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SUMMARY

Economic saving is an elaborate behavior in which
the goal of a reward in the future directs planning
and decision-making in the present. Here, we
measured neural activity while subjects formed sim-
ple economic saving strategies to accumulate re-
wards and then executed their strategies through
choice sequences of self-defined lengths. Before
the initiation of a choice sequence, prospective acti-
vations in the amygdala predicted subjects’ internal
saving plans and their value up to twominutes before
a saving goal was achieved. The valuation compo-
nent of this planning activity persisted during execu-
tion of the saving strategy and predicted subjects’
economic behavior across different tasks and testing
days. Functionally coupled amygdala and prefrontal
cortex activities encoded distinct planning compo-
nents that signaled the transition from saving strat-
egy formation to execution and reflected individual
differences in saving behavior. Our findings identify
candidate neural mechanisms for economic saving
in amygdala and prefrontal cortex and suggest a
novel planning function for the human amygdala in
directing strategic behavior toward self-determined
future rewards.

INTRODUCTION

Economic saving is anelaborate formofplannedbehavior charac-

terizedbydynamic,sequential choicesanda focusonself-defined

future reward [1, 2]. Successful saving is a key determinant of the

welfare of individuals and societies, which impacts entire eco-

nomic systems [3]. Theories in psychology, economics, and rein-

forcement learning have identified basic principles that underlie

planned behaviors involving rewards, such as economic saving:

a two-stage process that distinguishes the initial formation of a

behavioral strategy from its subsequent execution [1, 4], and a

valuation component that directs behavioral strategies toward

future rewards [5]. Here, we used fMRI to measure neural activity

in an economic reward-saving paradigm that modeled these

principles by separating the formation of a reward-based strategy

from its execution through sequential choices.
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Based on human lesion [6] and neuroimaging evidence and

single-cell recordings in monkeys [7], cognitive and action plan-

ning are traditionally associated with the frontal lobes. Other pro-

spective functions, such as episodic future thinking and spatial

navigation, are associated with medial temporal lobe structures

[8, 9]. However, much less is known about how the brain

mediates the influence of rewards on planning, despite their

crucial importance in directing strategy formation and execution

[1, 4, 5]. Studies using intertemporal choice paradigms have un-

covered human brain systems for the subjective valuation of de-

layed rewards [10–12]. More recent investigations of complex

multistep reinforcement learning showed that frontal-striatal

systems evaluate reward outcomes associated with externally

defined choice paths [13, 14]. These studies identified critical

neural components for prospective reward valuation but did

not address the key features of planned economic saving, which

involve the internal construction of a reward-directed strategy

and its subsequent execution through choice sequences of

self-defined length [1, 3].

Based on recent single-neuron evidence in non-human pri-

mates [15, 16], we hypothesized that in the current study the

human amygdala would show prospective activity related to

subjects’ economic saving strategies. Our hypothesis was

further motivated by evidence of amygdala functions in basic

reward valuation [17–22], processing of economic choice vari-

ables [23, 24], and decision-making [25–27]. We also expected

the involvement of prefrontal cortex areas, based on their

known valuation, cognitive control, and decision functions

[11, 28–32].

We designed a sequential economic saving paradigm in which

human subjects could form internal strategies to save flavored

liquid rewards that accumulated with interest; subjects later

executed their strategies through choice sequences of self-

defined lengths. Experimental manipulation of reward type and

interest rate elicited individual differences in saving strategies.

We used primary rewards because they elicit distinct subjective

preferences [20] and related activations in human reward and

decision systems [11, 19, 33], and because they induce ‘‘visceral

temptations’’ that promote variation in saving behavior, as

shown in previous experimental studies of real-life saving

decisions [3].

We observed prospective amygdala activations that predicted

subjects’ internal saving strategies up to two minutes before

their behavioral completion. This prospective activity encoded

two crucial planning components: the number of forthcoming

choice steps implied by the current saving strategy, and their
e Authors. Published by Elsevier Ltd.
commons.org/licenses/by/4.0/).
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Figure 1. Economic Saving Task and

Behavior

(A) Subjects planned and performed choice se-

quences of self-defined lengths to save different

types of liquid reward that accumulated according

to a given interest rate. Each sequence was defined

by a combination of offered reward type (high-fat

versus low-fat drink) and interest rate (high versus

low), constituting a two-by-two factorial design. The

task allowed subjects to plan their behavior up to

2min in advance (up to 10 consecutive save choices

with �13 s cycle time, following the �13 s planning

phase). Randomized left-right positions of the save

and spend cues on each trial precluded planning of

action sequences.

(B) Example saving sequence in which the subject

spent on the eighth trial.

(C) Experimental conditions and pre-trained cues.

(D) Saving behavior in a representative subject. Bars

show relative frequencies with which the subject

produced different choice sequences. Green curves

show reward magnitude increases over sequential

save choices.

(E)Savingbehavioracrosssubjects.Thegraphshows

saving index (based on mean sequence lengths) for

individual subjects (gray) and mean across subjects

(black). Subjects saved longer (higher saving index)

when interest and fat content were high.

(F) Saving behavior modeled by subjective values. The graph shows a logistic regression of trial-by-trial save-spend choices on current sequence value (i.e., the

value associated with spending on the current trial, derived from choice frequencies [D]) and save value (i.e., the average value of spending on any remaining trial

of that sequence) (both p < 0.001, t test; current sequence value; t(23) = �9.64; save value t(23) = 4.55). Error bars represent SEM.

See also Figures S1–S3.
subjective evaluation. Amygdala planning activity was function-

ally coupled to specific prefrontal areas that encoded distinct

planning components and reflected individual differences in

strategy formation and saving performance. These findings sug-

gest a previously unrecognized planning function for the human

amygdala and identify neural components for simple economic

saving strategies in functionally coupled amygdala-prefrontal

reward circuits.

RESULTS

Economic Saving Task
Healthy volunteers (n = 24) performed choice sequences of self-

defined lengths to save (accumulate) primary rewards (flavored

dairy drinks) before choosing to spend (consume) the accumu-

lated rewards (Figures 1A–1C). A sequence began with the plan-

ning phase (Figures 1A and 1B), in which pre-trained cues

signaled current interest rate and reward type (Figure 1C), allow-

ing subjects to form an internal saving strategy toward a

specific reward goal. Subjects then entered the choice phase,

in which they progressed toward their goal bymaking sequential,

trial-by-trial save versus spend choices. Following a spend

choice, computer-controlled pumps delivered the saved reward.

Throughout each sequence, current trial position and saved

reward amount were not cued, requiring subjects to track

progress internally. Importantly, as learned in a training session,

subjects could not influence the occurrence of reward type and

interest rate conditions over consecutive sequences. This task

design allowed subjects to autonomously plan their behavior
within a saving sequence up to 2 min in advance (up to 10

consecutive save choices with �13 s cycle time, following the

�13 s planning phase).

Saving Behavior and Subjective Value Model
Saving behavior, measured by observed choice sequence

lengths, depended on current reward type, current interest

rate, and their interaction (Figures 1D and 1E; all p < 0.005,

multiple regression). Subjects generally saved longer with higher

interest rates and with the high-fat reward type (Figure 1E).

Crucially, changes in reward type and interest rate produced

substantial variation in saving behavior, both between subjects

(Figure 1E, gray dots) and within subjects (Figure 1D; Figure S1),

which confirmed the importance of subjective preferences in the

present task.

As economic choices critically depend on the subjective

values individuals derive from the choice options, we estimated

the value of each saving sequence (‘‘sequence value’’) from

observed choice frequencies (see Supplemental Experimental

Procedures). These subjective values depended on final reward

amounts and current reward type but also on expenditure related

to sequence length. As higher reward amounts required longer

sequences (determined by current interest rate), the value of

the sequence was compromised by temporal delay and physical

effort. To capture these influences on value in a direct manner,

we followed the general notion of standard economic choice the-

ory and estimated subjective values from observed behavioral

choices. We assumed that a saving sequence had a higher

subjective value if the subject chose it more frequently. Values
Current Biology 26, 3004–3013, November 21, 2016 3005



derived in this manner provided a suitable description of

the observed saving choices, as confirmed by logistic regres-

sion (Figure 1F; Figure S2A; across-subjects pseudo-R2 =

0.62 ± 0.02), out-of-sample validation (Figure S2A, inset), corre-

lation with stated saving intentions (R = 0.33, p < 0.001), and

correlation with subjects’ bids for the same reward in a separate,

auction-like mechanism (Becker-DeGroot-Marschak [BDM] [34];

R = 0.39, p < 0.001). Notably, subjective values provided a

better description of subjects’ choices than the objective factors

reward type and interest rate, or their interaction (Figure S2).

Response times were related to subjective values, differed

significantly between save and spend choice trials, and de-

pended on the forthcoming sequence length (Figure S2), consis-

tent with internally planned saving. Furthermore, while subjects

approximated objectively optimal decisions in the low-fat/low-

interest condition (maximizing rate of reward return, i.e., liquid

per trial), they deviated from optimality in other conditions, with

substantial inter-subject variation (Figure S3). This further sug-

gested that behavior was guided by subjective valuations of

factors reward type and interest rate. Behavior in the current

sequence did not depend on the length of the previous sequence

(p > 0.05, multiple regression), which confirmed that subjects

treated sequences as independent.

Taken together, the combination of reward and interest rate

that defined each choice sequence elicited subjective valuations

of that sequence, which guided saving behavior.

Prospective Amygdala Activity Related to Internal
Saving Strategies
Classically, the amygdala is associated with affective responses

to immediate sensory events [35, 36] rather than internally driven

behavioral strategies. Such cue reactivity is also a dominant

theme in current views of human amygdala function [37–40].

By contrast, recent neurophysiological investigations implicate

the amygdala in more complex, sequential decision-making

[15, 16]. We therefore investigated whether activity in the human

amygdala reflected the key strategy components that guided

subjects’ saving decisions.

Broadly contrasting neural activity in planning and choice

phases identified brain areas previously implicated in cognitive

control, decision-making, and motivation (Figure 2A; Table S1,

GLM1). However, our most striking finding was future-oriented

activity in the amygdala that occurred during the planning

phase, even before subjects initiated a saving sequence. This

‘‘planning activity’’ predicted the length of the forthcoming

choice sequence, up to 2 min before its completion (Figure 2B,

GLM1). It was not explained by simple cue responses or re-

ported saving intentions (Figure S4). Importantly, sequence

lengths were self-defined by the subjects, rather than instructed,

and only existed as an internal, mental representation during the

planning phase. In this sense, the observed correlation between

amygdala activity and sequence length suggested that amyg-

dala planning activity ‘‘predicted’’ subsequent behavior. Thus,

prospective amygdala activity reflected the length of the inter-

nally planned choice sequence, which defined the subjects’

behavioral saving strategy.

We observed a second form of prospective amygdala activity

that reflected subjects’ valuations of saving strategies, which is

crucial for directing planned behavior toward preferred reward
3006 Current Biology 26, 3004–3013, November 21, 2016
goals [1, 5]. Regressing activity on the subjective value of the

forthcoming saving sequence (sequence value derived from

observed choices) revealed a selective effect in the amygdala

(Figure 2C, GLM2), distinct from encoding of planned sequence

length (Figure 2D). Importantly, by varying the experimental fac-

tors reward type and interest rate, we partly decorrelated chosen

sequence lengths from associated values (Figures 1D and 1E;

Figure S1), which allowed detection of separate neural effects.

The prospective valuation activity encoded specifically the value

of the currently planned, forthcoming saving sequence, rather

than simply reflecting the average value of the condition cue (re-

gressor for mean sequence value of each condition; p = 0.28,

t(23) = 1.1). Thus, in addition to encoding planned sequence

length, prospective amygdala activity reflected the subjective

value of the current saving strategy.

We tested whether these amygdala planning signals predicted

behavior also in a different value elicitationmechanism.On sepa-

rate days, subjects placed bids in an auction-like mechanism

(BDM) to indicate their willingness to pay for the same rewards

and choice sequences as in the saving task (Figure 2E). Using

a multiple-regression approach, we dissected the amygdala’s

planning activity, measured in the saving task, by modeling its

two distinct planning signals that correlated with the behavioral

saving plan (sequence length) and its value (sequence value),

respectively. Only the activity component captured by the

sequence value regressor also predicted subjects’ BDM bids

in the separate task (Figure 2F). Thus, prospective amygdala

value signals predicted behavior in a different economic task,

suggesting a flexible economic valuation mechanism.

Further analysis investigated relationships between amygdala

activity and saving behavior across individual participants. A

psychometric-neurometric comparison identified matching sen-

sitivities between individuals’ neural and behavioral measures

associated with strategy choice: across individuals, the behav-

ioral influence of factors reward type and interest rate, which

determined the choice of saving strategy, matched the neural in-

fluence of these factors on amygdala activity (Figures 3A–3C). In

other words, individual differences in saving behavior were ex-

pressed in the integration of different strategic factors, and

amygdala planning activity reflected this integration. Consis-

tently, a model of amygdala planning activity that incorporated

these subjective integrations also predicted willingness-to-pay

bids elicited in a separate task (Figure 3D). Thus, amygdala plan-

ning activity correlated well with individual differences in saving

behavior.

Taken together, these data suggest that prospective amyg-

dala activity in the planning phase encoded two crucial compo-

nents of economic saving strategies [1, 2]: the number of

forthcoming choice steps that define the subject’s behavioral

saving strategy, and the subjective value that reflects the

strategy’s focus on reward.

Frontal Planning Activities and Functional Connectivity
in the Planning Phase
The observed involvement of human amygdala in economic

planning required comparisons to prefrontal cortex regions

with well-established roles in cognitive control and decision-

making [11, 28–32]. Similar to amygdala, the dorsolateral pre-

frontal cortex (DLPFC) and anterior cingulate cortex (ACC)
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Figure 2. Amygdala Planning Activity Reflects Economic Saving Strategies

(A) Stronger amygdala activity in the planning phase compared to the choice phase (cluster p values corrected for family-wise error across the whole brain; map

thresholded at p < 0.005, uncorrected for display purposes, extent threshold R 10 voxels).

(B) Amygdala activity in the planning phase predicted the length of the forthcoming choice sequence (p < 0.05, small volume correction).

(C) Amygdala activity in the planning phase reflected sequence value, i.e., the subjective value of the forthcoming choice sequence (p < 0.05, small volume

correction). Sequence value was derived from observed choice frequencies for different saving sequences.

(D) Region-of-interest analysis. The graph shows a regression of amygdala activity on sequence length and sequence value. Both factors explained significant

variance (p < 0.05, random-effects multiple linear regression; sequence length t(23) = 2.43; sequence value t(23) = 2.45). Neural bs indicate mean regression

weights from fitting a multiple linear regression model containing both sequence length and value regressors to neural activity in each subject. Thin colored lines

indicate SEM across subjects. ‘‘Planning phase’’ indicates onset of planning phase (at 0 s); ‘‘first save’’ indicates onset of first save trial in sequence. The blue

shaded box indicates the analysis period at the expected delay of the hemodynamic response.

(E) Behavior in a separate economic task. Subjects (n = 22) performed an economic auction-like (Becker-DeGroot-Marschak [BDM]) task in which they placed

willingness-to-pay bids on the same rewards and choice sequences as in the saving experiment. The mean bids per condition are shown for each subject (gray

data points) and means across subjects (black).

(F) Amygdala planning activity, measured during the saving task, predicted willingness-to-pay bids in the auction-like task. Only the sequence value signal (green

bs, based on sequence value-correlated amygdala activity during the saving task) predicted willingness-to-pay bids (p < 0.05, random-effects multiple linear

regression; sequence value signal t(21) = 2.45).

See also Figures S4 and S5.
were more active during the planning phase than during the

choice phase (Figure 4A, GLM1), and their activity predicted

the forthcoming number of choice steps (Figure 4B, GLM1).

However, neither area reflected the value of the planned saving

strategy (nor individual reward preferences; Figure S5). Thus,

these frontal areas partly resembled the amygdala by encoding

subjects’ behavioral saving strategies (sequence length), but

they did not encode initial strategy valuations (sequence value).

Because DLPFC activity is involved in behavioral intentions

and information maintenance [41], we tested whether it encoded

subjects’ saving intentions in addition to behaviorally executed

plans. In the planning phase, DLPFC activity also correlated

with subjects’ initially stated willingness to save (WTS; Fig-

ure 4C), which suggested joint encoding of intended and

executed saving strategies. Reported and executed strategies

often corresponded, but subjects also frequently deviated from

their stated intentions, which allowed detection of separate neu-

ral effects (Figure S2D). These deviations were not random but

were partly explained by a combination of objective task factors,
subjective valuations, and planning activity in DLPFC (but not

ACC or amygdala; Figure S2F). Consistent with these results,

discrepant DLPFC coding strengths for stated and executed

strategies were related to subjects’ behavioral deviations from

stated strategies (Figure 4D).

Frontal cortex planning activities not only resembled amyg-

dala planning activity, they were also functionally coupled to it

(Figure 4E; Table S5; Supplemental Experimental Procedures

GLM PPI 1-3). Psychophysiological interaction (PPI) analysis

in the planning phase with amygdala as seed region identified

functional connectivity with ACC. This connection depended

on reward type in the current sequence, with enhanced amyg-

dala-ACC connectivity for the typically preferred high-fat re-

wards compared to low-fat rewards. We found similar connec-

tivity between ACC and another region with known decision

functions, the medial prefrontal cortex (MPFC) [10, 11, 28, 30,

31], with enhanced connectivity for high interest rates, which

overall elicited longer saving sequences. The strengths of these

two functional connections—reward-dependent amygdala-ACC
Current Biology 26, 3004–3013, November 21, 2016 3007
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See also Figure S5.
coupling and interest-dependent ACC-MPFC coupling—were

correlated across subjects (R = 0.45, p = 0.029), which provided

evidence for interacting amygdala-frontal planning activities.

Functional connectivity related to interest rate between ACC

and MPFC was also stronger in individuals with higher average

tendency to save (Figure 4F; performance assessed by saving

index, see Figure 1E) and reflected the extent to which subjects

approximated rate of reward return (Figure S3H). Together, the

relationships to individual differences suggested behavioral rele-

vance for these functional connections. Thus, the formation of

simple economic saving strategies engaged functional circuits

involving the amygdala and distinct frontal areas.

Amygdala-Prefrontal Activities during the Choice Phase
The same amygdala-prefrontal areas continued to signal

saving strategies in the choice phase. Amygdala choice-phase

activity was higher for save compared to spend choices (Fig-

ure S4), tracked subjective reward rate throughout the experi-

ment (Figure S4), and signaled the momentary value of the

current sequence that evolved dynamically over consecutive

save choices (‘‘current sequence value’’; Figures 5A and 5B).

On spend trials, this sequence value signal extended into the

outcome phase (Figure 5B, yellow rectangle), potentially reflect-

ing reward expectation [17, 25]. Notably, sensitivity to value in

the amygdala’s initial planning activity (Figure 2D) did not

match this later outcome-related value signal (across-subjects

correlation of neural betas derived from region-of-interest anal-

ysis; R = 0.06, p = 0.77). This suggested that sequence value

coding in the planning phase did not simply reflect amygdala

reward expectation.

Different from the planning phase, choice-phase amygdala

activity failed to signal the number of saving steps implied

by the current strategy (sequence length). By contrast, the

DLPFC planning signal related to forthcoming sequence length
3008 Current Biology 26, 3004–3013, November 21, 2016
reoccurred during choices (Figures 5C and 5D), consistent with

DLPFC functions in maintaining task-relevant information [42].

The ACC showed a different, dynamic choice step signal that

reflected the evolving length of the current saving sequence,

increasing with each further save choice (‘‘current sequence

length’’; Figure 5E, GLM4). Such progress monitoring is critical

for the execution of planned behaviors including economic

saving [1–3] and also occurs in monkey ACC neurons during

behavioral sequences [43]. Importantly, ACC progress signals

were distinct from known ACC value signals during decision-

making [30–32], which we observed separately (Figure 5F).

Finally, signals for planned sequence length and current seq-

uence value converged in MPFC (Figures 5G and 5H), which

therefore integrated a maintained sequence length signal with

the sequence’s dynamically evolving value. Thus, during both

planning and sequential choices, amygdala-prefrontal areas en-

coded the planning components sequence value and sequence

length, which were essential (Figure 1F) for guiding subjects’

saving behavior.

As in the planning phase, we observed functional connectiv-

ities between amygdala and prefrontal cortex in the choice

phase (Figure 5I; Table S5; GLM PPI1, 4). Specifically, areas

that jointly encoded the same planning variable were also func-

tionally connected with each other (Figure 5I, magenta). Choice-

dependent coupling (enhanced in save compared to spend

choices) occurred between amygdala andMPFC, reflecting their

common sequence value signals (GLM PPI4). By contrast,

enhanced coupling between ACC and DLPFC during choices

(compared to planning) reflected their common sequence length

signals (GLM PPI1). These distinct functional connections were

linked by a direct, choice-dependent amygdala-ACC connection

(Figure 5I, blue, GLMPPI1). Across subjects, specific connection

strengths in the choice phase correlated with connection

strengths during the planning phase (Figure 5J). These results
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(B) Activity in DLPFC and ACC in the planning phase predicted the length of the forthcoming choice sequence (p < 0.05, whole-brain correction).

(C) Region-of-interest analysis. Planning activity in DLPFC was explained by both reported saving intentions (willingness to save, WTS) and sequence length

(p < 0.05, random-effects multiple linear regression; WTS t(23) = 2.6; sequence length t(23) = 2.32).

(D) Across subjects, DLPFC coding differences between stated (WTS) and executed (sequence length) saving strategies were related to behavioral deviations

from saving intentions (significant with robust fit).

(E) Functional connectivity patterns during the planning phase. PPI analyses revealed correlated activity between amygdala and ACC depending on current

reward type (high-fat > low-fat content; uncorrected at p = 0.005) and between MPFC and ACC depending on current interest rate (high > low interest rate;

p < 0.05, whole-brain correction). Both connectivity patterns were related across subjects (R = 0.46, p = 0.02, significant with robust fit). DLPFC showed stronger

coupling with MPFC during the planning phase compared to the choice phase (blue; p < 0.05, whole-brain correction).

(F) Across subjects, stronger planning connectivity between ACC andMPFCwas related to higher saving performance (significant with robust fit on saving index,

derived from mean sequence lengths).

See also Figures S2 and S5.
provided further evidence for functional amygdala-prefrontal cir-

cuits that support both saving strategy formation and execution.

DISCUSSION

Our results suggest that the human amygdala—traditionally

associated with emotional reactions to external events—partic-

ipates in the formation and execution of economic saving strate-

gies toward future rewards. Amygdala planning activity encoded

the two key strategy components that guided subjects’

behavior: the length and value of the planned saving sequence.

Sequence length signals reflected subjects’ internal behavioral

plan by predicting the forthcoming number of saving steps

even before subjects initiated a sequence. Sequence value sig-

nals reflected subjects’ valuations of planned sequences and

predicted economic behavior in a different task on a different

testing day, suggesting a flexible, prospective valuation mecha-

nism. Using a whole-brain imaging technique enabled us to

identify functional networks associated with the formation and

execution of saving strategies. Beyond the amygdala, these net-

works involved specific frontal areas previously implicated in de-

cision-making, which encoded distinct strategy components

and reflected individuals’ saving performance. Taken together,

the identified amygdala-frontal planning activities and their func-

tional interactions represent a potential substrate for linking
future-oriented economic valuations to internal saving strategies

and their behavioral execution.

Strategic saving involves the formationof an internal savingplan

motivated by the prospect of future reward, and subsequent plan

execution [1]. The observed two components of neural planning

activity, related to the length and value of the forthcoming saving

sequence, seem to contribute to this process in two ways. First,

sequence length signals in amygdala, DLPFC, and ACC encoded

the abstract behavioral implication of the current saving strategy;

in other words, they signaled the choice of a specific saving plan.

They did not reflect action planning, which was precluded by ran-

domized choice cue positions. During plan execution, these sig-

nals could help to align sequential choices with the current strat-

egy and provide input to well-characterized motor planning

systems in frontal cortex [7] that translate abstract saving inten-

tions into concrete actions. Second, sequence value signals, a

specific component of amygdala planning activity, encoded the

current strategy’s economic value. Although they occurred time-

locked in response to condition cues, they did not reflect general-

ized cue responses, average cue value, or basic reward expecta-

tion. Instead, they conveyed the specific value of the internally

planned sequence. Experimental manipulation of both reward

typeand interest rate ledparticipants toassigndifferent subjective

values to identical sequence lengths, depending on the current

reward-interest combination. This allowed detection of separate
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Figure 5. Planning Signals and Functional Connectivity in the Choice Phase

(A) Amygdala choice-phase activity correlated with current sequence value (p < 0.05, whole-brain corrected).

(B) Amygdala activity reflected the dynamically evolving sequence value during save choices (blue shading; p < 0.05, random-effects multiple linear regression;

t(23) = �2.21; negative bs indicate lower activity with higher value). On spend trials, activity encoded sequence value during the reward phase, likely reflecting

reward expectation (yellow shading; p < 0.05, random-effects multiple linear regression; t(23) = 2.79; positive b following outcome).

(C and D) DLPFC choice-phase activity correlated with planned sequence length (region-of-interest analysis, p < 0.05, random-effects multiple linear regression),

specifically during last save choice (blue shading; t(23) = 2.89) and subsequent spend choice (pink shading; t(23) = 4.74).

(E) ACC choice-phase activity tracked current position in the sequence, i.e., current sequence length (p < 0.05, whole-brain correction).

(F) ACC activity reflected both current sequence length and save-spend value difference (p < 0.05, random-effects multiple linear regression; value difference:

t(23) = 3.91; sequence length: t(23) = 2.24).

(G) MPFC choice-phase activity correlated with planned sequence value (p < 0.05, whole-brain correction).

(H) MPFC activity reflected planned sequence length and current sequence value (p < 0.05, random-effects multiple linear regression; sequence value:

t(23) = �2.08; sequence length: t(23) = �2.12; negative bs indicate lower activity with higher value and longer sequences).

(I) Functional connectivity patterns during the choice phase. PPI analysis (p < 0.05, whole-brain correction) showed correlated choice-dependent activity (save >

spend choice) between amygdala and MPFC and between ACC and DLPFC. Amygdala and ACC had stronger correlated activity during the choice phase

compared to the planning phase (blue).

(J) Amygdala-MPFC choice-phase connectivity across subjects correlated with planning-phase ACC-MPFC connectivity (significant with robust fit).

See also Figure S5.
neural signals related to sequence value and length. Sequence

value signals likely reflected the subjective value of a sequence

that integrated both reward value and cost due to temporal delay

and effort, although our experiment was not designed to sepa-

rately test these value components. The amygdala’s sequence

value signal also reflected inter-individual valuation differences

and predicted behavior in the separate auction-like BDM task.

Such prospective, mechanism-independent valuation of behav-

ioral plans seems suited to inform the initial decision to select a

preferred saving strategy and to regulate motivation during sub-

sequent goal pursuit. Encoding of the two planning compo-

nents likelydependedonamygdala-frontal functional interactions,
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which reflected current parameters for strategy selection and ex-

plained variation in saving performance.

During execution of subjects’ saving strategies, the amygdala

and functionally coupled MPFC continually evaluated the

current sequence and exhibited choice-dependent functional

coupling. Such dynamic, sequential valuations in amygdala

and MFPC could inform stepwise decision-making according

to an internal saving plan. This interpretation is supported by

previously described valuation activities in amygdala and

MPFC [11, 18–20, 24–26, 28, 30, 31] and the deleterious effects

of damage to either area on value-guided behavior [23, 44].

Given the amygdala’s outputs to autonomic effectors [37], its



sequential valuation could also serve to regulate motivation and

affective state in the pursuit of reward goals.

The DLPFC, an area implicated in cognitive planning [29], was

more active during planning than choice, encoded both the

length of the forthcoming behavioral sequence and subjects’ re-

ported saving intentions, and reflected behavioral deviations

from stated intentions. Unlike the amygdala, DLPFC did not

encode sequence value, which limits its role in prospective

valuation. During the choice phase, DLPFC’s sequence length

signal reoccurred specifically on final save trials, when strategy

completion was imminent, and lasted until the subsequent

spend choice. Although consistent with a general role in planning

and maintaining task goals [41], these results identify previously

unrecognized DLPFC functions in economic saving.

The ACC is implicated in cognitive control during sequential

behaviors [31, 32, 43, 45]. We found that during the choice

phase, a dorsal ACC region tracked the progress of subjects’

internally defined saving strategy. This tracking function re-

flected an internal evaluation, as our task did not offer external

progress cues. It was also not explained by commonly reported,

separately observed ACC value difference signals [31]. Strik-

ingly, during the planning phase, we found prospective ACC ac-

tivity not previously characterized, which reflected subjects’

planned sequence length. This suggests that ACC, together

with functionally coupled amygdala and DLPFC, contributes to

the formation of a saving strategy based on economic valua-

tions. Our main planning variables differ markedly from ACC

value signals observed in sequential foraging tasks, which reflect

the average value of the foraging environment [31]. Planning sig-

nals for sequence length and sequence value specifically re-

flected the planned, forthcoming course of action and thus

seem linked to situations that allow the formation of internal

plans multiple steps in advance, as in economic saving. By

contrast, the choice phase of our saving task shares elements

with foraging. For example, the observed encoding of value dif-

ference between save and spend choices in ACC (Figure 5F) is

consistent with ACC valuation of current and alternative courses

of action [31]. Valuation processes involved in foraging and

exploration decisions, which engage similar brain systems to

those identified here [31, 46], likely play additional roles in eco-

nomic saving.

Previous studies identified frontal-subcortical activities under-

lying cognitive planning [42], model-based learning [13, 14], and

prospective imagination [9], which represent important compo-

nents of reward-guided behavior. Our experiments focused on

economic saving strategies defined by the internal formation of

a subjectively preferred reward goal [1–3] and its behavioral

pursuit through self-defined choices [1]. By modeling both the

formation and execution of saving strategies [1], our experiments

necessarily focused on shorter timescales of up to two minutes.

We suggest that the presently observed planning signals

reflect a basic mechanism engaged by the formation of a behav-

ioral strategy toward future reward. Additional mechanisms

likely mediate planned behavior over longer periods, including

episodic prospection [12], valuation of effort and persistence

[32], and discounting of long-term delayed rewards [10, 11].

The use of primary, liquid rewards to elicit behavioral variation

follows previous neuroimaging [11] and behavioral saving exper-

iments [3]. This, together with manipulation of both reward type
and interest rate, allowed us to identify neural planning signals

related to behaviorally well-characterized subjective valuations.

Although valuations for different reward types typically involve

overlapping neural circuits [47, 48], future studies will have to

confirm planning signals in saving behavior toward abstract,

monetary rewards.

We designed our saving task to capture basic components

of everyday choice scenarios, such as contributions to a

savings account or short-term consumption decisions [1–3].

Such decisions are subject to continuous temptations to

spend or consume accumulated rewards. Similarly, subjects

could internally plan their saving behavior but subsequently

change their mind during sequence execution, as implied by

models of quasi-hyperbolic temporal discounting [11]. Future

studies could adapt our paradigm to investigate relationships

between saving behavior, inter-temporal preferences [10,

11], and individual commitment attitudes. Furthermore, longi-

tudinal designs and real-life savings data could test links

between the presently identified neural mechanisms and indi-

viduals’ financial status.

Classical concepts of amygdala function focus on its immedi-

ate responses to affective cues [35, 36], whereas current views

extend this cue reactivity to complex human behaviors [35, 37,

40]. However, the future-focused economic planning signals

demonstrated here are not anticipated by either classical or cur-

rent concepts. Amygdala planning signals reflected future saving

goals well before they were obtained, persisted over sequential

choices, and differed from separate basic reward expectation

signals following a spend choice. Accordingly, amygdala plan-

ning signals differed from known amygdala processing of exter-

nally cued, immediate rewards [17–20, 40] and decision param-

eters in isolated, single-trial choices [23, 24, 27]. Thus, our data

significantly expand current views by demonstrating amygdala

sensitivity to internal behavioral strategies and their subjective

values.

Interpretation of the present human imaging results is greatly

facilitated by detailed evidence about the functional properties

of single amygdala neurons, available frommonkey experiments

in a similar reward-saving task [15, 16]. With the spatial resolu-

tion of fMRI, we cannot determine whether sequence value

and sequence length signals are separated at single-neuron

level (with a typical fMRI voxel containing as many as 5.5 million

neurons [49]). However, this is a critical issue for understanding

the neural computations involved in selecting a saving strategy.

Our monkey studies show that the primate amygdala indeed

contains separate but anatomically intermingled neurons encod-

ing the value and length of economic choice sequences [15, 16].

The presently observed amygdala signals likely reflect the

activity of these two separate neuronal populations. The loca-

tion of our main effects is consistent with basolateral and cen-

tromedial amygdala, where intermingled sequence value and

sequence length neurons are found in monkeys [15, 16]. The

coexistence of these signals in the same brain system—shown

here for the first time in the human amygdala—might indicate

local conversion from economic valuations to behavioral strate-

gies [15, 16], potentially via competitive, inhibitory interactions

among neighboring neurons. This process most likely involves

frontal areas with known decision functions, which depend on

interactions with amygdala [21, 22].
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Compared to the monkey studies, the present human exper-

iments provide several new insights. The currently reported

planning signals in the human amygdala integrated multiple

factors in the subjective valuation of saving plans, including

interest rate and reward type. The present data also link

amygdala planning activities to a sophisticated, perhaps hu-

man-specific form of economic behavior involving the formula-

tion of bids in an auction-like (BDM) mechanism. Critically,

we demonstrate that the amygdala’s planning activity and

amygdala-frontal connections partly explain inter-individual

differences in saving behavior, which relates to key economic

issues affecting individuals and societies [3]. Using whole-

brain imaging allowed us to uncover functionally connected

systems in frontal cortex beyond amygdala with previously un-

known functions in economic saving. These frontal areas

encode partly distinct planning components and thus repre-

sent interesting targets for future single-neuron recordings.

Notably, the same amygdala-frontal circuits are implicated in

deregulated reward expectation and affective disorders [50],

which impact on the motivation to plan for future rewards

and pursue distant goals. Our experimental approach to the

neurobiology of economic saving could help understand

dysfunctional planning and decision functions of amygdala-

frontal circuits in such conditions.
Conclusions
Theories of planned behavior identify a two-stage process that

distinguishes initial plan formation from subsequent execution,

and a valuation component that directs behavioral strategies

toward future rewards. The present data characterize the neu-

ral mechanisms underlying these processes during the forma-

tion and pursuit of simple economic saving strategies. Our

findings suggest an extended view of the human amygdala

that includes a planning function for future rewards embedded

within prefrontal circuits with distinct planning and decision

functions.
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Figure S1 (related to Figure 1) | Choice frequencies in single subjects. A-D, Saving behavior in four 

representative subjects. Bars show relative frequencies with which the subject produced different choice 

sequences. Green curves show reward magnitude increases over sequential save choices. In each plot 

conditions are as follows (from left to right): Low fat, low interest; high fat, low interest; low fat, high 

interest; high fat, high interest. The figure illustrates variations in saving behavior both across subjects 

and experimental conditions. E, Same subject as in panel d. In addition to relative frequency and reward 

magnitude, the graphs show normalized sequence length (black) and normalized sequence value 

(magenta) regressors. These plots illustrate how sequence length and value could vary independently in 

our two-factorial design. Note how normalized sequence length increases linearly, while sequence value 

and WTP do not follow a linear pattern. Note also that sequence value estimates (magenta line) with a 



value of zero result from subjects not choosing this particular sequence length during the experiment. 

Thus these zero values were not used in our main fMRI analysis to predict sequence value.  



 



Figure S2 (related to Figures 1, 2, 4 and 5) | Behavioral regression analyses. A, Logistic regression 

of save-spend choices on subjective values (current sequence value, save value), reward type, interest 

rate, reward type × interest rate, left-right cue position, total reward (cumulative consumed reward in 

mL across sessions) and running average of sequence value across the last 20 trials. Shown are 

regression coefficients (± s.e.m.) obtained by fitting a logistic regression model to each subject’s 

choices. Positive coefficients indicate a positive weight on save choice likelihood. Significance was 

tested by one-sample t-test on coefficients from all subjects (random-effects analysis). Current sequence 

value (t(23) = -4.72)) and save value (t(23) = 5.62) were the main weights on choices (reward:  t(23) = 

2.53; interest  t(23) = 1.63; reward × interest  (t(23) = 1.19; cue position  (t(23) = 1.39; total reward  

(t(23) = -5.44); running average of sequence value across the last 20 trials (t(23) = -9.16)). Inset: value 

coefficients remained significant when values were derived from independent behavioral data of a pre-

scanning session (out-of-sample prediction; P < 0.001; current sequence value: t(23) = -4.34; save value: 

t(23) = 3.83). Adding length of previous saving sequence did not affect results (last sequence length P 

> 0.05, t(23) = -0.7). B, Separate modeling of sequence value components. Logistic regression showing 

effect of relative choice frequency (t(23) = -18.34) and current-trial reward magnitude (t(23) = -5.49) 

C, Logistic regression showing effect of cumulative spend choice probability (t(23) = -14.37), cue 

position (t(23) = -0.13) and total accumulated reward (t(23) = -5.17) on choices. Cumulative choice 

probability was defined as the sum of relative choice frequencies up to the current trial derived from a 

separate behavioral session. D, Multiple linear regression on reported saving intentions (n = 22). Results 

show effects of sequence number (t(21) = -2.99), total reward (t(21) = 1.06), reward type (t(21) = 4.63), 

interest rate condition (t(21) = 5.69), their interaction (t(21) = 2.12), cue position (t(21) = 0.0002)) and 

willingness-to-pay for the current sequence (P < 0.05; t(21) = 3.35). Experiment progress had an effect 

but across subjects this was relatively small compared to other regressors of interest. Inset shows the 

distribution of deviations between reported saving intentions and chosen sequence lengths. E, Multiple 

linear regression (n = 22) showing effects of sequence number (t(21) = -1.47), total reward (t(21) = 

1.59), reward type (t(21) = 5.77), interest rate condition (t(21) = 3.67), their interaction (t(21) = 0.61), 

cue position (t(21) = 0.56) and willingness-to-pay (t(21) = 3.94) on reported pleasantness of reward. F, 

Influences on deviation (WTS minus sequence length). Shown are regression coefficients (± s.e.m.) 

from a multiple linear regression analysis across subjects and trials (fixed effects). Sequence value 

(t(1010) = -7.81), reward type (t(1010) = 2.09), interaction of reward type and interest rate (t(1010) = 

3.57) and DLPFC BOLD signal during planning (t(1010) = 2.23) each had a significant effect. G,   

Response time analysis. Shown are regression coefficients (± s.e.m.) from a multiple linear regression 

analysis across subjects and trials (fixed effects) on the response times. Response times were affected 

by the subjects’ choice (save/spend dummy variable (0/1), t(4811) = -2.25), became shorter throughout 

a sequence (current sequence length, t(4811) = -2.34), were shorter in longer sequences (final sequence 

length, t(4811) = -6.04), were related to current sequence value (t(4811) = 2.67) but were not related to 



reported saving intentions (WTS, t(4811) = 0.96) or final sequence value (t(4811) = -1.54) or save value 

(t(4811) = -0.33).  

 

  



 

Figure S3 (related to Figures 1 and 4) | Relation of subjects’ behavior to trial-by-trial rate of 

return. A-B,  Diagrams showing the rate of return, defined as the additional reward (mL) to be gained 

by deciding to save in the current trial. C-F, scatter plots showing the relationship between relative 

choice frequency and rate of return. Subjects’ observed relative choice frequencies were positively 

related to the rate of return in all conditions except the low fat, high interest condition. Here subjects 

showed shorter sequence lengths regardless of the positively developing rate of return. G, For each 

subject, we pooled the data across conditions and correlated rate of return with relative choice 

frequency. Shown is the distribution of correlation coefficients across subjects. H, across subjects, the 

matching of rate of return and choice frequency was related to connectivity strengths between ACC and 

MPFC during planning. 



 

Figure S4 (related to Figures 2, 3 and 5) | Amygdala control analyses. A, Amygdala activity during 

the planning phase did not reflect simple cue differences between high and low fat reward conditions 

(non-significant effect in either direction, small volume correction, GLM5). We used the standard 

SPM8 settings by which regressors are orthogonalized in the order they are entered. Thus, the analysis 

shown here should have detected average cue effects for reward type and interest rate in amygdala if 

they existed.  B, Amygdala activity during the planning phase did not reflect simple cue differences 

between high and low interest rate conditions (non-significant effect in either direction, small volume 

correction, GLM5). C, Region-of-interest analysis across planning phases in all trials. Regression of 

amygdala activity during the planning phase on sequence length and reward type. The GLM plotted 

here included regressors sequence length and an indicator function (“dummy variable”) for reward type 

(1 = high fat; 0 = low fat). Sequence length regressor was orthogonalized with respect to reward type. 

Only sequence length explained significant variance (P < 0.05, random effects multiple linear 

regression; t(23) = 2.12). D, Region-of-interest analysis across planning phases in all trials. Regression 

of amygdala activity on sequence length and interest rate. The GLM plotted here included regressors 

sequence length and an indicator function (“dummy variable”) for interest rate (1 = high interest; 0 = 

low interest). Sequence length regressor was orthogonalized with respect to interest rate. Only sequence 

length explained significant variance (t(23) = 2.76). E, Regression of amygdala activity on sequence 

length and willingness-to-save rating (saving intentions). Only sequence length explained significant 

variance (t(23) = 3.12). F, Region-of-interest analysis across planning phases in all trials. Regression 

of amygdala activity on sequence length and reward magnitude. Only sequence length explained 

significant variance (t(23) = 3.13). Further, including the sequence number as a proxy for duration for 

the experiment in a model along with sequence length to explain amygdala BOLD signal during 

planning had no effect on the correlation with BOLD and sequence length (sequence length still 

significant P<0.05, t(23) = 2.85). G, Stronger amygdala activity during save choices compared to spend 



choices (cluster P values corrected for family-wise error across the whole-brain, P < 0.05; t-test (23) = 

3.93; map thresholded at P < 0.005, uncorrected for display purposes, extent threshold ≥ 10 voxels). H, 

Region-of-interest analysis across choice phases in all trials. Regression of amygdala activity on 

running average of sequence value over the last 20 trials. Amygdala activity correlated with this variable 

during the choice phase (P<0.05, t(23)= 2.96). Similar effects were found in ACC (t(23)=2.25)) and 

DLPFC (t(23)=2.19)).   



 

Figure S5 (related to Figures 2-5) | fMRI control analyses. A-C, Statistical maps for sequence value 

in the planning phase show no effect in DLPFC, ACC or MPFC (cluster P values corrected for family-

wise error across the whole-brain, P < 0.05; map thresholded at P < 0.005, uncorrected for display 

purposes, extent threshold ≥ 10 voxels). No effects were present even at lower threshold of P < 0.01, 

uncorrected. D-E, Neurometric-psychometric comparison across subjects for DLPFC, ACC and MPFC. 

Behavioral and neural reward βs plotted for all subjects as shown for amygdala in Figure 3C. Behavioral 

sensitivity to reward was not significantly related to neural reward sensitivity in any of the three frontal 

areas. G-H, Region of interest analyses: Neither amygdala nor ACC activity reflected the absolute or 

signed difference between reported saving intentions and executed sequences during choice. 

  



Table S1 (related to Figures 2 and 4). Whole-brain analysis (GLM 1) results related to contrast of 

planning phase vs. choice phase (cluster P values corrected for family-wise error across the whole-

brain, P < 0.05; maps thresholded at P < 0.005, extent threshold ≥ 10 voxels).  

Effect 
Sign of 

correlation  

Anatomical 

region 
Hemisphere 

MNI peak 

coordinates (x, 

y, z) 

 z-score 

Planning phase 

> choice phase 

(GLM 1) 

/ 

Amygdala R 22, 0, -18 5.12 

DLPFC R 34, 40, 32 5.99 

DLPFC L -32, 36, 36 6.27 

ACC / 0, 15, 42 5.9 

Thalamus L -10, -18, 2 6.93 

Thalamus R 8, -18, 2 6.54 

Cerebellum L -12, -62, -18 6.65 

Intraparietal sulcus L -38, -56, 42 6.5 

Postcentral gyrus L -58, -8, 22 6.48 

Insula R 32, -10, 10 6.44 

Cerebellum R 26, -50, -20 6.23 

Posterior cingulate 

cortex 
L -4, -20, 26 6.07 

  



Table S2 (related to Figures 2 and 4). Whole-brain analysis (GLM1-2) results related to parametric 

variables during planning phase (cluster P values corrected for family-wise error across the whole-

brain, P < 0.05; maps thresholded at P < 0.005, extent threshold ≥ 10 voxels). * P < 0.05, small volume 

corrected 

Effect 
Sign of 

correlation 

Anatomical 

region 
Hemisphere 

MNI peak 

coordinates (x, 

y, z) 

 z-score 

Sequence 

length during 

planning 

(GLM 1) 

Positive 

Amygdala* R 22, -4, -20 3.18 

ACC / 6, 20, 48 4.54 

DLPFC R 38, 42, 26 3.76 

DLPFC R 36, 4, 50 4.41 

Intraparietal sulcus R 50, -42, 38 3.88 

Intraparietal sulcus L -26, -62, 50 3.78 

Posterior cingulate 

cortex 
/ 0, -22, 28 4 

Precuneus R 12, -66, 32 4.2 

Paracentral lobe L -26, -22, 74 3.6 

Superior temporal 

gyrus 
R 56, -26, -10 4.24 

Striate/Extrastriate 

cortex 
L -28, -84, 2 4.58 

Striate/Extrastriate 

cortex 
R 28, -78, -8 4.47 

Sequence value 

during 

planning 

(GLM 2) 

Positive 

Amygdala* R 22, -8, -22 3.26 

Extrastriate cortex R 22, -86, -10 3.82 

  



Table S3 (related to Figure 5). Whole-brain analysis (GLM 6) results related to save vs. spend choice 

trials (cluster P values corrected for family-wise error across the whole-brain, P < 0.05; maps 

thresholded at P < 0.005, extent threshold ≥ 10 voxels). * Uncorrected at P<0.005. 

Effect 
Sign of 

correlation 
Anatomical region Hemisphere 

MNI peak 

coordinates (x, 

y, z) 

 z-

score 

Save > spend 

(choice phase) 

(GLM 6) 

/ 

Amygdala R 22, -2, -20 3.41 

Cerebellum L -14, -38, -20 4.87 

Middle temporal 

gyrus 
 L -32, -20, -6 4.35 

Temporoparietal 

junction 
 L -60, -48, 22 4.28 

Spend > save 

(choice phase) 

(GLM 6) 

/ Striatum* / -6, 12, 8 4.22 

  



Table S4 (related to Figure 5). Whole-brain analysis results related to parametric variables during 

choice phase (cluster P values corrected for family-wise error across the whole-brain, P < 0.05; maps 

thresholded at P < 0.005, extent threshold ≥ 10 voxels). 

Comparison Correlation  Anatomical region Hemisphere 

Peak 

Coordinates 

(mm) (x, y, z) 

 z-

score 

Sequence 

length during 

choice phase 

(GLM 1) 

Positive ACC R 10, 12, 46 4.39 

Negative MPFC L -8, 62, 24 4.36 

Current 

sequence value 

during choice 

phase (GLM 3) 

Negative 

Amygdala R 20, -2, -18 3.75 

MPFC / -4, 62, 10 5.08 

Insula/ parietal 

operculum 
R 52, -8, 2 4.9 

Insula/ transverse 

temporal gyrus 
L -44, -18, 2 4.48 

Cerebellum L -8, -48, -16 4.17 

Position during 

choice phase 

(‘current 

sequence 

length’) (GLM 

4) 

Positive 

ACC / 2, 20, 42 4.69 

Visual cortex R 32, -84, 2 4.47 

Visual cortex L -20, -70, 34 4.44 

Middle frontal 

gyrus 
R 52, 20, 36 4.03 

Negative 

Insula R 38, -8, 2 5.11 

Insula L -36, -6, -4 5.07 

MPFC L -8, 60, 12 4.45 

Cerebellum L -16, -58, -18 4.4 

  



Table S5 (related to Figures 4-5). Whole-brain analysis results of PPI analyses (cluster P values 

corrected for family-wise error across the whole-brain, P < 0.05; maps thresholded at  

P < 0.005, extent threshold ≥ 10 voxels).  

Effect 
Sign of 

correlation 
Anatomical region Hemisphere 

MNI peak 

coordinates (x, 

y, z) 

 z-

score 

PPI planning > 

choice, 

DLPFC seed 

(GLM PPI1) 

 / 

ACC/MPFC R  14, 46, 24 4.78 

Pregenual cingulate 

cortex 
/  4, 50, -14 4.77 

MPFC /  -6, 58, 34 4.54 

Striatum L -8, 18, 6 4.17 

Striatum R  6, 16, 10 4.13 

PPI choice > 

planning, 

DLPFC seed 

(GLM PPI1) 

/  

Intraparietal sulcus R  40, -50, 42 6.21 

DLPFC R 40, 40, 28 5.94 

Supplemental motor 

area 
 R 8, -2, 70 4.15 

Middle frontal 

gyrus 
R  32, -6, 64 4.12 

ACC  / 8,2, 38 3.91 

Cerebellum  L -30, -58, -28 3.89 

Middle temporal 

gyrus 
 L -48, -60, -4 3.78 

PPI choice > 

planning, 

amygdala seed 

(GLM PPI1) 

/  

Supplemental motor 

area 
 / 0, -2, 68 5.99 

ACC  / -2, 12, 36 4.48 

Precentral gyrus R 24, -12, 58 4.35 

Lateral temporal 

lobe 
L -38, -22, -16 4.57 

Amygdala L -18, -8, -20 4.54 

Striatum   0, -10, 12 4.27 

Middle temporal 

gyrus 
L -44, -58, 8 4.17 

Striate cortex R 18, -92, -4 4.08 

Extrastriate cortex R 30, -76, -16 4.06 

Pre-Supplemental 

motor area 
R 16, 30, 48 4.06 

Pre-Supplemental 

motor area 
 L -12, 26, 50 4.01 

Precentral gyrus R 50, -10, 20 3.76 

Insula R 34, -24, 12 3.66 

PPI choice > 

planning, ACC 

seed (GLM 

PPI1) 

 / 

ACC  / 2, 26, 44 5.79 

DLPFC R 32, 48, 14 5.59 

Insular gyrus R 50, 16, -8 5.52 

DLPFC L -28, 52, 12 4.92 

PPI high > low 

fat (planning 

phase), 

amygdala seed 

(GLM PPI2) 

/ 

ACC* R 10, 28, 48 3.53 

Intraparietal sulcus L -30, -30, 66 3.4 



PPI high > low 

interest 

(planning 

phase), ACC 

seed (GLM 

PPI3) 

  MPFC R 18, 62, 12 3.5 

PPI save > 

spend (choice 

phase), 

amygdala seed 

(GLM PPI4) 

/ 

MPFC R 18, 64, 26 3.4 

Ventromedial 

prefrontal cortex 
/ 0, 50, -8 3.19 

Intraparietal sulcus R 22, -34, 76 4.06 

Cerebellum / -2, -62, -32 3.91 

Visual cortex L -28, -86, 2 3.81 

Visual cortex R 28, -86, 0 3.57 

Precuneus / 2, -54, 28 3.42 

PPI save > 

spend (choice 

phase), ACC  

seed (GLM 

PPI4) 

/ 

DLPFC R 32, 52, 16 3.91 

Middle temporal 

gyrus 
L -62, -32, -8 4.84 

Postcentral gyrus L -14, -26, 66 4.7 

Medial/superior 

temporal gyrus 
R 56, -22, -2 4.16 

ACC R 8, 24, 52 4.1 

Ventrolateral 

prefrontal cortex 
R 34, 54, 0 4.08 

Ventrolateral 

prefrontal cortex 
L -36, 48, 2 4.02 

Intraparietal sulcus L -50, -42, 46 3.93 

Insula R 32, -14, 14 3.78 

Intraparietal sulcus R 18, -50, 60 3.64 

*uncorrected at P=0.005, extent threshold ≥ 10 voxels 

 

  



SUPPLEMENTAL EXPERIMENTAL PROCEDURES 

 

Participants 

 

28 healthy individuals (age range: 18-33 years; 13 females) participated in the study. All 

participants had normal or corrected-to-normal vision. We had to exclude four participants 

from all analyses due to motion artefacts, giving a sample size of n = 24 for the main saving 

task fMRI experiment. For two participants, no data for the separate behavioral BDM task was 

available due to an error in the data being written into a file, giving a sample size of n = 22 for 

the BDM task. Participants were screened to ensure they were not lactose intolerant, generally 

liked dairy products, had normal appetite and were not actively trying to avoid fat or sugar in 

their diet. Female participants were not pregnant. None of the participants had a history of 

psychiatric illness. All participants were healthy according to self-report and had no recent 

history of medication apart from contraceptive. The Local Research Ethics Committee of the 

Cambridgeshire Health Authority approved the study. All participants gave written consent 

before the experiment. 

 

Experimental design 

 

Before the scanning session, each participant took part in a behavioral session on a separate 

occasion to learn the task. During this session, participants performed exactly the same task as 

in the scanner including delivery of the liquid rewards. Participants were asked to not eat or 

drink anything except water for at least 4 hours before attending each session. This was done 

to ensure that subjects were hungry and willing to perform a task towards gaining liquid food 

rewards. Stimuli were presented on a screen and responses were given by pressing specific 

keys on a keyboard (training session) or button box (scanning session). Stimulus presentation 

and operant reactions were controlled and recorded using Cogent (Wellcome Trust Centre for 

Neuroimaging, London, UK) in Matlab (Version R2013b, Mathworks, Natick, MA). 

 

Economic saving task. Subjects performed choice sequences of self-defined lengths to save 

different liquid rewards. The rewards accumulated according to a given interest rate (see below 

for interest rate calculation). The design was a 2×2 factorial design with the factors reward type 

(high vs. low fat content) and interest rate (high vs. low interest). (We use the term ‘interest 

rate’ to provide an intuitive description of the variable that governed increases in reward across 



save choices; this should not imply exact comparability with financial interest rates.) We used 

different reward types and interest rates to promote variation in subjects’ saving behavior and 

to distinguish neural activity related to sequence length (which was a linear function of the 

number of save choices in a sequence) from activity related to sequence value (which depended 

on subjects’ preferences for different reward types, reward amounts and their interaction). All 

frame durations in the task were jittered according to Poisson distributions with an additional 

jitter of ± 200 ms to avoid predictability and to increase fMRI image acquisition efficiency. On 

average, subjects performed 42.6 ± 1.4 saving sequences (mean ± s.e.m.) during the fMRI 

experiment, with an average 213 ± 2.8 save-spend choice trials. These numbers were calculated 

excluding error sequences and error trials (see below) which were also excluded from all fMRI 

analyses. 

Planning phase. During the planning phase, pre-trained cues indicated current interest 

rate (high vs. low) and current reward type (high vs. low fat content). The order of conditions 

(combinations of reward type and interest rate) between sequences was pseudo-randomized to 

avoid predictability but ensuring even numbers of each condition. Following cue presentation 

for 2-3 s and an inter-stimulus interval (ISI) of 2-4 s, subjects rated their willingness-to-save 

on a visual analogue scale ranging from 0 (low willingness-to-save) to 10 (high willingness-

to-save). The rating was followed by an ISI of 2-4 s before the start of the choice phase.  

Choice phase. During the choice phase, subjects made trial-by-trial choices to save or 

spend the accumulated reward. Each choice trial began with the presentation of a question mark 

on the screen for 2-3 s which prompted subjects to consider their save vs. spend choice for that 

trial. Following a 2-4 s ISI, the save cue and spend cue appeared in left-right position and 

subjects indicated their choice with a button press. Left-right position of save and spend cues 

was randomized across trials. Button presses were self-timed with the requirement that subjects 

indicated their choice within 3 s. A save choice was followed by a 2-3 s feedback screen stating 

“Saved”, without providing feedback about saved reward amounts. Thus, the subjects had to 

track internally the accumulated reward amounts over consecutive save choices.  Consecutive 

choice trials were separated by an inter-trial interval of 2-6 s. In each saving sequence, subjects 

were required to make at least one save choice. Subjects could make up to ten consecutive save 

choices per sequence with a cycle time of approximately 13 s per trial. A failure to respond on 

any trial lead to an error feedback stating “Please repeat trial” and resulted in the repetition of 

the trial. Accumulated saved rewards were retained across error trials. If a subject made more 

than the allowed ten save choices in a sequence, they received the feedback “Saved too long”, 



which resulted in cancellation of the saving sequence. This error occurred only rarely during 

the scanning experiment (mean = 1.08 ± 0.2) as subjects were pre-trained. 

Reward phase. The reward phase followed subjects’ spend choice in each sequence. A 

spend choice was followed by a 2-3 s feedback screen stating “Receive X mL in 2 sec”. The 

accumulated amount of liquid reward was then delivered via a custom-made system consisting 

of two peristaltic pumps (see below). After reward delivery subjects were instructed to keep 

the liquid in their mouth for 0.5 s before swallowing for 1.5 s. The reward delivery and 

swallowing periods were cued by a yellow and green fixation cross, respectively. Subjects then 

rated the experienced pleasantness of the liquid on a visual analogue scale ranging from of 0 

(very unpleasant) to 10 (very pleasant). The general protocol and procedures for liquid reward 

delivery in the scanner were modelled on previous fMRI studies [S1, S2]. 

 

Liquid rewards. The two types of liquid rewards consisted of vanilla-flavoured dairy drinks 

that differed in fat content. The low fat version was composed of 400 mL of skimmed milk (0.2 

% fat) and the high fat version consisted of 300 mL double cream and 100 mL full fat milk 

(34.5% fat). Total sugar content was equal for both drinks. 10 mL of vanilla extract was added 

to each drink. The stimuli were based on previous human fMRI studies in which it was found 

that these stimuli represent potent rewards that produce activation in major reward areas [S1, 

S2]. The drinks were mixed in a beaker and kept cool using customized can coolers. 

 

Reward delivery. The accumulated amount of liquid reward was delivered via a custom made 

system consisting of two peristaltic pumps (Experimental Psychology Workshop, University 

of Cambridge). Pumps were placed outside the scanner room in the control room. They were 

connected to a computer using an external National Instruments card (NI-USB-6009, National 

Instruments, Austin, Texas) and controlled via the Matlab Data Acquisition Toolbox. 

Participants received the liquid through a custom-made mouthpiece which were connected to 

silicone tubes of about 10 m length explicitly suitable for foodstuff (VWR International Ltd, 

UK). 

 

Interest rate calculation. Growth in reward over consecutive save choices was calculated 

according to 

 



 𝑥𝑛 =  𝑏 ∑ 𝑞𝑖

𝑛−1

𝑖=0

 

 

with 𝑥𝑛 as reward magnitude on trial 𝑛, 𝑏 as the base rate of reward magnitude, and 𝑞 as the 

interest rate  [S3, S4]. The interest rate was either high (𝑞 = 1.3) or low (𝑞 = 0.9), resulting in 

a quasi-hyperbolic growth profile for the low 𝑞 and quasi-exponential growth profile for the 

high 𝑞 (green curves in Figure 1d). Base rate was set to 𝑏 = 0.11. Interest rates and reward 

magnitudes were chosen based on behavioral pre-testing to ensure that subjects could 

discriminate the different reward magnitudes and were still able to drink the highest reward 

magnitude (6.2 mL) in the scanner. The following provides an example of how reward 

magnitudes were calculated. With a base rate of b = 0.11 and an interest rate of q = 1.3, on the 

first trial of the choice sequence the reward magnitude (RM) would correspond to RM = 0.11 

× (1 + 1.3) = 0.25 ml. On the second trial, with two successive save choices, RM = 0.11 × (1 + 

1.3 + 1.32) = 0.44 ml. On the third trial, with three successive save choices, RM = 0.11 × (1 + 

1.3 + 1.32 + 1.33) = 0.68 ml. The interest rate calculation adopted for this experiment does not 

exactly match calculations commonly employed in financial theory. The definition described 

above was used in order to yield a decreasing marginal increase of reward for the low interest 

condition (see Figure 1D left most panel and third panel from the left). 

 

Auction-like economic valuation task. Volunteers bid for different options in an adaptation 

of the Becker-DeGroot-Marschak [S5] auction-like task. Options mimicked the available 

combinations of sequence length and reward magnitude for each experimental condition 

(defined by combinations of reward type and interest rate) of the saving task. Specifically, each 

option consisted of a combination of reward magnitude (mL), reward type (high/low fat), and 

sequence length. There were 40 options in total, one for every possible sequence length in each 

of the four conditions. An example option would be “save 7 times to receive 2.6 mL of the high 

fat reward”.  Information about the required number of save choices and the available reward 

magnitudes were provided in text form, whereas information about reward type was shown in 

the same way as in the main saving task, i.e. using a colored cue (Figure 1C). After viewing 

the current option, the phrase “bid?” appeared below the option, followed by a response by the 

subject in the range of 1 (low) to 5 (high) on a keyboard. Subjects were informed that not all 

auctions and related saving sequences would be implemented but that a small number of 

auctions would be selected randomly by the computer. Three second-price-auctions were 



randomly implemented, one each between trials 5-10, 15-20 and 25-30. For each auction one 

randomly chosen bid placed by the subject was compared to a randomly generated number 

between 1 and 5. If the subject’s bid was higher or equal to the randomly generated number, 

the subject “won” the auction. Winning the auction resulted in guided performance of the 

sequence that the subject had bid for. Each subject started with a certain number of points as 

their endowment, the remainder of which could be converted into drink after the task at an 

exchange rate of 1 point to 0.5 mL of drink. Volunteers were carefully instructed about the 

rules of the task to yield true valuations of each option. Post-instruction questionnaires 

confirmed that subjects understood the task rules and the different choice options. Subjects 

indicated that they found the description of the task in terms of save-spend decisions intuitive. 

 

Behavioral data analysis 

 

Saving index. To quantify differences in saving behavior between subjects and conditions, we 

calculated a saving index as follows (Figure 1E). Within each subject and condition, we 

determined the frequency of observing a saving sequence of a specific length relative to all 

possible saving lengths (Figure 1D). These relative frequencies summed to 1.0 across sequence 

lengths within a given condition. We then weighted (multiplied) these relative frequencies with 

their associated sequence lengths, thereby giving higher weight to higher sequence lengths.  

We then calculated the mean over these weighted sequence lengths for a given condition 

(defined by combination of reward type and interest rate). Thus, 

 

𝑆𝑎𝑣𝑖𝑛𝑔 𝑖𝑛𝑑𝑒𝑥𝑞 =  
1

𝑛
∑ 𝑃𝑖,𝑞𝑆𝐿𝑖,

𝑛

𝑖=1

 

 

with 𝑆𝑎𝑣𝑖𝑛𝑔 𝑖𝑛𝑑𝑒𝑥𝑞 as the saving index for a given condition q (defined by a combination of 

reward type and interest rate), 𝑛 as the maximal sequence length (𝑛 = 10 in all conditions), 𝑃𝑖,𝑞 

as the mean relative frequency of observing a saving sequence of length i in condition q, and  

𝑆𝐿𝑖 as the number of successive save choices required to obtain sequence length i. 

 

Subjective values. As economic choices critically depend on the subjective values individuals 

derive from choice options, we estimated subjective values associated with specific saving 

sequences, following our previous approach from monkey experiments [S3, S4]. These 



subjective values depended on final reward amounts and current reward type but also on 

expenditure related to sequence length. As higher reward amounts required longer sequences 

(determined by current interest rate), the value of the sequence was compromised by temporal 

delay and physical effort. To capture these influences on value in a direct manner, we followed 

the general notion of standard economic choice theory and estimated subjective values from 

observed behavioral choices. 

We estimated the subjective value of different saving sequences by calculating the 

relative frequency with which each sequence length was chosen within a given condition. We 

then multiplied this frequency with the objective reward magnitude associated with the 

sequence length (Figure 1D, green curves). As identical sequence lengths were associated with 

different reward magnitude for different interest conditions, we multiplied these relative choice 

probabilities with objective reward magnitudes to account for magnitude differences between 

interest rates. This definition follows general economic approaches whereby reward 

magnitudes are weighted by their probability of occurrence. Thus, the subjective value for 

spending at any position 𝑖 in the choice sequence was defined as 

 

𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑣𝑎𝑙𝑢𝑒𝑖 = 𝑃𝑖  ×  𝑅𝑀𝑖 

 

with 𝑃𝑖 as the relative frequency of observing a spend choice at a given point i  in a saving 

sequence (defined by the number of consecutive save choices) and with 𝑅𝑀𝑖 as the reward 

magnitude (in mL) resulting from spending on that trial. The sequence value actually realized 

in a specific saving sequence (which we call ‘sequence value’ in the paper) constituted the 

subjective value of that sequence, which was our main value regressor for neural activity in the 

planning phase (Figure 2C, D). We defined the sequence value as choice probability weighted 

by reward magnitude in order to account for value differences between interest rates conditions: 

for high interest rates, a given sequence length was associated with higher reward magnitude 

(compared to low the interest rate) which likely resulted in higher subjective value. A 

supplemental logistic regression indicated that choice frequency and reward magnitude 

accounted for separate variance in subjects’ trial-by-trial choices (Figure S2B), consistent with 

previous results in monkeys [S3]. The sequence value associated with a given trial in a 

sequence, irrespective of whether the subject chose to spend on that trial (‘current sequence 

value’), was used for logistic regression of trial-by-trial choices on values (Figure 1F, Figure 

S2) and constituted our main value regressor for neural activity in the choice phase (Figure 5A, 



B, G, H). For comparisons across subjects, sequence value was normalized to the maximum 

value in each subject. Out-of-sample prediction confirmed that subjective values elicited in the 

first session (day 1, behavior only) predicted choices in the scanning session (day 2) well 

(Figure S2A, inset). 

To model trial-by-trial save-spend choices, we defined the value of a save choice at a 

given position in a saving sequence (‘save value’) as the average sequence value associated 

with all potential future trials of that sequence. Thus, the subjective value for saving at a given 

point n in a sequence was 

 

𝑆𝑎𝑣𝑒 𝑣𝑎𝑙𝑢𝑒𝑛 =  
1

𝑚 − 𝑛
∑ 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑣𝑎𝑙𝑢𝑒𝑖,

𝑚

𝑖=𝑛+1

 

 

with m defining the upper limit of the saving sequence (given by the maximal observed 

sequence length for the subject and condition). Thus, ‘current sequence value’ and ‘save value’ 

reflected trial-by-trial valuations, whereas ‘sequence value’ constituted the value of the finally 

chosen sequence.  

The adequacy of these value definitions for modelling saving behavior was 

demonstrated previously in monkey experiments [S3, S4], and was confirmed in the present 

human study by a logistic regression of save-spend choices on values (Figure 1F, Figure S2), 

by significant correlation of subjective values with stated saving intentions (R = 0.42, P < 

0.001), and by correlation of subjective values with subjects’ bids in the BDM task (R = 0.39, 

P < 0.001). 

 

Linear and logistic regression analysis of behavior. We used the following multiple 

regression analyses to examine influences on subjects’ saving behavior. All regressions were 

performed at the random-effects level (i.e. regression coefficients were estimated separately 

for each subject and then entered into one-sample t-tests at the group level). To assess the 

influence of the objective factors reward type and interest rate and their interaction on subjects’ 

saving behavior, we performed the following linear regression: 

 

𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑙𝑒𝑛𝑔𝑡ℎ = 𝛽0 + 𝛽1𝑅𝑒𝑤𝑎𝑟𝑑 + 𝛽2𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 + 𝛽3𝑅𝑒𝑤𝑎𝑟𝑑 × 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 + 𝜀 

 

with 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑙𝑒𝑛𝑔𝑡ℎ as the observed sequence length, 𝑅𝑒𝑤𝑎𝑟𝑑 as the current reward type 



(dummy variable for high vs. low fat content, with 1 indicating high fat and 0 indicating low 

fat), 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 as the current interest rate (dummy variable for high vs. low interest rate with 1 

indicating high interest and 0 indicating low interest), 𝑅𝑒𝑤𝑎𝑟𝑑 × 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 as interaction term, 

𝛽0 as constant term, 𝛽1 to 𝛽3 as the corresponding slope parameter estimates, and 𝜀 as residual. 

 In a second regression we tested whether there was an effect of the length of the last 

sequence on choice behavior by adding the factor 𝐿𝑎𝑠𝑡 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑙𝑒𝑛𝑔𝑡ℎ to the model 

described above: 

 

𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑙𝑒𝑛𝑔𝑡ℎ = 𝛽0 + 𝛽1𝑅𝑒𝑤𝑎𝑟𝑑 + 𝛽2𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 + 𝛽3𝑅𝑒𝑤𝑎𝑟𝑑 × 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡

+ 𝛽4𝐿𝑎𝑠𝑡 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑙𝑒𝑛𝑔𝑡ℎ + 𝜀 

 

 To model trial-by-trial save-spend choices, we used the subjective values defined above 

(‘current sequence value’ and ‘save value’) as explanatory variables in a logistic regression 

model (Figure 1F, Figure S2A): 

 

𝑦 = 𝛽0 + 𝛽1𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑣𝑎𝑙𝑢𝑒 + 𝛽2𝑆𝑎𝑣𝑒 𝑣𝑎𝑙𝑢𝑒 + 𝛽3𝑅𝑒𝑤𝑎𝑟𝑑 + 𝛽4𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 + 𝛽5𝑅𝑒𝑤𝑎𝑟𝑑 

× 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 + 𝛽6𝐶𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 + 𝛽7𝑇𝑜𝑡𝑎𝑙 𝑟𝑒𝑤𝑎𝑟𝑑

+ 𝛽8𝑆𝑒𝑞𝑉𝑎𝑙 𝑟𝑢𝑛𝑛𝑖𝑛𝑔 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 + 𝜀 

 

with 𝑦 as trial-by-trial save-spend choice (0 indicating spend choice, 1 indicating save choice), 

𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑣𝑎𝑙𝑢𝑒 as current sequence value, 𝑆𝑎𝑣𝑒 𝑣𝑎𝑙𝑢𝑒 as save value, 𝐶𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 as the 

left-right position of the save cue (0 indicating left, 1 indicating right) to model potential side 

biases, 𝑇𝑜𝑡𝑎𝑙 𝑟𝑒𝑤𝑎𝑟𝑑 as a running index of consumed liquid over the whole experiment to 

model potential satiation effects, 𝑆𝑒𝑞𝑉𝑎𝑙 𝑟𝑢𝑛𝑛𝑖𝑛𝑔 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 as the average obtained sequence 

value over the last 20 trials, 𝛽0 as constant term, 𝛽1 to 𝛽8 as the corresponding slope parameter 

estimates, and 𝜀 as residual. We also performed an out-of-sample prediction using the 

behavioral data from the first testing session (day 1) to derive subjective values and predict 

choices in the subsequently performed scanning session (Figure S2A, inset). 

 To separately model the sequence value components we performed the following 

logistic regression model: 

 

𝑦 = 𝛽0 + 𝛽1𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐶ℎ𝑜𝑖𝑐𝑒 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 + 𝛽2𝑅𝑒𝑤𝑎𝑟𝑑 𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 + 𝛽3𝑆𝑎𝑣𝑒 𝑣𝑎𝑙𝑢𝑒 + 𝜀 

 



with 𝑦 as trial-by-trial save-spend choice (0 indicating spend choice, 1 indicating save choice), 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐶ℎ𝑜𝑖𝑐𝑒 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 as relative choice frequency of the current sequence length, 

𝑅𝑒𝑤𝑎𝑟𝑑 𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 as reward magnitude available on the current trial and other variables 

defined as above. The results are shown in Figure S2B. 

 In a further analysis, we modeled choices in terms of the observed cumulative 

probability to spend on a given trial, which we derived from separate behavioral data collected 

during the first testing session. The regression was of the following form: 

 

𝑦 = 𝛽0 + 𝛽1𝑃(𝑆𝑝𝑒𝑛𝑑) + 𝛽2𝐶𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 + 𝛽3𝑇𝑜𝑡𝑎𝑙 𝑟𝑒𝑤𝑎𝑟𝑑 + 𝜀 

 

with  𝑦 as trial-by-trial save-spend choice (0 indicating spend choice, 1 indicating save choice), 

𝑃(𝑆𝑝𝑒𝑛𝑑) as cumulative spend probability over consecutive save trials derived from separate 

data and other variables as defined above. The results are shown in Figure S2C. 

 To analyse the influences on reported saving intentions and reported pleasantness we 

performed two separate multiple linear regression analyses of the following form: 

 

𝑦 = 𝛽0 + 𝛽1𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 + 𝛽2𝑇𝑜𝑡𝑎𝑙 𝑅𝑒𝑤𝑎𝑟𝑑 + 𝛽3𝑅𝑒𝑤𝑎𝑟𝑑 + 𝛽3𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡

+ 𝛽5𝑅𝑒𝑤𝑎𝑟𝑑 × 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 + 𝛽6𝐶𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 + 𝜀 

with 𝑦 being either willingness-to-save or subjective pleasantness, 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 as 

running index of sequences performed over the whole scanning experiment, i.e. across all three 

runs (with the first performed sequence in the experiment taking the value of 1) and other 

variables as defined above. The resulting data are shown in Figure S2D-E. 

 

To examine deviations between sequence length (observed behavior) and willingness-

to-save (reported saving intentions), we performed the following multiple linear regression 

analysis: 

 

𝑦 = 𝛽0 + 𝛽1𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑉𝑎𝑙𝑢𝑒 + 𝛽2𝑅𝑒𝑤𝑎𝑟𝑑 + 𝛽3𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 + 𝛽3𝑅𝑒𝑤𝑎𝑟𝑑 × 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡

+ 𝛽5𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝐼𝐷 + 𝛽6𝐴𝑚𝑦𝑔𝑑𝑎𝑙𝑎 𝑝𝑙𝑎𝑛𝑛𝑖𝑛𝑔 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 

+ 𝛽7𝐴𝐶𝐶 𝑝𝑙𝑎𝑛𝑛𝑖𝑛𝑔 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 + 𝛽8𝐷𝐿𝑃𝐹𝐶 𝑝𝑙𝑎𝑛𝑛𝑖𝑛𝑔 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 + 𝜀 

 

with 𝑦 being the deviation (i.e. signed difference) between saving intentions and sequence 

length (willingness-to-save ‒ sequence length), , 𝐴𝑚𝑦𝑔𝑑𝑎𝑙𝑎 𝑝𝑙𝑎𝑛𝑛𝑖𝑛𝑔 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 as the peak 



BOLD signal in amygdala during the planning phase, 𝐴𝐶𝐶 𝑝𝑙𝑎𝑛𝑛𝑖𝑛𝑔 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 as the peak 

BOLD signal in ACC during the planning phase, 𝐷𝐿𝑃𝐹𝐶 𝑝𝑙𝑎𝑛𝑛𝑖𝑛𝑔 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 as the peak 

BOLD signal in DLPFC during the planning phase, and other variables as defined above. The 

resulting data are shown in Figure S2F. 

 

Response time analysis. To analyse the influences on response times we performed a multiple 

linear regression analysis of the following form: 

 

𝑦 = 𝛽0 + 𝛽1𝑆𝑎𝑣𝑒 𝑣𝑠. 𝑠𝑝𝑒𝑛𝑑 + 𝛽2𝑊𝑇𝑆 + 𝛽3𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑙𝑒𝑛𝑔𝑡ℎ

+ 𝛽4𝐹𝑖𝑛𝑎𝑙 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑙𝑒𝑛𝑔𝑡ℎ + 𝛽5𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑣𝑎𝑙𝑢𝑒

+ 𝛽6𝐹𝑖𝑛𝑎𝑙 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑣𝑎𝑙𝑢𝑒 + 𝛽7𝑆𝑎𝑣𝑒 𝑣𝑎𝑙𝑢𝑒 + 𝜀 

with 𝑦 being the response time for the respective trial, 𝑆𝑎𝑣𝑒 𝑣𝑠. 𝑠𝑝𝑒𝑛𝑑 as a dummy variable 

for save (1) or spend (0), 𝑊𝑇𝑆 as reported saving intentions, 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑙𝑒𝑛𝑔𝑡ℎ as 

the current sequence length, i.e. the position within the current sequence, 

𝐹𝑖𝑛𝑎𝑙 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑙𝑒𝑛𝑔𝑡ℎ as the final sequence length of the current sequence, 

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑣𝑎𝑙𝑢𝑒 as the sequence value available if the subject were to spend 

immediately,  𝐹𝑖𝑛𝑎𝑙 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑣𝑎𝑙𝑢𝑒 as the sequence value obtained in that sequence by the 

subject, 𝑆𝑎𝑣𝑒 𝑣𝑎𝑙𝑢𝑒 as the save value for the current trial within the sequence, 𝛽0 as constant 

term, 𝛽1 to 𝛽7 as the corresponding slope parameter estimates, and 𝜀 as residual. The resulting 

data are shown in Figure S2G. To assess whether response times systematically decreased or 

increased across the scanning session we regressed response times on the current trial number 

across the whole scanning experiment. The data are described in the Results section ‘Saving 

behavior and subjective value model’. Since subjects often deviated from their reported 

willingness-to-save, we were interest in investigating the hypothesis that response times are 

faster in spend trials in which subjects spent earlier than indicated by their willingness-to-save 

(‘premature spend trial’) compared to when they meet their reported willingness-to-save. We 

calculated the mean response time for each of these two trial types for each subject and in a 

second step entered these means into a second-level t-test across subjects. The results are 

described the Results section ‘Saving behavior and subjective value model’. 

 

Relationship of relative choice frequency and rate of reward return. We tested whether 

subjects’ observed behavior (relative choice frequency) was related to the rate of reward return, 

defined as the additional reward magnitude to be gained (mL) by choosing to save in the current 



trial. To this end we pooled the relative choice frequency of all subjects for each condition and 

regressed this on the rate of return for the corresponding trial. Perfect matching of choice 

frequency to rate of return would result in a positive linear relationship between the two 

variables. The results are shown in Figure S3 and mentioned in the Results section ‘Saving 

behavior and subjective value model’. 

 

fMRI data acquisition 

 

We acquired echo T2*-weighted echo-planar images (EPIs) with blood-oxygen-level-

dependent (BOLD) contrast using a Siemens 3T Trio Scanner at the Wolfson Brain Imaging 

Centre, Cambridge, UK. Data were acquired with in plane resolution 3 × 3 × 2 mm, 2 mm slice 

thickness, 56 slices, repetition time (TR) = 3 s, echo time (TE) = 30 ms, flip angle = 90° and 

field of view = 192 mm.  Between 401 and 470 volumes were acquired in three separate runs 

for each participant, along with 4 “dummy” volumes before each scanning run. The acquisition 

plane was tilted by -30 degrees with respect to the anterior commissure–posterior-commissure 

axis and a z-shim gradient pre-pulse was applied to minimize signal dropout in inferior frontal 

and medial temporal lobe areas [S6]. High-resolution T1 structural scans were acquired using 

an MPRAGE sequence and co-registered to enable group level anatomical localization with 

the following sequence parameters: 1 × 1 × 1 mm3 voxel resolution, 1 mm slice thickness, TR 

= 2.3 s, TE = 2.98 ms, inversion time 900 ms, flip angle = 9°.  

 

fMRI data analysis 

 

We performed the fMRI data analysis using statistical parametric mapping (SPM8; Wellcome 

Trust Centre for Neuroimaging, London). Preprocessing included realignment of functional 

data including motion correction, normalization to the Montreal Neurological Institute (MNI) 

coordinate system, and smoothing with a Gaussian kernel with full width at half maximum 

(FWHM) of 6 mm. A high-pass temporal filter with a cut-off period of 128 s was applied. 

General linear models (GLMs) assuming first-order autoregression were applied to the time 

course of activation in which event onsets were modelled as single impulse response functions 

convolved with the canonical hemodynamic response function. Time derivatives were included 

in the basis functions set. Linear contrasts of parameter estimates were defined to test specific 

effects in each individual dataset. Voxel values for each contrast resulted in a statistical 

parametric map of the corresponding t statistic. In the second (group random-effects) stage, 



subject-specific linear contrasts of these parameter estimates were entered into one-sample t-

tests, as described below, resulting in group-level statistical parametric maps. We estimated the 

following GLMs to test specific hypotheses: 

 

GLM 1. This GLM served three purposes: (1) to identify brain areas more strongly activated in 

the planning phase compared to the choice phase (Figures 2A, 4A), (2) to search for regions 

correlating with the length of the forthcoming sequence (‘sequence length’) during the planning 

phase (Figures 2B, 4B), and (3) to search for regions correlating with the final length of the 

current choice sequence during the choice phase. For each subject we estimated a GLM with 

the following regressors of interest: (R1) an indicator function for the choice phase, i.e. the 

times when subjects were presented with the question mark cue prompting them to consider 

their save-spend decision for the current trial; (R2) R1 modulated by the final sequence length 

of the current choice sequence; (R3) an indicator function for the action phase, i.e. the times 

when the save and spend cue were presented and the subject could enter their choice using the 

button box; (R4) R3 modulated by an indicator function indicating whether the subject chose 

the cue presented on the left or on the right; (R5) an indicator function for the planning phase, 

i.e. the times when cues indicating interest rate and reward type were shown; (R6) R5 

modulated by the length of the forthcoming choice sequence (‘sequence length’); (R7) an 

indicator function for the willingness-to-save rating phase, i.e. the times when subjects 

indicated their willingness-to-save on a visual analogue scale from 0 (low) to 10 (high); (R8) 

an indicator function for the reward delivery period, i.e. the times when reward was delivered 

into the subject’s mouth; (R9) R8 modulated by the reward magnitude (in mL); (R10) an 

indicator function for the pleasantness-rating phase, i.e. the times when the subjects indicated 

the pleasantness of the received reward; (R11-R17) the motion parameters resulting from the 

realignment pre-processing step as covariates of no interest; (R18-R20) three session constants. 

 

GLM 2. This GLM identified regions associated with sequence value (Figure 2C, Figure S5A-

C). It included the following regressors: (R1) an indicator function for the choice phase; (R2) 

R1 modulated by the sequence value (i.e. the final chosen sequence value) of the current choice 

sequence. (R3) an indicator function for the action phase; (R4) R3 modulated by an indicator 

function indicating whether the subject chose the cue presented on the left or on the right; (R5) 

an indicator function for the planning phase; (R6) R5 modulated by sequence value; (R7) an 

indicator function for the willingness-to-save rating phase; (R8) an indicator function for the 

reward delivery period; (R9) R8 modulated by the pleasantness rating; (R10) an indicator 



function during the pleasantness-rating phase. The remaining details were the same as in 

GLM1. 

 

GLM 3. This GLM identified regions associated with the trial-by-trial evolving ‘current 

sequence value’ (Figure 5A, G). It included the following regressors: (R1) an indicator function 

for the choice phase; (R2) R1 modulated by current sequence value; (R3) R1 modulated by 

save value; (R4) R1 modulated by sequence value (i.e. the final chosen sequence value); (R5) 

An indicator function for the action phase; (R6) R5 modulated by an indicator function 

indicating whether the subject chose the cue presented on the left or on the right; (R7) an 

indicator function for the planning phase; (R8) R7 modulated by sequence value; (R9) an 

indicator function for the willingness-to-save rating phase; (R10) an indicator function for the 

delivery period; (R12) an indicator function during the pleasantness-rating phase. The 

remaining details were the same as in GLM1. 

 

GLM 4. This GLM identified areas in which activity correlates with the current sequence length 

during the choice phase (Figure 5E). It included the following regressors: (R1) an indicator 

function for the choice phase; (R2) R1 modulated by the current sequence length of the on-

going choice sequence; (R3) R1 modulated by the final sequence length of the current choice 

sequence; (R4) an indicator function for the action phase; (R5) R4 modulated by an indicator 

function indicating whether the subject chose the cue presented on the left or on the right; (R6) 

an indicator function for the planning phase; (R7) R6 modulated by sequence length; (R8) an 

indicator function for the willingness-to-save rating phase; (R9) an indicator function for the 

delivery period; (R10) R9 modulated by the pleasantness rating; (R11) an indicator function 

during the pleasantness-rating phase. The remaining details were the same as in GLM1. 

 

GLM 5. This GLM served to test whether parametric effects during the planning phase could 

be explained by the objective factors fat and interest (Figure S4A,B). The model contained the 

following regressors: (R1) an indicator function for the choice phase; (R2) R1 modulated by 

current sequence length; (R3) an indicator function for the action phase; (R4) R3 modulated by 

an indicator function indicating whether the subject chose the cue presented on the left or on 

the right; (R5) an indicator function for the planning phase in the low interest, low fat condition; 

(R6) R5 modulated by sequence length; (R7) an indicator function for the planning phase in 

the high interest, low fat condition; (R8) R7 modulated by sequence length; (R9) an indicator 

function for the planning phase in the low interest, high fat condition; (R10) R9 modulated by 



sequence length; (R11) an indicator function for the planning phase in the high interest, high 

fat condition; (R12) R11 modulated by sequence length. The remaining details are the same as 

for GLM1. 

 

GLM 6. This GLM served to contrast trials in which subjects chose to save with those in which 

they chose to spend (i.e. consume) (Figure S4G). It included the following regressors: (R1) an 

indicator function for the choice phase in trials in which the subject chose to save; (R2) an 

indicator function for the choice phase in trials in which the subject chose to spend; R3 to R10 

were the same as in GLM 1. The remaining details are the same as for GLM1. 

 

Functional connectivity analysis. We assessed functional connectivity using the 

psychophysiological-interaction (PPI) approach [S7, S8]. For each subject we first extracted 

eigenvariates for a 6 × 6 × 6 voxel cluster around a seed voxel based on the peak voxels 

identified by the correlation with sequence length during the planning phase (the main planning 

variable in the economic saving task). The peak voxel used for each subject was determined 

using a leave-one-out procedure by re-estimating our second level analysis 23 times, each time 

leaving out one subject. Starting at the respective peak voxel for correlation with sequence 

length we selected the nearest peak in these cross-validation analyses. Time courses were de-

convolved with the canonical hemodynamic response function (HRF) to construct a time series 

of neural activity in the region of interest. We estimated the following PPI GLMs to test specific 

hypotheses. 

 

PPI 1. This GLM tested for differential coupling between brain areas as a function of task 

phase (planning vs. choice phase). The results are shown in Figures 4E and 5I. The model 

contained the following regressors: (R1) a psychophysiological interaction regressor between 

the time series of activity in a seed brain area, extracted as just described, and a contrast 

between planning phase vs. choice phase; (R2) the time series of activity in a seed brain area, 

extracted as just described; (R3) a contrast between planning phase vs. choice phase; (R4-R9) 

the motion parameters resulting from the realignment pre-processing step as covariates of no 

interest; (R10-R12) three session constants. This model was estimated for the seed regions 

amygdala, ACC and DLPFC. 

 

PPI 2. This GLM tested for differential coupling between brain areas in the planning phase as 

a function of reward type (high fat vs. low fat). The results are shown in Figure 4E. The model 



contained the following regressors: (R1) a psychophysiological interaction regressor between 

the time series of activity in a seed brain area, extracted as just described, and a contrast 

between the planning phase trials in which high fat cues were shown and planning phase trials 

in which low fat cues were shown; (R2) the time series of activity in a seed brain area, extracted 

as just described; (R3) a contrast between the planning phase trials in which high fat cues were 

shown and planning phase trials in which low fat cues were shown; (R4-R9) the motion 

parameters resulting from the realignment pre-processing step as covariates of no interest; 

(R10-R12) three session constants. This model was estimated for the seed regions amygdala, 

ACC and DLPFC. 

 

PPI 3. This GLM tested for differential coupling between brain areas in the planning phase as 

a function of interest rate (high interest vs. low interest). The results are shown in Figure 4E. 

The model contained the following regressors: (R1) a psychophysiological interaction 

regressor between the time series of activity in a seed brain area, extracted as just described, 

and a contrast between the planning phase trials in which high interest cues were shown and 

planning phase trials in which low interest cues were shown; (R2) the time series of activity in 

a seed brain area, extracted as just described; (R3) a contrast between the planning phase trials 

in which high interest cues were shown and planning phase trials in which low interest cues 

were shown; (R4-R9) the motion parameters resulting from the realignment pre-processing 

step as covariates of no interest; (R10-R12) three session constants. This model was estimated 

for the seed regions amygdala, ACC and DLPFC. 

 

PPI 4. This GLM tested for differential coupling between brain areas in the choice phase as a 

function of current-trial choice (save vs. spend). The results are shown in Figure 5I. The model 

contained the following regressors: (R1) a psychophysiological interaction regressor between 

the time series of activity in a seed brain area, extracted as just described, and a contrast 

between the choice phase trials in which the subject chose to save and choice phase trials in 

which the subject chose to spend; (R2) the time series of activity in a seed brain area, extracted 

as just described; (R3) a contrast between the choice phase trials in which the subject chose to 

save and choice phase trials in which the subject chose to spend; (R4-R9) the motion 

parameters resulting from the realignment pre-processing step as covariates of no interest; 

(R10-R12) three session constants. This model was estimated for the seed regions amygdala, 

ACC, DLPFC, and MPFC. 

 



For all models, the regressors were constructed using the standard deconvolution procedure as 

implemented in SPM8 [S8]. For each model, we calculated single-subject first-level contrasts 

for the PPI regressor (R1) that were then entered into a second level analysis by calculating a 

one-sample t-test across the single subject coefficients. The results are shown in Figure 4E, 

Figure 5I and Table S5. 

 

Statistical significance testing. For all fMRI analyses, we report effects that survive correction 

for multiple comparisons across the whole brain using a significance level of P < 0.05 (family-

wise error) at cluster level, imposed on maps that were displayed at P < 0.005 with minimum 

cluster size k = 10 voxels. In addition, we used small volume correction (P < 0.05, cluster-

level) in the amygdala, for which we had strong a priori hypotheses based on previous human 

fMRI [S9] and animal single-neuron recording [S3, S4] studies. Small volume correction was 

performed in a sphere of 6 mm radius that was centred on specific amygdala coordinates [18, 

-6, -22] reported in a previous fMRI study on food reward and decision-making [S9]. (Very 

similar coordinates for amygdala activation are found across several studies involving food 

reward or decision-making [S2, S10, S11].) 

 

Region of interest analysis. We produced time courses from region of interest (ROI) analyses 

according to the following method [S12]. We extracted raw BOLD data from ROI coordinates 

based on group clusters, which we defined independently for each subject using a leave-one-

out procedure. (We re-estimated the second-level analysis 23 times, each time leaving out one 

subject to define the ROI coordinates for the left-out subject.) Following data extraction we 

applied a high-pass filter with a cut off period of 128 s. The data were then z-normalized, 

oversampled by a factor of 10 using sinc-interpolation, and separated into trials to produce a 

matrix of trials against time. We generated separate matrices for each event of interest (e.g. 

onset of planning phase or choice phase). We then fitted GLMs to each oversampled time point 

across trials separately in each subject. The GLMs were designed to test specific hypotheses as 

described in the text. In addition to the regressors shown in each figure, the GLMs included 

motion parameters as covariates of no interest. This GLM analysis yielded one regression 

coefficient for each regressor for every oversampled time point in each subject. We entered 

individual-subject coefficients into one-sample t-tests (random-effects analysis, P < 0.05) and 

calculated group averages and standard errors for each time point across participants, yielding 

the across-subject effect size time courses shown in the figures. These mean effect size time 

courses are shown for the amygdala in Figure 2D and 5B and Figure S4C-F,H and Figure 3B; 



the DLPFC time courses are shown in Figure 4C, 5D; the ACC time courses are shown in 

Figure 5F; the MPFC time courses are shown in Figure 5H.  

  For the time courses shown in Figure 2F, we performed the following analysis. First, in 

a ROI analysis (as just described), for each subject we regressed sequence length and sequence 

value on the oversampled BOLD data for each time point in the planning phase. This yielded 

regression coefficients for sequence value and sequence length for each time point during the 

planning phase. We then used these regression coefficients to fit two models to amygdala 

activity to obtain predicted (i.e. modelled) amygdala activity based on sequence length 

(‘sequence length signal’) and sequence value (‘sequence value signal’). To relate these two 

signals to the willingness-to-pay (BDM) bids obtained in the auction-like task, we calculated a 

sequence length signal and a sequence value signal as just described for all specific saving 

sequences chosen by each subject (a specific saving sequence for this analysis was defined by 

sequence length and experimental condition, i.e. the combination of reward type and interest 

rate). We then regressed the willingness-to-pay (BDM) bids for each specific saving sequence 

on the corresponding sequence length and sequence value signals, separately for each time 

point in the planning phase and for each subject. We entered individual-subject coefficients 

into one-sample t-tests (random-effects analysis, P < 0.05) and calculated group averages and 

standard errors for each time point across participants, yielding across-subject effect size time 

courses. The resulting mean effect size time courses are shown in Figure 2F. 

  The region-of-interest analysis in Figure S4C was done to show the effect of sequence 

length in amygdala when variance related to reward type had been accounted for. We tested 

for reward effects with a direct indicator variable for fat content across all sequences (1 = high 

fat; 0 = low fat) and then entered sequence length as second regressor, orthogonalizing 

sequence length with respect to reward type. The figure thus shows that amygdala planning 

activity reflects sequence length even if sequence length variation due to reward type is 

removed. Using the same approach, the analysis in Figure S4D was done to show the effect of 

sequence length in amygdala when variance related to interest rate had been accounted for. The 

figure thus shows that amygdala planning activity codes sequence length even if sequence 

length variation due to interest rate is removed. Together, these control analyses show that our 

main effect of amygdala sequence length coding in the planning phase is not explained by 

simple effects of either reward type or interest rate (or related cue responses). Rather, amygdala 

planning activity seems to reflect the internally planned, forthcoming length of the current 

sequence. 



  To test for relationships between specific behavioral and neural effect sizes, we 

extracted neural effects sizes from individual subject’s data using the leave-one-out procedure 

described above. The resulting effect size scatter plots are shown in Figures 3C, 4D, 4F, 5J, 

Figures S5D-F. This method was also used to obtain the correlations between PPI effect sizes 

stated in the main text. 

 

Shared variance and relationship between our main variables. We calculated the shared 

variance between our main regressors for fMRI data analysis within each subject. The shared 

variances were as follows: sequence length and sequence value: R2 = 0.22 (± 0.16); sequence 

length and willingness-to-save ratings: R2 = 0.58 (± 0.13); sequence length and BDM bids 

(correlations involving BDM bids were calculated for those 22 subjects for whom BDM data 

were available): R2 = 0.36 (± 0.28); sequence value and willingness-to-save ratings: R2 = 0.18 

(± 0.13); sequence value and BDM bids: R2 = 0.37 (± 0.28). 
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