamble option (the
weight parameter was not significantly different from 0.5; Mon-
key A: t(21) � �2.01, p � 5.7  10�2 (t test); Monkey B: t(30) �
�1.25; p � 2.2  10�1), suggesting that both options were fully
considered when making choices in the REPEATED condition.
Furthermore, shorter RTs in the REPEATED condition, expected
if the monkeys ignored the gamble option, were not observed
(Fig. 2d).

Reversal of probability distortion in the
Marschak–Machina triangle
To extend our findings beyond gamble-safe choices, we charac-
terized the choice behavior of 1 monkey in a different set of
gambles using the Marschak–Machina triangle. This diagram was
first introduced as a way of “organizing” a series of anomalies
observed in risky choices, most notably the common ratio and
common consequence effects, which violated the independence
axiom of EU theory (Allais, 1953). Several economic theories
were developed to explain these apparent paradoxes. Each theory
predicted indifference curves with distinctive shapes in the

Marschak–Machina triangle, making it an ideal framework to
evaluate and compare the alternative theories (Machina, 1982).

The use of this diagram, which makes it possible to represent a
more general class of choice options (i.e., gambles with three
fixed outcomes of varying probabilities) (Fig. 5a), allowed us to
extend our results to a wider range of problems. We did this to
test the robustness of the parametric modeling (out-of-sample
test) and, most importantly, to investigate the effect of elicitation
condition from a different perspective: by looking at the change
in direction of indifference lines, which connected points of the
triangle edges (specific two-outcome gambles) for which the an-
imal expressed choice indifference (Fig. 5b), we could quantify
the effects of elicitation condition that were specifically depen-
dent on changes in probability distortion, and independent of
changes in the shape of the utility function.

One of the theoretical consequences of probability distortions
in the Marschak–Machina triangle is that indifference lines
would not be parallel to each other, as in the case of linear prob-
ability weighting, but would instead fan-out or fan-in depending
on the probability distortion (Fig. 5c): an inverse S-shaped prob-
ability distortion would induce fanning-out, whereas an
S-shaped one would result in indifference lines fanning-in.
Fanning-out would indeed correspond to an increase in the
steepness of the indifference lines when shifting “probability
mass” from worse to better outcomes. As steeper lines correlate
with more risk-seeking behavior, fanning-out would imply an
inverse S-shaped probability distortion. The opposite would hap-

a b c

Figure 4. Utility and probability distortion functions in two elicitation conditions. a, Model parameter estimates (mean � SEM across sessions) in the MIXED (red) and REPEATED (blue)
conditions. *Significant differences across conditions (MANOVA). The probability distortion parameter (
) consistently varied across sequence structures in both monkeys: negative log values in the
MIXED condition corresponded to inverse S-shaped probability distortion (
� 1), whereas positive log values in the REPEATED condition implied S-shaped probability distortion (
� 1). Numbers
below the bars indicate effect sizes (Cohen’s d). The utility (	) and softmax (�) parameters significantly differed across conditions only for 1 monkey, with a smaller effect size compared with the
probability distortion parameter. b, Shapes of the probability distortion function (left) and utility function (right) corresponding to the estimated parameters, displaying the consistent difference in
subjective probability evaluation across conditions for both monkeys. c, 2D representation of the utility and probability distortion parameter estimates. Dots represent the simultaneously estimated
utility (	) and probability distortion (
) parameters for single behavioral sessions, with 95% confidence ellipses.
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pen with fanning-in indifference lines, then corresponding to an
S-shaped probability distortion function (Camerer, 1989). Cru-
cially, because the outcome magnitudes used in the Marschak–
Machina triangle are fixed, the fanning direction is independent
of the utility function and is therefore solely determined by the
shape of the probability distortion. In that sense, any observed

change in the fanning direction of the indifference lines with a
change in elicitation sequence could only be due to a change in
the probability weighting function (Fig. 5c).

We used the previously recovered parameters for utility and
probability distortion to estimate the expected pattern of indif-
ference lines in the two experimental conditions: MIXED and

a b

c

Figure 5. Indifference lines in the Marschak–Machina triangle modeling different patterns of probability distortion. a, Representation of gambles in the Marschak–Machina triangle. Schematic
representation of a three-outcome gamble (left): probabilistic combination ( p1, p2, p3) of three fixed magnitudes (m1 � 0 ml, m2 � 0.25 ml, m3 � 0.50 ml), which can be represented in the
Marschak–Machina triangle (right, with example gambles corresponding to points on the triangle edges). Gray line in triangle connects points with equal EV (0.25 ml). b, Procedure for the
psychometric measurement of one indifference line. An indifference point (top, blue dot) in choices between a fixed gamble A and different gambles Bi (circles) was defined as the point on
the triangle hypotenuse for which a softmax function fitted on the ratio of A over Bi choices equated 0.5 (bottom). An indifference line was then constructed by connecting such indifference point
on the hypotenuse to the fixed gamble A (blue line). c, Theoretical indifference lines. Indifference lines predicted by cumulative prospect theory, for different underlying shapes of utility (u(m), power
function) and probability distortion (w(p), Prelec-1 function). Each plot represents the indifference lines corresponding to a particular combination of u and w shapes, represented by orange and
purple lines, respectively. The shape of the utility function (linear in the first row of plots, concave and convex in the other two rows) changes the global orientation of the indifference lines, without
affecting their fanning direction. On the contrary, a change in probability distortion shape corresponds to a change in the fanning direction of indifference lines: a linear probability distortion (first
column) produces parallel indifference lines, whereas S-shaped (second column) and inverse S-shaped (third column) probability distortions correspond to indifference lines fanning-in and
fanning-out, respectively, regardless of the utility function shape.
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REPEATED sequences. We then compared the predicted direc-
tions of the indifference lines with the measured ones. As ex-
pected, the theoretical indifference lines, modeled using the
previously elicited parameters, showed a slight fanning-out pat-
tern for the MIXED condition, where a weakly inverse S-shaped
probability distortion was measured. Conversely, we saw a
fanning-in pattern in the REPEATED condition, for which we
had observed an S-shaped probability distortion (Fig. 6a, left).

The direct experimental measure of indifference lines was per-
formed by presenting the animals with binary choices between a
gamble represented by a fixed point on the triangle edge and one
of several points on the triangle’s hypotenuse. The indifference
line was defined as the segment connecting the fixed point with
the point corresponding to choice indifference on the hypote-
nuse. This procedure resulted in a directional pattern of indiffer-

ence lines compatible with the theoretically predicted one, with
no clear fanning direction of indifference lines in the MIXED
condition, and clear fanning-in in the REPEATED condition
(Fig. 6a, right). We quantified this directional pattern of indiffer-
ence lines using a measure for the fanning direction. The fanning
of indifference lines corresponds to a gradual change in the slope
of indifference lines: when moving from the lower right corner of
the probability triangle to the upper left corner, an increasing
slope would produce fanning-out, whereas a decreasing slope
would produce fanning-in. Following this principle, we statisti-
cally assessed the fanning direction of the indifference lines by
computing a linear regression on the slopes of the indifference
lines. Results show no significant regression slope in the MIXED
condition (R 2 � 0.08, p � 0.50), suggesting no fanning of indif-
ference curves, whereas in the REPEATED condition a significant

a

b c

Figure 6. Effect of CE elicitation sequences on the Marschak–Machina triangle indifference lines. a, Modeled (left) and measured (right) patterns of indifference lines across conditions. Arrows
indicate the direction and amount of shift for three sample indifference points between the MIXED (red) and REPEATED (blue) conditions, highlighting how the model correctly predicted the effect
of condition change. Gray line connects points with the same EV (0.25 ml), representing an indifference line in case of risk-neutral behavior. Numbers define indices for the indifference lines,
corresponding to fixed gambles on the triangle edges (black dots, also represented as visual cues). b, Fanning direction of the indifference lines. Points represent the slope of indifference lines (angle
between each line and the horizontal axis) as a function of indifference line index. Circles represent the model predicted values. Dots represent experimental data. Lines indicate linear regressions,
separately computed on the two task conditions for the model (dashed lines) and the data points (continuous lines). A regression line with negative slope corresponds to a decrease in indifference
line angle, indicating fanning-out; conversely, a positive regression coefficient indicates fanning-in of indifference lines. c, Statistical comparison between model and experimental data. Shift in
location of indifference points across elicitation sequences (average difference � SEM). A linear regression between the modeled and measured shifts (inset) confirmed the match between model
and data in terms of predicted shift in indifference points, corresponding to a correct prediction of the change in the fanning direction across conditions.
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linear regression (R 2 � 0.98, p � 4.4  10�6) indicated fanning-
out of the indifference lines. These results are consistent with
predictions from the modeled indifference lines, which show a
similar pattern of fanning directions (Fig. 6b).

We statistically compared the measured and predicted pat-
terns of indifference lines by calculating the shift in the location of
indifference points across conditions, corresponding to changes
in the slope of indifference lines. A significant correlation be-
tween the predicted and measured shifts (Pearson’s correlation
coefficient r � 0.78, p � 4.0  10�3) confirmed that the experi-
mental data complied with our theoretical predictions (Fig. 6c)
and supported the finding that probability distortion drove the
change in risk attitude between REPEATED and MIXED
conditions.

The effect of trial history on the probability distortion
Because the structure of elicitation sequences appeared to affect
probability distortions specifically, we investigated whether the
differences in choice behavior could be explained in relation to
past experiences, or trial history. One key difference between
elicitation sequences was the order of the probabilities presented
on the screen. In the MIXED sequences, the monkeys were much
more likely to have experienced different gambles in their imme-
diate past than in trials from REPEATED sequences, where the
same gamble was repeated numerous times. Consequently, while
the range of probabilities, magnitudes, and safe outcomes was
identical in both conditions, the variability of past gambles was
significantly different between the two conditions (Fig. 1d,e).

Because human and nonhuman primates, much like rodents,
often base part of their risky decisions on recent experiences
(Nowak and Sigmund, 1993; Barron and Erev, 2003; Marshall
and Kirkpatrick, 2013; Hayden et al., 2008), we again ran a logis-
tic regression on the probability of choosing the gamble option:
this time to verify whether the EV of past gambles had any impact
on the animals’ decisions (Eq. 14). We found that, in the MIXED
condition, both monkeys made use of at least one past gamble to
make their decision (Fig. 7a). The monkeys appeared to bias their
choices in favor of the gamble (positive regression coefficient)
when the prior gamble’s EV was higher. In game-theoric terms,
and taking the gamble’s EV as a proxy for its “win rate,” monkeys
seemed to follow a WSLS strategy, whereby receiving a reward
from a risky choice option increased the likelihood of choosing a
similar option again; the opposite was true for choices where the
risky option resulted in a loss (no reward). To validate this hy-
pothesis, we applied a WSLS-compatible model (Eq. 15) on the
immediate trial history of both monkeys, looking at their propen-
sity to choose a gamble over a safe outcome when they had pre-
viously chosen a gamble and won (Fig. 7b). As expected, we found
a significant effect of both the current gamble’s EV (one-sample t
test, Monkey A: t(50) � 29.41, p � 3.19  10�33; Monkey B: t(58)

� 32.28, p � 9.38  10�39) and the current safe outcome’s EV on
the likelihood of choosing a gamble (one-sample t test, Monkey
A: t(50) � �38.71, p � 6.05  10�39; Monkey B: t(58) � �46.19,
p � 1.9  10�47). Both monkeys had a small but significant side
bias (one-sample t test, Monkey A: t(50) � �4.59, p � 2.97 
10�5; Monkey B: t(58) ��2.55, p�1.310�2). More importantly,
there was a significant positive effect of “winning” the preceding
gamble on the likelihood of selecting the gamble option again, re-
gardless of value (one-sample t test, Monkey A: t(50) � 10.75, p �
1.3  10�14; Monkey B: t(58) � 8.32, p � 1.76  10�11). In other
words, receiving a reward from a risky gamble made the next gamble
more attractive relative to the safe outcome.

We investigated this effect further, by estimating separate util-
ity and probability distortion parameters in trials where a past
gamble had been selected and “won” and in trials where the past
selected gamble had been “lost.” Due to lower trial counts per
session after this trial selection, all sessions were pooled for each
condition. In both animals, the utility function estimated from
the former class of trials was more convex than the utility esti-
mated from unrewarded trials (Fig. 7c). Probability distortions,
however, were not consistently different between these two
classes of trials, maintaining their respective inverse-S and S
shapes for MIXED and REPEATED conditions. Much like in the
logistic regression, these results suggested a tendency to choose
the gamble option more often after rewarded (win) trials, com-
pared with unrewarded trials (a more convex utility function
corresponding to stronger risk-seeking behavior). What it also
highlighted, however, was a change in the relative value distribu-
tion between gambles and safe options: one that varies with past
experience. In other words, gambles following a rewarded trial
would be of higher relative value for the monkeys than those
following unrewarded trials, at least in terms of safe rewards.

Past win or lost effects on subjective value could account for
some of the gap in probability distortion observed across our two
conditions. A MIXED sequence of gambles would drive sub-
jective value estimates in an opposing pattern to that of a
REPEATED elicitation sequence simply due to task structure. In
the case of MIXED sequences, the random distribution of gamble
probabilities would indeed result in an inverse-S probability dis-
tortion. Gambles with probabilities �0.5 would, more often than
not, follow a gamble of lower EV; the monkey would then, on
average, be less likely to pick said gamble due to the decrease in
subjective value estimate following lower past returns. This
would drive down the CE value of high probability gambles. In
the case of low probability gambles, high past returns would drive
CEs up. From this, we would expect an opposing distortion pat-
tern in a REPEATED condition. For any gamble, the CE value
would be distorted in a way proportional to its own probability: a
low probability gamble would be driven down in value by re-
peated experience, whereas a high probability gamble would see
its value go up. A change in gamble value, rather than a simple
WSLS strategy, might also have longer lasting effects and could
explain the persistence of sequence-type effects when looking at
choices in the Marschak–Machina triangle paradigm.

To test this hypothesis directly, we developed a simple rein-
forcement learning model in which gamble values were updated
based on the previous trial’s outcome: the value of a gamble in-
creased by a fixed amount after a win and decreased by the same
amount after a loss (Eq. 16). Importantly, in the choice model,
the gambles’ starting values were the respective objective EVs,
which were compared with the objective safe magnitudes to make
choices. No utility or probability distortion was included, only
the previous choice softmax function, and we made no distinc-
tion between parameters estimated in repeated or mixed se-
quences. We again estimated the model parameters through MLE
on each session’s trial-by-trial choice data and retrieved a signif-
icant, mean value-updating parameter for both monkeys (Mon-
key A:  � 4.5  10�3 � 9.0  10�4 SEM; t(55) � 4.96, p � 7.1 
10�6; Monkey B:  � 4.1  10�3 � 5.8  10�4 SEM; t(58) � 7.1,
p � 2.0  10�9). The value of  corresponded to the fixed
amount of value being added to or removed from the gamble’s
subjective value estimate following “win” and “lose” trials,
respectively.

After running the estimation procedure on all sessions, we
tested whether the average observed value-updating parameter
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could explain the different CE distribu-
tions seen across the MIXED and RE-
PEATED conditions. We computed CEs
from simulated choices using the learning
model defined above (Eq. 16), using the
mean recovered softmax and value-
updating parameters, still holding utility
and probability weights linear. The result-
ing pattern of simulated CEs (Fig. 7d) fol-
lowed the experimental pattern. In
particular, it captured the clear separation
between the two CE elicitation sequences.
Although this model appeared to have a
higher BIC score than the “classical” pros-
pect theory model (Eq. 3) (Monkey A:
BICEq16 � 160.7, BICEq3 � 137.5, t(55) �
6.92, p � 5.01  10�9; Monkey B: BICEq16

� 419.8, BICEq3 � 392.7, t(58) � 4.69, p �
1.70  10�5), it accounted for the change
in the pattern of CEs across both condi-
tions using a single set of parameters.
Conversely, two different sets of parame-
ters were necessary for the prospect theory
counterpart to capture the different CE
patterns.

Together, these results suggest that a
simple value-updating mechanism that
modifies gamble values based on the pre-
vious outcomes, applied to different elici-
tation sequences, would be sufficient to
induce a reversal in the observed proba-
bility distortion patterns of monkeys dur-
ing choice.

Discussion
This study demonstrated that the shape
of the probability weighting function
guiding value-based choices in monkeys
depended largely on the task’s sequence
structure. When deriving CEs from se-
quences in which different probabili-
stic rewards pseudorandomly alternated

a b

c

d

Figure 7. Sequence-dependent effects of trial history on probability distortion shape. a, Influence of past trials on current trial’s
choice. Standardized regression coefficients (mean � SEM across sessions) for current trial’s gamble EV, safe reward magnitude,
and previous trials’ gamble EV (up to eight trials in the past). *Coefficients significantly different from zero (t test). For both
monkeys, the choice behavior depended on at least one trial in the past. Positive regression coefficients indicated that an increase
in the previous trial’s gamble EV induced the monkeys to choose the current trial’s gamble option more frequently. b, Effect of the
past outcomes on gamble choices. Standardized regression coefficients (mean � SEM across sessions) for gamble EV, safe mag-
nitude, previous trial’s gamble outcome (0 or 0.5 ml), and gamble position. A significant positive coefficient for the previous
outcome indicated that monkeys chose the gamble more often when the previously chosen gamble was successful (0.5 ml) than
when it was not successful (0 ml): the gamble was chosen more after a win than after a loss. In terms of BIC score, this model (Eq.
15) was at least as good at describing the choice data compared with the model with no past trials’ influence (Eq. 2) (Monkey A:
BIC2 � 84.2, BIC14 � 82.3, t test: p � 0.14; Monkey B: BIC2 � 221.4, BIC14 � 215.8, t test: p � 5.8  10 �5). c, Effect of past
outcomes on the utility and probability distortion functions. The utility function appeared more convex following

4

a gamble-win trial (0.5 ml reward) than following a loss (no
reward), suggesting that gamble outcomes had an influence
on the relative value of gamble and safe options on the next
trial. The utility parameter estimates following win and loss
trials are indicated as 
W and 
L, respectively, whereas prob-
ability distortion parameter as 	W and 	L, respectively. Ar-
rows indicate the change in the utility parameter between loss
and win trials. Error bars indicate the 95% CIs of the parameter
estimates. d, Simulated effect of EV update mechanism based
on past outcomes. Mean � SEM across simulated sessions
(N � 50) of the CE resulting from choices simulated using the
learning model (Eq. 16) in MIXED and REPEATED conditions.
The parameters used in the simulation were recovered from
the MLE procedure with the same model separately for each
monkey. Linear probability weighting and linear magnitude
coding were used in the simulation, demonstrating that an EV
update mechanism interacting with the local trial structure
could explain the observed change in risk attitudes across con-
ditions without explicitly introducing a nonlinear probability
distortion.
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(MIXED), we found that monkeys overweighted low proba-
bility rewards and underweighted high probability ones. Con-
versely, the same CE elicitation method yielded the opposite
choice pattern (underweighting of low probabilities and over-
weighting of high ones) when choice sequences consisted of trial
blocks each containing a unique, REPEATED gamble. By simul-
taneously eliciting utility and probability weighting functions
from each of these elicitation conditions, we showed that the two
opposing choice patterns we observed could be explained by a
reversal of the standard inverse S-shaped probability distortion
function, seen when gambles were MIXED, to an S-shaped distor-
tion when identical gambles were REPEATED. We confirmed and
extended these results by comparing choice indifference lines in the
Marschak–Machina triangle representations of the two elicitation
conditions. The triangle’s indifference maps were compatible with
the observed inversion of probability distortions, preserving the
weighting patterns in trials where no safe options were presented.
Finally, by analyzing both sequence structure and monkeys’ choices
in relation to previous trials, we showed that a past-driven update of
subjective values could partially explain the observed reversal in
probability distortion.

Modern economic theories of choice under risk introduced
distorted probability weightings to account for biases and depar-
tures from expected utility theory’s predictions (von Neumann
and Morgenstern, 1944; Allais, 1953; Kahneman and Tversky,
1979). Since then, the typical finding has been that humans over-
weighted low probabilities, all the while underweighting high
ones (Lattimore et al., 1992; Gonzalez and Wu, 1999; Abdellaoui,
2000; Tobler et al., 2008): an inverse-S probability distortion
(Kahneman and Tversky, 1979). This shape has also been repli-
cated in monkeys (Stauffer et al., 2015), where human-ported
tasks resulted in a reliable inverse-S probability distortion. The
current study ties in with these findings, using a coherent set of
visual stimuli for both gambles and safe reward options to control
for any bias introduced by the different visual representations of
the two option types. Our results, in addition to reliability cap-
turing macaque behavior using modern economic choice theo-
ries, further characterize the effects of sequence structure on
utility and probability distortion.

In contrast to the generally reported inverse-S-shaped proba-
bility distortion, a growing number of studies on human and
animal subjects have highlighted the variability in probability
distortion shapes, both across subjects and between task condi-
tions (Hey and Strazzera, 1989; Bruhin et al., 2010; Farashahi et
al., 2018). Recent work by Farashahi et al. (2018) emphasized the
flexibility of probability weights in adapting to contextual
changes, after finding that S-shaped and linear probability distor-
tions could be elicited in monkeys when performing different
tasks. Our experimental data confirmed this high level of behav-
ioral flexibility in monkeys, whereby directly manipulating the
order of presented gambles in a single task produced opposing
patterns of probability distortion.

Other findings from human experiments suggest that the way
in which probability information is presented could account for
the reported variability in subjects’ risk attitudes. For example,
when reward probabilities are explicitly described (choice from
description) to human subjects, they act as if overweighting the
probability of rare events, but when probabilities are learned
from experience (choice from experience), subjects choose as if
underweighting the probability of rare events. This effect has
been aptly referred to as the description-experience (DE) gap
(Hertwig et al., 2004) and appears to extend to other primates.
Indeed, monkeys have been shown to be more risk-seeking for

experienced than for described gambles, suggesting a similar DE
gap effect in nonhuman primates (Heilbronner and Hayden,
2016). Whereas some authors have called for two separate theo-
ries explaining choices from description and choices from expe-
rience (Hertwig and Erev, 2009; Abdellaoui et al., 2011), others
have suggested that prospect theory could effectively describe
choice in the two situations when allowing for a change in the
probability distortion function between the two settings (Unge-
mach et al., 2009; Frey et al., 2015).

While the dichotomous choice patterns we observed are com-
parable with those described in the DE gap studies, here the cues
representing reward probabilities were identical in the two se-
quence conditions. In both MIXED and REPEATED sequences,
probabilities were described explicitly through cues, learned
from experience by the animals; the conditions only differed in
the presentation order of the probability information. While the
task design was different from previous human DE studies in this
respect, the repeated sampling of outcomes typically used to
“learn” the value of risky prospects in choices from experience
(for review, see Wulff et al., 2018) echoes the repetitive structure
of our REPEATED sequence; conversely, described prospects are
typically presented in a less structured, randomized sequence,
analogous to our MIXED condition. While a direct comparison
remains to be made, findings in both the DE gap experiments and
in the present study suggest that past trial outcomes play a role in
shaping the subjective perception of reward probabilities.

Sampling bias has been identified as a source of variability in
probability distortions, particularly in relation to the DE gap.
Indeed, sampling bias is particularly problematic in “experi-
enced” conditions due to the limited number of trials used in
learning the options’ values: with small sample sizes, low proba-
bility gambles are often rewarded less frequently than would be
prescribed by their nominal probability (Hertwig and Erev, 2009;
Hertwig and Pleskac, 2010; Camilleri and Newell, 2013). The use
of identical descriptive cues and elicitation procedures in the
present study ensured that similar sampling sizes were applied,
and indeed required, to estimate CEs for every gamble. Any bias
would therefore affect the two conditions in a similar manner.
With no obvious sampling biases, our data suggest that the DE
gap could be modeled on the probability distortion changes we
observed across task conditions, and that much like in the present
study, the observed changes in risk-preferences from described to
experienced reward probabilities, might result from differences
in the task’s presentation order of probability information.

A final source of variability we considered was that the
REPEATED condition was a much less complex decision situa-
tion than the MIXED one: one could ignore the gamble in long,
repeated sequences. However, we found that the animals neither
differentially weighed the options nor made choices faster in the
REPEATED condition, indicating that they were not using widely
differing valuation strategies.

The Marschak–Machina triangle, a diagram widely used in the
economics literature, allows for the intuitive representation of
choices between two- and three-outcome gambles, serving as an
ideal framework for investigating complex economic choice
problems (Machina, 1987; Camerer, 1989). In the current exper-
iment, we elicited indifference points in the Marschak–Machina
triangle representation of the monkeys’ behavior, which crucially
provided a link between animal and human studies. Although full
indifference curves within the Marschak–Machina triangle re-
main to be tested, we showed that indifference points on the
triangle edges complied with economic theories of choice, and
confirmed the reversal of probability distortion across condi-
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tions, this time with probabilistic rewards only. Consequently, we
demonstrated the possibility of rigorous behavioral characteriza-
tion in nonhuman primates, paving the way for future investiga-
tions into the neurophysiological basis of advanced economic
constructs, such as probability distortion, specific economic axi-
oms, or the neural counterparts of alternative economic theories.

In conclusion, our results demonstrated the effect of a task’s
sequence structure on the shape of a monkey’s elicited probabil-
ity distortion, and highlighted the potential influence of past
rewards on subjective value. Moreover, and perhaps most signif-
icantly, these adaptive effects extended through time: the patterns
of indifference lines observed in the Marschak–Machina triangle
after a session of MIXED or REPEATED sequences were compat-
ible with the probability distortion shapes measured in the pre-
ceding CE elicitation session, even though the paradigm used in
the Marschak–Machina triangle was always randomized. In this
sense, the CE elicitation sequences preceding the Marschak–
Machina triangle paradigm might have driven and reinforced a
gap between the subjective values of identical probabilities, one
that influenced choices between gambles in the Marschak–
Machina triangle. The reinforcement learning model we used
supports this hypothesis, implying that each experienced out-
come could reinforce and update the subjective value of proba-
bilities, leading to a flexible and contextually driven judgment of
probabilistic information. More sophisticated models, such as
the addition of a standard Rescorla–Wagner learning rule or a
nonlinear transformation of safe magnitudes to the current value
updating mechanism, could be more biologically plausible and
successful in explaining the choice mechanism, and remain to be
explored. It should be noted that the monkeys’ initial learning/
association phase was not analyzed here in reinforcement learn-
ing terms, as it was performed with imperative trials. A better
understanding of probability learning, and the permanence of
subjective values reinforced across different conditions, could
shed light on the core elements of prospect theory and on the
undeniably adaptive nature of utility and probability distortions.
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