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Utility is the fundamental variable thought to underlie economic
choices. In particular, utility functions are believed to reflect
preferences toward risk, a key decision variable in many real-life
situations. To assess the validity of utility representations, it is
therefore important to examine risk preferences. In turn, this
approach requires formal definitions of risk. A standard approach
is to focus on the variance of reward distributions (variance-risk).
In this study, we also examined a form of risk related to the skew-
ness of reward distributions (skewness-risk). Thus, we tested the
extent to which empirically derived utility functions predicted
preferences for variance-risk and skewness-risk in macaques. The
expected utilities calculated for various symmetrical and skewed
gambles served to define formally the direction of stochastic dom-
inance between gambles. In direct choices, the animals’ prefer-
ences followed both second-order (variance) and third-order
(skewness) stochastic dominance. Specifically, for gambles with
different variance but identical expected values (EVs), the mon-
keys preferred high-variance gambles at low EVs and low-variance
gambles at high EVs; in gambles with different skewness but iden-
tical EVs and variances, the animals preferred positively over sym-
metrical and negatively skewed gambles in a strongly transitive
fashion. Thus, the utility functions predicted the animals’ prefer-
ences for variance-risk and skewness-risk. Using these well-defined
forms of risk, this study shows that monkeys’ choices conform to
the internal reward valuations suggested by their utility functions.
This result implies a representation of utility in monkeys that ac-
counts for both variance-risk and skewness-risk preferences.
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Future rewards can rarely be predicted with complete accu-
racy; often, they are inherently risky. A principled approach

with well-defined forms of risk is therefore highly desirable for a
thorough understanding of economic decisions. Good definitions
of risk are available when considering rewards as probability
distributions of different values. For instance, rewards can fluc-
tuate symmetrically around a mean value, a form of risk captured
by the statistical variance. This simple form of risk is commonly
studied by economists, ethologists, and neurophysiologists (1–9).
Reward distributions are often asymmetrical, however. This
asymmetry can be described formally by considering the statistical
“skewness” or “skewness-risk.” For instance, a tree may usually be
barren but occasionally be rich with fruit (positive skewness), or a
bush may produce a handful of berries most of the time but occa-
sionally yield nothing (negative skewness). Skewness is an important
form of risk that is abundant in natural environments, and thus is
also likely to be of fundamental importance for the animals’ be-
havior. Despite their prevalence in real-life situations, preferences
for these distinct forms of risk are not well characterized.
Classically, risk preferences are derived from formal economic

utility functions (1, 10). These functions describe a nonlinear
processing of reward magnitude: Doubling an amount of money
may not double its utility, for instance. Fig. 1A shows how a typical
utility function leads to lower utility for gambles with higher mean-
preserving variance (blue), which should result in an aversion to

variance-risk. Fig. 1B shows how the same utility function yields a
higher utility for positively skewed gambles (red), which should
result in a preference for skewness-risk, despite such gambles of-
fering a return below the statistical expected value (EV) most of
the time. Overall, this one utility function (Fig. 1) predicts an
aversion for variance-risk but a liking of positive skewness-risk.
This example illustrates how variance-risk and skewness-risk
preferences are independent of each other but can still both be
accounted for by utility functions (11).
We investigated the predictions of empirical utility functions

for both variance-risk and skewness-risk in rhesus monkeys. The
use of monkeys allowed us to extend the validity of utility func-
tions to a close evolutionary relative of humans (i) without in-
terference by language, (ii) with real-world rewards (milliliters of
juice) instead of hypothetical outcomes, and (iii) in a situation that
is suitable for later neuronal recordings [the problem of situation
dependency has been highlighted before (12)]. Specifically, we
examined how the utility function of each animal predicted the
observed choice preferences for gambles with different variance-
risk and skewness-risk. In a series of gambles, we manipulated EV,
variance, and skewness independently. We estimated with psy-
chometric methods an empirical utility function for each animal
and calculated the expected utility (EU) of each gamble. These
procedures defined the descending or ascending (13, 14) direction
of second-order (variance) and third-order (skewness) stochastic
dominance of the gambles. Then, we used direct choices to test
whether the monkeys’ preferences abided by the dominance re-
lationship between the gambles. The monkeys’ preference between
gambles consistently matched the predictions of the monkeys’ EUs.
These results demonstrate, across different forms of risk, the val-
idity of utility as an internal measure of reward value.

Results
Experimental Design and Behavior. Two monkeys made choices
between reward-predicting visual stimuli presented on a com-
puter monitor in front of the animal, using a joystick (Fig. 2A).
Liquid reward (diluted blackcurrant juice) was delivered by means
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of a computer-controlled solenoid liquid valve (0.004 mL/ms
opening time, R2 > 0.99; Fig. S1A). The monkeys were rewarded
on every correct trial to maintain motivation, and not based on a
randomly selected trial as in human studies. Potential satiety ef-
fects were controlled for by pooling choices across and within
sessions and by limiting session length. The visual stimuli were
horizontal bars; their vertical position indicated the volume of
juice the monkey could receive when choosing that option. Stimuli
with two, three, or four horizontal bars indicated an equiprobable
gamble between the indicated magnitudes (Methods). Importantly,
these stimuli enabled independent changes in EV, variance, and
skewness of the reward distribution (Fig. 2B). We studied choices
between equiprobable gambles and safe rewards, or between
equiprobable gambles with the same number of outcomes, thus
avoiding differences in probability distortion. In control choices
between two safe rewards, both animals chose the higher magni-
tude option in most trials, suggesting proper understanding of the
bar stimuli (Fig. S1B).

Estimating Empirical Utility Functions. To assess the EU of each
gamble, we estimated Von Neumann–Morgenstern utility func-
tions under risk (10, 15). We estimated, separately for each an-
imal, utility functions from psychometrically measured certainty
equivalent (CE) for binary, two-outcome gambles (8, 16) (Fig. S2
A and B), using a fractile procedure that iteratively sections the
full reward range according to the obtained CEs (Fig. S2C and SI
Methods). We selected a broad reward range (0.1–1.3 mL) to
capture both risk-seeking and risk-avoiding behavior. We esti-
mated the underlying function using piecewise polynomial fits

(cubic splines partitioned in three equal segments across the 0.1-
to 1.3-mL range).
As observed previously (8), monkeys were risk-seeking for

small rewards (convex utility function between 0.1 and 1 mL) and
risk-avoiding for larger rewards (concave utility function above
1 mL) (Fig. 3A). To verify the predictive power of the utility
functions, we used these utility functions to calculate the EUs of
new two-outcome gambles. We then measured psychometrically
the animals’ CEs for these gambles. The predicted EUs matched
the utility of the measured CEs (Deming regression; Fig. S2D).
To assess further the predictive power of the curvature of the utility
function, we subtracted the utility of the EV of the gambles from
the EU and from the utility of the CE. Even after removing the
intrinsic correlation between EVs and EUs, the utility functions
continued to predict the utility of new binary gambles (Fig. S2E).
Using the fractile procedure on smaller ranges of the utility

function (0.1–1.0 mL and 1.0–1.3 mL) led to very similar overall
curvature between the compound and the whole-range utility
function (Fig. S2F). A Deming regression showed good corre-
lation between the CEs predicted from the compound utility
function and the whole-range utility function (R2 = 0.99; Fig.
S2G). This result indicates little to no range adaptation of these
utility functions in these experiments lasting several months in
each animal.
Reaction times are often used as a blunt proxy for subjective

reward valuations. In an imperative task without choice, the ani-
mals moved the joystick to a single safe or two- or three-outcome
gamble. The reaction times correlated better with the EUs of
gambles than with their EVs (R2 = 0.76, P = 0.012 for EV com-
pared with R2 = 0.80, P < 0.01 for utility, single linear regressions;
Fig. S2 H and I, respectively). These data are compatible with the
notion that the animals’ behavior was based on nonlinear, sub-
jective utility rather than on linear, objective reward magnitude.
We performed a control experiment to ensure that the small

rewards (<0.1 mL) did not have negative net utility due to the
effort cost associated with joystick movement. We limited the
maximum reward per joystick movement to 0.1 mL and tested
monkey B for 2 d in an imperative task for 2.5–3.0 h each day,
resulting in 1,500 trials (84.2% correct). This result indicated
that the net utility provided by a reward of 0.1 mL minus the
effort cost of joystick movement was not negative and that the
entire range of 0.1–1.3 mL of juice was within the gain domain.
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Fig. 1. Independent variance-risk and skewness-risk preferences indicated
by a logarithmic utility function [y = ln(x + 1)/0.81]. (A) Variance-risk with
symmetrical, three-outcome, equiprobable gambles with a different mean-
preserving spread (identical EV = 0.6 mL for both gambles; for each out-
come, P = 1/3). The gamble with lower variance-risk (red, low VA) has higher
EU (numbers to the left) than the gamble with higher variance-risk (blue,
high VA). A decision maker with such a utility function should prefer the red
gamble. (B) Skewness-risk with asymmetrical, three-outcome, equiprobable
gambles with identical EV and variance. The EU of the positively skewed
gamble (red, +SK) is higher than the EU of the negatively skewed gamble
(blue, −SK). A decision maker with such a utility function should prefer the
positively skewed gamble. SK, skewness.
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Fig. 2. Behavioral task and gambles. (A) Binary choice task. The animal
chose one of two gambles with a joystick and received one of the chosen
gamble’s rewards. Bar heights in each gamble indicate reward magnitude,
and each reward was delivered pseudorandomly with equal probability
(here, P = 1/3). (B) Typical gambles with three pseudorandomly alternating
equiprobable outcomes (each P = 1/3). The EV, VA, and SK of each gamble
were set independent of each other.
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First-Order Stochastic Dominance: Preferring “More” to “Less”. First-
order stochastic dominance describes the property of a gamble
with outcomes at least as good as another gamble and with at
least one strictly better outcome, as illustrated by cumulative
distributions (Fig. S3A and SI Methods). This dominance re-
lationship requires minimal assumptions that are fulfilled by the
estimated animals’ utility function (strictly increasing value func-
tion) (Fig. 3A). Before using the three-outcome gambles shown in
Fig. 2B more extensively, we investigated whether the monkeys’
choice behavior reflected a meaningful understanding of the bar
stimuli and their associated probabilities. The animals’ choices
followed the first-order stochastic dominance of three-outcome
gambles that differed from each other only by one of the outcomes
offered (Fig. 3B, Inset). In such pairs of gambles, the gamble with
the higher outcome is first-order stochastically dominant, and thus
should be chosen in more than 50% of trials (17). Indeed, both
monkeys preferred the dominant gamble in >60% of trials, with
little day-to-day variation (P < 10−5 for both animals, two-tailed
binomial test; Fig. 3B). Thus, the bar stimuli predicting three-
outcome gambles were well understood, and the behavior was
meaningful and consistent with utility maximization.
The presence of dominated choices in a minority of trials may

reflect the fact that the dominant gamble was negatively skewed
and that its visual stimulus resembled the visual stimulus of the
dominated gamble in the third-order stochastic dominance test
(discussed below). Further factors could be inattention, explora-
tion for possibly improved outcomes, and neuronal noise during
decision making. Future experiments with more daily trials of a
given test might dissociate between these factors.

Variance-Risk and Second-Order Stochastic Dominance. Second-
order stochastic dominance is a property of a gamble that describes
how a mean-preserving spread (identical EV but greater variance)
of the reward distribution should influence choices, given a specific
variance-risk preference (17) (Fig. S3B and SI Methods). The as-
cending or descending direction of second-order stochastic domi-
nance depends on the animal’s valuation of variance-risk (13, 14).
Specifically, a higher variance gamble would be (descendingly)
second-order stochastically dominant if variance-risk adds to
utility. We determined second-order stochastic dominance be-
tween the gambles to assess how the animals’ valuations of vari-
ance-risk, as expressed by EUs, predicted the animals’ choices.
To assess the influence of variance-risk on the animals’ valu-

ations of the gambles, we placed three-outcome gambles with
identical EV but different variance (mean-preserving spread)
(Fig. 2B) on convex parts of the utility functions and calculated
the gambles’ EU. The gamble with a greater variance was asso-
ciated with a higher EU than the gamble with a lower variance

(Fig. 4A). Thus, the animals’ utility function defined the gamble with
the higher mean-preserving spread as second-order stochastically
dominant.
We then estimated directly the CEs of these gambles. The

higher variance gamble had significantly greater CEs than the
lower variance gamble (P < 10−4 for both monkeys, two-sample
t test; Fig. 4B). Moreover, the CEs predicted from the gambles’
EUs (Fig. 4B, red dots) did not differ significantly from the
psychometrically estimated gambles’ CEs (P > 0.25 for both
gambles in both monkeys, one-sample t test). Thus, the animals’
utility functions and the CEs provided similar estimation of value
for gambles varying only in variance-risk.
To test whether these valuations corresponded to observable

variance-risk preferences, we examined direct choices between
gambles with different mean-preserving spreads and found that
both animals preferred the higher variance gamble, shown above
to be second-order stochastically dominant (P < 0.01 and P < 10−27

for monkeys A and B, respectively; two-tailed binomial tests; Fig.
4C). Further tests refined this finding. When the lower, convex part
of the utility function assigned (descending) second-order sto-
chastic dominance to the higher variance-risk gamble, the animal
accordingly preferred this riskier gamble (P < 10−10 for monkey B,
two-tailed binomial test; Fig. 4D, Left). By contrast, when the
upper, concave part of the utility function assigned (ascending)
second-order stochastic dominance to the lower variance-risk
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gamble, the animal accordingly preferred the lower variance-risk
gamble (P = 0.016 for monkey B, two-tailed binomial test; Fig.
4D, Right). However, as with first-order stochastic dominance,
the animals chose the dominated gambles in a nonnegligible
fraction of trials.
In many of the gamble pairs, the dominant gamble also had the

largest possible outcome, indicated by the highest stimulus bar
[Fig. 4 C and D (Left), Insets], and the monkeys might have
implemented simple “choose gamble with highest bar/highest top
outcome” heuristics. However, in the risk-averse range, at high
EV, the animal preferred the gamble with the lower maximum
outcome [Fig. 4D (Right), Inset]. Therefore, the highest bar’s height
would not explain the observed preferences. A similar conclusion
had been reached in experiments investigating variance-risk pref-
erences with fractal stimuli (4).
Taken together, the observance of second-order stochastic

dominance defined by the valuation of variance-risk suggests that
the animals’ behavior was governed by a meaningful represen-
tation of nonlinear utility rather than by the EV (which remained
constant between gambles).

Skewness-Risk and Third-Order Stochastic Dominance. Third-order
stochastic dominance is a property of a gamble that describes
how the degree of asymmetry of the reward distribution (with

constant EV and variance) should influence choice preferences
(18) (Fig. S3C and SI Methods). The direction of the third-order
stochastic dominance between the gambles depends on the ani-
mal’s valuation of skewness-risk (14). Specifically, a positively
skewed gamble would be third-order stochastically dominant if
positive skewness-risk adds to utility. We determined the di-
rection of third-order stochastic dominance to assess how the
animals’ valuation of skewness-risk, as expressed by EUs, pre-
dicted their choices.
We calculated the EUs of skewed three-outcome gambles with

identical EV and variance (Fig. 5A, Inset). In both monkeys, the
positively skewed gamble had a higher EU than the negatively
skewed gamble (Fig. 5A). This difference defined the positively
skewed gamble as third-order stochastically dominant.
We then estimated the CEs and found significantly greater

CEs for the positively skewed gamble compared with the CEs of
the negatively skewed gamble [P < 10−3, n = 6 full psychometric
curves; P < 10−4, n = 40 parameter estimation by sequential
testing (PEST) procedures; two-sample t tests; Fig. 5B]. Indeed,
the CEs increased as the skewness of the gamble went from
negative through zero to positive (β = 0.11, P < 10−3 and β =
0.094, P < 10−4 for monkeys A and B, respectively; linear re-
gression; CEs acquired by PEST; Fig. 5C). The CEs predicted
from the gambles’EUs (Fig. 5C, red dots) did not differ significantly
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gambles with identical EV and variance (n = 359 trials in 7 d and n = 500 trials in 13 d). ****P < 10−6. (E) Satisfaction of transitivity. Monkey B chose, re-
spectively, a positively skewed gamble over a symmetrical gamble (a ≻ b), a symmetrical gamble over a negatively skewed gamble (b ≻ c), and a positively
skewed gamble over a negatively skewed gamble (a ≻ c) (n = 250 trials in 6 d, n = 250 trials in 6 d, and n = 500 trials in 13 d, respectively). The horizontal red
line defines strong transitivity. *P = 0.023; ****P < 10−5. (F) Skewness preference at low EV. Monkey B chose between a positively and negatively skewed
gamble with identical EV and variance (n = 500 trials across 4 d). ***P < 10−3. (G) Skewness preference with four-outcome gambles (identical EV and variance).
Monkey B chose a positively skewed gamble over a negatively skewed gamble (n = 500 trials across 5 d). ***P < 10−3. (H) Skewness preference opposite to
physical reward magnitude. Monkey B chose between a positively skewed gamble (EV = 0.53 mL) and a negatively skewed gamble with slightly higher EV
(0.56 mL) (n = 500 trials in 7 d). ***P < 10−3.
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from the psychometrically estimated gambles’ CEs (P > 0.08 for
both skewed gambles in both monkeys, one-sample t test). Thus, the
animals’ utility functions and the CEs provided similarly valid esti-
mations of value for gambles varying only in skewness-risk.
In direct choices between these gambles, both animals pre-

ferred the third-order stochastically dominant gamble (P < 10−6
for both monkeys, two-tailed binomial test; Fig. 5D). Further
tests confirmed and extended this finding. A positively skewed
gamble was preferred to a symmetrical gamble, which was, in turn,
preferred to a negatively skewed gamble (all gambles matched for
EV and variance) in a strongly transitive (19) manner: Gamble a
was chosen over gamble c more often than gamble a was chosen
over gamble b, or than gamble b was chosen over gamble c (P =
0.023, P < 10−5, and P < 10−18 for monkey B for a ≻ b, b ≻ c, and
a ≻ c, respectively; two-tailed binomial test; Fig. 5E). This tran-
sitive preference ranking between the gambles matched the EUs
and the third-order stochastic dominance ranking, demonstrating
consistent choices under skewness-risk.
Several control tests confirmed the robustness and consistency

of the positive skewness-risk preference. Similar positive skew-
ness-risk preference was found with a pair of gambles that were
set at a lower EV (P < 10−3 for monkey B, two-tailed binomial
test; Fig. 5F). With four-outcome gambles of identical EV and
variance, the EUs were again higher for positive than negative
skewness (0.263 vs. 0.214 utils, respectively), and the monkeys
correspondingly preferred positive to negative skew (P < 10−3 for
monkey B, two-tailed binomial test; Fig. 5G). This result suggests
that the observed positive skewness-risk preference was not ex-
clusive to three-outcome gambles. The preference for positive
skewness existed even when the positively skewed gamble had a
lower EV than the negatively skewed gamble (matched for var-
iance) (P < 10−3 for monkey B, two-tailed binomial test; Fig.
5H). Despite the occasional choice of the dominated gamble, the
data from these direct choices further demonstrate the power of
the positive skewness-risk preference.
Taken together, the observance of third-order stochastic dom-

inance suggests that the prediction of risk preferences by the utility
function was not restricted to variance-risk.

EU Captures Variance and Skewness Information. To have predictive
power, the EU of a gamble should represent all relevant infor-
mation that forms the basis for choices under risk. We therefore
investigated whether the variance and skewness of the three-
outcome gambles added explanatory power to the EUs of the
utility functions estimated from two-outcome, variance-risk gam-
bles. We examined choices (n > 5,500) between three-outcome
and one-outcome gambles. A logistic regression analysis (Eq. 1)
showed that the choices of the monkeys depended on the utility
of the safe option (β = −6.3, P < 10−4 and β = −10.5, P < 10−4 for
monkeys A and B, respectively) and the utility of the gamble (β =
7.8, P < 10−4 and β = 13.9, P < 10−4 for monkeys A and B, re-
spectively), such that a greater utility of the safe option made
choosing the gamble less likely and a greater utility of the gamble
made choosing it more likely. Adding variance of the gamble
(Eq. 2) to Eq. 1 did not significantly improve the model (P = 0.99
and P = 0.88 for monkeys A and B, respectively; F-test on Eqs. 1
and 2); likewise, adding skewness did not significantly improve
the model (Eq. 3) (P = 0.99 and P = 0.88 for monkeys A and B,
respectively; F-test on Eqs. 1 and 3). Thus, the utility functions
estimated from two-outcome gambles fully represented the val-
uation of our three-outcome gambles varying in variance-risk or
skewness-risk. EU alone captured all properties of the gambles
that are relevant for the observed preferences.

Discussion
This study investigated whether utility functions in rhesus mon-
keys explain choice preferences for distinct forms of risk: vari-
ance-risk and skewness-risk. We used choices between safe
rewards and binary gambles to derive empirical utility functions;
these utility functions were convex at lower reward values and
concave at higher reward values. The EU of each gamble calculated

from these functions was used to determine the direction of second-
order and third-order stochastic dominance relationships. We then
used direct choices to determine whether the animals’ preferences
abided by these stochastic dominance relationships. The monkeys
preferred variance-risk at low reward values and showed the op-
posite preference at higher reward values (variance-risk avoid-
ance), as predicted by their utility function. The same utility
functions also predicted the animals’ preference for positively
over negatively skewed gambles (matched for EV and variance-
risk). These findings show that monkeys behaved as if they used a
representation of utility when making choices under variance-
risk and skewness-risk. This result extends the validity of utility as
a theoretical internal measure of value from humans to monkeys.
The estimation of utility functions allowed us to define the

direction of second-order and third-order stochastic dominance
(13, 14). We tested only one statistical moment at a time (vari-
ance or skewness) while holding all other moments constant, and
used equal probabilities for all possible outcomes [avoiding dif-
ferences in probability distortion (20–23)]. With these controls,
positive skewness-risk preference does not derive from variance-
risk preference (11) (Fig. 1). Direct choice data under variance-
risk and skewness-risk could therefore be rigorously linked to
predictions from utility functions. These results provide a co-
herent explanation for the independently observed stronger
variance-risk preferences and higher CEs and EUs with in-
creased mean-preserving spreads in monkeys (4, 8). The results
also account for the positive skewness-risk preference reported
here. To our knowledge, this study represents the first time that
skewness-risk preference has been predicted by an empirical utility
function in monkeys. This result could also help to explain mon-
keys’ choices between nonexplicit pictures associated with com-
plex, skewed reward distributions with various magnitudes and
probabilities in a study that did not assess utility (24). Humans
also display positive skewness preferences (25, 26).
In this study, we formally and precisely linked preferences

under variance-risk and skewness-risk to experimentally esti-
mated utility functions. Importantly, the utility functions esti-
mated from choices between simple two-outcome gambles and
safe options accounted for the variance-risk and skewness-risk
preferences in direct choices between three-outcome options.
This link from the domain of utility function to the domain of
direct choices is crucial for understanding internal utility repre-
sentations, because experimentally measured choices reveal risk
preferences in the most direct way. Indeed, direct choices and
CE comparisons can sometimes yield contradicting preference
rankings (12, 27). We further investigated the predictive power
of these empirically derived utility functions with logistic re-
gression analysis and found that our utility measurements seemed
to capture all of the effect of variance-risk and skewness-risk on
choices. Overall, this study highlights the great predictive power of
utility functions for explaining the behavior of monkeys under
variance-risk and skewness-risk.
The observed transition from variance-risk preference with

small stakes to variance-risk aversion with more substantial out-
comes is consistent with human risk tendencies (28) and confirms
oculomotor choices in monkeys (3–5, 7, 8) [except for one study
that varied reward value by thirst and reported primarily risk
aversion with only very mild risk-seeking behavior with low values
(6)]. Our observed pattern of risk preference cannot be explained
by probability distortion because all outcomes had identical
probability. The good task performance with 0.1 mL of maximal
reward is evidence against the possibility that the initial convexity
of the utility function is due to a net negative utility derived from
low utility outcomes in the presence of movement effort. Thus, the
convex-concave curvature of the utility function seems to reflect
true reward valuations across the whole value range.
It has been suggested that variance-risk attitudes may result

from a two-step process: first, the conversion of safe objective
value into riskless utility and, then, the incorporation of an intrinsic
variance-risk preference into a common utility signal (29). An
extension of the model may postulate the existence of a third
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step to process an intrinsic skewness-risk preference/aversion.
However, in this study, the objective skewness of the gamble
did not add any explanatory power beyond the utility of the
gamble and the utility of the safe option, as shown using a lo-
gistic regression model. This result implies that the effects of
skewness-risk on preferences are fully represented by empirical
utility functions derived from choices under variance-risk.
The prediction of risk preferences by the EUs suggests a valid

representation of the gambles’ values by the monkeys’ convex-
concave utility function. Previous empirical work found utility
function with similar curvature in humans (30) and in macaques
(8). This type of nonlinearity (convex and then concave) is not
uncommon and may originate from known properties of biological
systems. Neuronal responses to stimulus strength in the primary
visual cortex show similar nonlinearity (31). The initial convexity
may represent a “threshold effect”: A minimum stimulus strength
is needed before a neuronal response is triggered, and doubling
stimulus strength may therefore more than double the response
intensity (32), resulting in supralinear curvature. By contrast, the
ultimate concavity with higher reward magnitudes may represent
an adaptive “saturation effect” that accounts for the fact that
beyond a certain stimulus intensity, the neuronal response cannot
increase further (33). Dopamine neurons’ canonical encoding of
reward prediction errors seems to reflect this convex-concave
shape of the utility function (8). We may therefore conjecture that
the nonlinearity of our empirical utility functions could also be
due to such neural phenomena, a hypothesis worthy of further
investigation.

Methods
Animals and Experimental Setup. Two male rhesus monkeys (Macaca
mulatta) were used for this study (weighing 7.6 kg and 8.9 kg) during 6 mo
and 4 mo of daily testing (2–3 h each day), respectively. The Home Office
of the United Kingdom approved all experimental protocols and proce-
dures. During experiments, animals sat in a primate chair (Crist Instru-
ments) positioned 30 cm from a computer monitor. A joystick (Biotronix
Workshop), restricted to left and right movements only, was used by the
animals to report choices. Joystick position data and digital task event

signals were sampled at 2 kHz and stored at 200 Hz (joystick) or 1 kHz.
Custom-made software (MATLAB; The MathWorks) running on a Microsoft
Windows 7 computer controlled the behavioral tasks.

Behavioral Testing. We trained each animal to associate visual cues with dif-
ferent rewardmagnitudes and risk levels to investigate variance-risk; skewness-
risk; first-, second-, and third-order stochastic dominance; whole-range psy-
chophysics; and PEST in pseudorandomly interleaved trials. Each trial (Fig. 2A)
began with a white spot appearing at the center of the monitor. The joystick
had to be kept straight until the central spot disappeared after 1,500–2,500
ms, or else an error sound was played and the trial was aborted. As the central
spot disappeared, two cues appeared at the left and the right of the monitor.
The animal indicated within 2,000 ms its choice by moving a joystick toward
the chosen cue. Then, the unchosen cue disappeared and the chosen cue
remained on the monitor for an additional 500 ms with the joystick held in
position to confirm the choice, or else an error sound occurred and the trial
was aborted. The chosen reward was delivered at offset of the chosen cue,
typically as the animal brought the joystick back to its initial position.

Logistic Regression. We analyzed all correct choices between a multiple-
outcome gamble and a one-outcome safe option, using the following logistic
regression models:

Y∼ β0 + β1uðsafeÞ+ β2uðgambleÞ, [1]

Y∼ β0 + β1uðsafeÞ+ β2uðgambleÞ+ β3varðgambleÞ, [2]

Y∼ β0 + β1uðsafeÞ+ β2uðgambleÞ+ β3skewðgambleÞ, [3]

with u as utility, var as variance, and skew as skewness. Y was set to 1 whenever
thegamblewas chosen and to zerowhen the safe optionwas chosen.Models in
Eqs. 2 and 3 were compared with the reduced model in Eq. 1 with the F-test
(34) to investigate whether the variance and skewness of the gambles
explained any of the variance in the choice data, beyond utility.
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SI Methods
Psychometric Estimations of CEs for Estimating Utility.We estimated
utility functions by measuring the CEs of binary choices using
quantitative psychometric procedures. We defined the CE as the
amount of blackcurrant juice that was subjectively equivalent to
the value associated with each specific gamble. We used two
closely related procedures to measure CEs: psychometric testing
across the whole reward range and the more efficient PEST
procedure (35) that converges on the choice indifference point.
In the full psychometric test (Fig. 2A), we randomly varied the

safe reward across the whole range of values (flat probability
distribution). The safe option value on a given trial was therefore
independent of the animal’s previous choices. We then estimated
the probability with which monkeys were choosing the safe re-
ward over the gamble for a wide range of reward magnitudes.
We fitted the logistic function of the following form, weighted
for trial numbers, on these choice data:

Pðchosing  safe  optionÞ=  
1

1+ e−½α+βðsafe  option magnitudeÞ�,

where α is a measure of choice bias and β reflects sensitivity
(slope). The CE of each gamble was then estimated from the
psychometric curve by determining the point on the x axis that
corresponded to 50% choice (indifference) on the y axis. To
obtain a full psychometric curve, 100–300 trials were required.
Each PEST sequence began with the amount of safe reward

being chosen randomly from the interval 0–1.4 mL. Based on the
animal’s choice between the safe reward and gamble, the safe
amount was adjusted on the subsequent trial. If the animal chose
the gamble on trial t, the safe amount was increased by e on trial
t + 1. However, if the animal chose the safe reward on trial t, the
safe amount was reduced by e on trial t + 1 (Fig. S2B). Initially, e
was large. After the third trial of a PEST sequence, e was ad-
justed according to the doubling rule and the halving rule (31).
Specifically, every time two consecutive choices were the same, the
size of e was doubled, and every time the animal switched from
one option to the other, the size of e was halved. Thus, the pro-
cedure converged by locating subsequent safe offers on either side
of the true indifference value and reducing e until the interval
containing the indifference value was small. The size of this in-
terval is a parameter set by the experimenter, called the exit rule.
For our study, the exit rule was 0.1 mL. When e fell below the exit
rule, the PEST procedure terminated and the indifference value
was calculated by taking the mean of the final two safe rewards.
We collected about 80% of our CEs with this PEST procedure,
each of which lasted for 15–20 trials for a given gamble.
We randomly intermingled PEST procedures between differ-

ent choice sets in a given session, which effectively prevented the
animals from pushing the indifference point toward higher re-
wards. The CEs from PEST procedures and the CEs from full
psychometric curves (in which the animal had no control over the
reward values, which were exclusively set by the experimenter)
should therefore be equivalent. Indeed, direct comparisons of
indifference points between PEST and full psychometric curves
for two-outcome and three-outcome gambles revealed only in-
significant variations (positively skewed gamble: mean CE =
0.83 mL and mean CE = 0.83 mL for psychometric and PEST
tests, respectively, P > 0.9; negatively skewed gamble: 0.72 mL and
0.71 mL for psychometric and PEST tests, respectively, P > 0.7;
two-sample t tests, n = 6 psychometric tests, n = 40 PEST tests).

Constructing Utility Functions with the Fractile Method. We used
CEs obtained by our psychometric procedures to construct each
monkey’s utility function using the iterative, fractile method (2–4)
in the range between 0.1 and 1.3 mL. The utility of 0.1 mL was
arbitrarily set as 0 util, and the utility of 1.3 mL was set as 1 util.
The CE of a binary, equiprobable gamble (P = 0.5 for each out-
come) between 0.1 and 1.3 mL therefore had a utility of 0.5 util
(0 util, p + 1 util, 1 − p) (Fig. S2C, Left). Then, we created two
gambles, one between the first CE and 0.1 mL, and one between
the first CE and 1.3 mL. The CEs of these two new gambles had
utilities of 0.25 util (0 util, p + 0.5 util, 1 − p) and 0.75 util (0.5 util,
p + 1 util, 1 − p), respectively (Fig. S2C, Center and Right). Further
iterations resulted in a more fine-grained function with more
closely spaced utilities.
We then fitted the data acquired in each fractile procedure

using local data interpolation [i.e., splines (MATLAB SLM tool)].
This procedure fits cubic functions on consecutive segments of the
data and uses the least-squares method tominimize the difference
between empirical data and the fitted curve. The number of
polynomial pieces was controlled by the number of knots that were
placed so as to partition the x axis in equal segments. We parti-
tioned the x axis in three equal segments. We obtained confidence
intervals by randomly selecting with replacement (bootstrapping)
one CE per utility level tested and fitting a curve to these CEs. We
could then find the 95% confidence intervals among the CEs
predicted by these curves for each of 1,000 values along the utility
axis (partitioning the utility axis in 0.001-util intervals).

Stochastic Dominance. Stochastic dominance is a relationship be-
tween a pair of gambles based on the gambles’ reward probability
distribution and the utility function of the chooser (13, 14).
For any chooser with a strictly increasing value function, a

gamble is first-order stochastically dominant over another gamble
when its outcomes are at least as good as the other gamble and at
least one of its outcomes is strictly better. For instance, the gamble
0.2 mL, P = 0.33; 0.8 mL, P = 0.33; 1.0 mL, P = 0.33 is dominant
over the gamble 0.2 mL, P = 0.33; 0.4 mL, P = 0.33; 1.0 mL, P =
0.33. Indeed, the 0.2 mL, P = 0.33 and 1.0 mL, P = 0.33 outcomes
are common to both gambles, whereas the 0.8 mL, P = 0.33
outcome is strictly better than the 0.4 mL, P = 0.33 outcome.
Although first-order stochastic dominance implies a greater EV,
the reverse implication is not true. For instance, the gamble
0.1 mL, P = 0.33; 0.8 mL, P = 0.33; 1.0 mL, P = 0.33 has a greater
EV than the gamble 0.2 mL, P = 0.33; 0.4 mL, P = 0.33; 1.0 mL,
P = 0.33; however, it is not stochastically dominant because the
smallest outcome (0.1 mL, P = 0.33) is not at least as good as
0.2 mL, P = 0.33. Graphically, a first-order stochastically dominant
gamble’s cumulative distribution will be “shifted to the right” for
at least one value and will never cross the cumulative distribution
of the dominated gamble (17) (Fig. S3A). Any chooser with a
strictly increasing value function should prefer first-order stochastic
dominant options (but will not necessarily always prefer options
with a greater EV because of risk preferences).
For any decision maker with a convex utility function, a gamble

is (descendingly) second-order stochastically dominant over an-
other gamble when it is a mean-preserving spread (14). For in-
stance, for variance-risk–seeking choosers, the gamble 0.2 mL,
P = 0.33; 0.6 mL, P = 0.33; 1.0 mL P = 0.33 is dominant over the
gamble 0.5 mL, P = 0.33; 0.6 mL, P = 0.33; 0.7 mL, P = 0.33.
Note that both gambles share the same EV but the dominant
gamble has a greater variance; thus, it is a mean-preserving spread
of the dominated gamble. Graphically, (descending) second-order
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stochastic dominance corresponds to the integral of the difference
between the cumulative distribution of the gambles being always
greater than zero (i.e., not crossing the x axis). A second-order
stochastic dominance relationship can only be found between
two gambles whose cumulative distribution functions only cross
once (17) (Fig. S3B). This property is characteristic of a mean-
preserving spread. Thus, whereas first-order stochastic domi-
nance makes minimal requirements on the value function, and
does not rely on a utility function, the direction of a gamble’s
second-order stochastic dominance (ascending or descending)
depends entirely on the decision maker’s utility function, and
more specifically on its curvature, which indicates the valuation
of risk and should predict the risk preference (14).
For any decision maker with a utility function that is increasingly

convex (at low-medium EV; Fig. 3A) or decreasingly concave
(Fig. 1B), a positively skewed gamble is third-order stochastically
dominant over a less skewed gamble (holding EV and variance
constant). For instance, for that decision maker, the gamble
0.32 mL, P = 0.33; 0.42 mL, P = 0.33; 1.06 mL, P = 0.33 is
dominant over the gamble 0.14 mL, P = 0.33; 0.78 mL, P = 0.33;
0.88 mL, P = 0.33. Note that both gambles share the same EV and
variance but the dominant gamble has positive skewness and the
dominated gamble has negative skewness. Graphically, third-order
stochastic dominance corresponds to the second integral of the
difference between the cumulative distribution of the gambles

being always greater than zero (i.e., not crossing the x axis). A
third-order stochastic dominance relationship can only be found
between two gambles whose cumulative distribution functions only
cross twice (18) (Fig. S3C). As with second-order stochastic
dominance, third-order stochastic dominance relies on specific,
although different, characteristics of the utility function.
As stated above, we obtained utility functions by fitting three

cubic polynomials to three equal segments of the 0.1- to 1.3-mL
reward range. The second and third derivatives of each segment
were independent from the second and third derivatives of the
other segments. The gambles we used mostly spanned all three
segments, making it very hard to predict preferences using the
derivatives of our utility function. Indeed, for a function that is
always convex, a mean-preserving spread will always be preferred.
However, for a function that is convex and then concave, a gamble
may not be “fully” in the positive second-derivative section (i.e.,
a small amount of the gamble may “encroach” in the negative
second-derivative section) of the utility function, but enough of it
may still be in that portion of the utility curve for this gamble to be
preferred over a mean-preserving contraction. For this reason, we
did not use derivatives to predict the observed behavior (choice
preferences) but, instead, directly calculated the expected utilities.
These EU measurements have the added advantage of being in-
ternal variables potentially encoded by the brain, a hypothesis that
could be directly tested in monkeys via electrophysiology.
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Fig. S1. Physical and behavioral task controls. (A) Juice delivery calibration curve. Error bars, representing the SD in juice delivery for specific opening times
(n = 5 per opening time), are too small to be seen. (B) Meaningful choices between safe rewards of different magnitude. Both animals consistently chose higher
magnitudes more frequently than lower magnitudes (n = 660 and n = 219 for monkeys A and monkey B, respectively). (Inset) Example of two safe options
(Left, 1.0 mL; Right, 0.6 mL).
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Fig. S2. Utility functions. (A) Full psychometric assessment of CEs. The monkey chose between a safe, adjustable reward and a constant gamble. The safe
reward amount varied randomly on each trial between 0.1 and 1.4 mL, independent of the animal’s previous choice. The curves were derived from logistic
functions fitted to choice frequencies averaged over 30 trials per data point (n = 300 trials for each of the low-EV and high-EV gambles). For each gamble, the
vertical line indicates choice indifference (which defines the CE) and the small marker indicates the gamble’s EV. For the high-magnitude gamble (1.0 or 1.3 mL)
in red, the CE is lower than the EV, indicating risk aversion. For the low-magnitude gamble (0.5 or 0.7 mL) in blue, the CE is higher than the EV, indicating risk-
seeking. (B) PEST procedure. Black traces show tests for a binary gamble (0.1 mL, P = 0.5; 1 mL, P = 0.5). The gamble remains unchanged throughout a PEST
sequence, whereas the safe amount is adjusted based on the previous choice following the iterative PEST protocol (SI Methods). Each data point shows the safe
value offered on that trial (trial 2 is shown in the Inset). The CE of each gamble (blue line) is estimated by averaging across the final two safe rewards of each
PEST sequence. The short blue marker indicates the gamble’s EV. For this low-magnitude gamble, the CE is higher than the EV, indicating risk-seeking.

Legend continued on following page
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(C) Fractile method for estimating utility using two-outcome gambles. In step 1, the CE of the gamble between 0.1 and 1.3 mL (each P = 0.5) was measured
using PEST (SI Methods) (here, CE = 0.95 mL), which corresponds to 0.5 util. In step 2, the CE of the gamble between 0.1 and 0.95 mL was measured (CE = 0.72 mL),
corresponding to 0.25 util. In step 3, the CE of the gamble between 0.95 and 1.3 mL (CE = 1.09 mL) corresponds to 0.75 util. (D) Out-of-sample predictions for eight
and six new gambles not used for constructing the utility functions (n = 38 and n = 30 CEs for monkeys A and B, respectively). All expected utilities were derived
from the respective utility functions shown in Fig. 3A. The black line represents the fit of a Deming regression on the mean utility, and dashed lines indicate the
95% confidence interval from the regression. (E) Same data as in D, but with the EVs removed from the predicted and measured values. The solid line represents
the fit of a Deming regression, and dashed lines indicate the 95% confidence interval from the regression. (F) Compounded smaller range utility functions for
monkey A, measured from CEs of binary equiprobable gambles using the fractile method. The black data points represent the mean CEs for a fractile method over
the full range of 0.1–1.3 mL (n = 40 CEs), the red data points represent the mean CEs for a fractile method over the restricted range of 1.0–1.3 mL (n = 6 CEs), and
the blue data points represent the mean CEs for a fractile method over the restricted range of 0.1–1 mL (n = 19 CEs). The blue-red curve indicates the best-fitting
function for the black data points obtained from cubic spline fitting. The dashed lines represent 95% confidence intervals (obtained by bootstrapping). (G) Good
fits between compound, partial-range, and full-range utility functions. For the out-of-sample predictions, 10 gambles not used for constructing any of these utility
functions were placed on both the compound utility function shown in F (0.1–1.0 mL, blue; 1.0–1.3 mL, red) and the full-range 0.1- to 1.3-mL utility function shown
in F (black dots, same as shown in Fig. 3A, Left). Then, the utilities of the outcomes of the 10 gambles were read on each utility function (y axis), their EUs were
calculated, and their CEs were predicted on the x axis. The line shows the fitted Deming regression between the CEs predicted from the compounded utility
function (blue and red in F) and the CEs predicted from the full-range utility function (black dots in F) (R2 = 0.99). (H) Reaction times of monkey B for choosing one-
outcome, two-outcome, or three-outcome options in an imperative task plotted against the value of the options (n = 2,240 trials across 10 d). (I) Same as in H, but
with reaction times plotted against the utility of the options. Both the value and the utility of the options could explain the variance in the observed reactions
times, but the utility explained more variance.

Fig. S3. Cumulative distributions of gambles defining stochastic dominance. (A) First-order stochastic dominance. Cumulative distribution of two gambles
with distribution F(x) and G(x). The red gamble [F(x)] dominates the blue gamble [G(X)] because its values are always equal to or to the right of the values of
G(x). (B) Second-order stochastic dominance for risk-seeking. (Left) Cumulative distribution of two gambles with distribution F(x) and G(x). (Center) Integral of
the difference between F(x) and G(x) over a range of x. The red gamble [F(x)] is a mean-preserving spread of the blue gamble [G(x)] and dominates the blue
gamble in risk-seekers. (C) Third-order stochastic dominance. (Left) Cumulative distribution of two gambles with distribution F(x) and G(x). (Center) Integral of
the difference between F(x) and G(x) over a range of x. (Right) Integral of the integral of the difference between F(x) and G(x) over a range of x.
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