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A dynamic code for economic object valuation
in prefrontal cortex neurons
Ken-Ichiro Tsutsui1,*,w, Fabian Grabenhorst1,*, Shunsuke Kobayashi1,w & Wolfram Schultz1

Neuronal reward valuations provide the physiological basis for economic behaviour. Yet, how

such valuations are converted to economic decisions remains unclear. Here we show that the

dorsolateral prefrontal cortex (DLPFC) implements a flexible value code based on

object-specific valuations by single neurons. As monkeys perform a reward-based foraging

task, individual DLPFC neurons signal the value of specific choice objects derived from

recent experience. These neuronal object values satisfy principles of competitive choice

mechanisms, track performance fluctuations and follow predictions of a classical behavioural

model (Herrnstein’s matching law). Individual neurons dynamically encode both, the updating

of object values from recently experienced rewards, and their subsequent conversion to

object choices during decision-making. Decoding from unselected populations enables a

read-out of motivational and decision variables not emphasized by individual neurons. These

findings suggest a dynamic single-neuron and population value code in DLPFC that advances

from reward experiences to economic object values and future choices.
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R
ewards are essential goals for economic decisions and
behaviour. In natural environments, reward probabilities
are often unknown and decision-making requires

internal value estimation from recent experience1–5. Such
value estimates constitute critical elements in reinforcement
learning6 and computational decision theories7–9. Although
neurophysiological studies uncovered experience-based value
signals in different brain structures1,3,5, key questions about the
neural value code remain unresolved.

First, it is unclear how individual neurons encode value
estimates as input for decision mechanisms. Biologically realistic
decision models use separate value inputs for different choice
objects that compete through winner-take-all mechanisms6–9,
rather than explicit relative (comparative) valuations. Although
object-specific valuations seem computationally advantageous,
relative valuations—which can be derived from object-specific
values—are frequently observed in human imaging neural
population signals10–15. Second, although neuronal values were
typically referenced to actions in previous studies1,3,5, decisions
are often made between objects. This distinction is significant,
as objects constitute the fundamental choice unit in economic
theory. Orbitofrontal cortex (OFC) neurons encode economic
object valuations when value is explicitly signalled by external
cues16–18. However, it is unclear whether object value neurons
also encode recent reward experiences, as implied by the concept
of value construction2–4,7, and whether they directly convert
values to choices, as predicted by computational models8,9.

Here we recorded the activity of single neurons in the
dorsolateral prefrontal cortex (DLPFC) of monkeys performing
an object-based foraging task. The DLPFC is implicated in
diverse functions including decision-making19–28, behavioural
control29–34 and reinforcement learning35,36. Previous
neurophysiological studies showed that DLPFC neurons
encode important economic decision variables including reward
probability, reward magnitude, effort19,26, reward and choice
history20,35,36. DLPFC is also connected to sensory, motor and
reward systems29,37, including parietal cortex and striatum, where
experience-based value signals are found1,3,5, and anterior
cingulate cortex, where lesions impair performance based on
reward experience38.

We hypothesized that individual DLPFC neurons encode the
construction of values from experience, their formatting into
object-specific decision variables, and their conversion to object
choices. We tested whether DLPFC neurons encode values of
specific choice objects termed ‘object values’, in analogy to action
values6 and in line with competitive choice mechanisms6,39,40.
Although a negative finding would not necessarily contradict the
role of DLPFC in decision-making, a positive result would lend
credence to the neuronal implementation of competitive decision
models, similar to previous single-neuron representations of
complex decision variables41. We elicited valuations in a foraging
task that required internal value construction from reward history
and encouraged proportional allocation of choices to rewards
received from different objects, following Herrnstein’s matching
law42. The task temporally separated valuation from choice and
action, allowing us to identify separate neuronal signals for these
distinct computational steps. In addition to single-neuron
analysis, we used linear decoding to read out values and
value-derived decision variables from DLPFC population
activity without pre-selecting neurons for value coding.

We show that individual DLPFC neurons dynamically encode
the value of specific choice objects as a decision variable.
Individual neurons signal both the construction of object values
from recently experienced rewards and their subsequent
conversion to object choices. Population decoding demonstrates
a dynamic readout of additional value-derived variables not

encoded by individual neuron, which meet the motivational and
decision requirements of different task stages. This dynamic
object value code—characterized by single-neuron convergence of
valuation, learning, and decision signals and flexible population
readout—may support DLPFC’s signature role in adaptive
behaviour.

Results
Object-based foraging task. Two monkeys performed in a
foraging choice task in which the probability of receiving a reward
from each of two options varied dynamically and in an
unsignalled manner across trials. In each testing session, two
visual objects (A and B) served as choice targets (Fig. 1a). The
animal made a saccade to its object of choice and received either a
drop of liquid reward or no reward depending on the object’s
reinforcement schedule. Left-right object positions varied
randomly trial-by-trial. During blocks of typically 50-150 trials,
each object was associated with a base reward probability
according to which a reward was assigned on every trial. Rewards
remained available until the animal chose the object. Thus, the
instantaneous reward probability for a particular object increased
with the number of trials the object was not chosen; it fell back to
base probability after each choice of the object. Under such
conditions, an effective strategy is to repeatedly choose the object
with the higher base probability and only choose the alternative
when its instantaneous reward probability has exceeded the base
probability of the currently sampled object2,43. Global behaviour
in such tasks usually conforms to the matching law42, which
states that the ratio of choices to two alternatives matches the
ratio of the number of rewards received from each alternative2–5.

Thus, to maximize reward income, the animals had to track
changes in block-wise reward probabilities and local fluctuations
owing to the matching task design. This required keeping track of
the history of recent rewards and object choices. As reward
probabilities within blocks varied predictably in a trial- and
choice-dependent manner, the animals could internally evaluate
and choose between objects before cue appearance on each trial.
This task design, in combination with randomized trial-by-trial
cue positions, allowed us to test for neuronal encoding of object
values and choices before action selection.

Matching behaviour and object value model. Across sessions,
both animals conformed to the matching law by allocating their
object choices according to the number of rewards available from
each object (Fig. 1b). In a representative session, the animal
continuously matched its local choice ratio to the current reward
ratio (that is, the number of received rewards), and readily
adapted to block-wise changes in base probabilities (Fig. 1c).
Thus, the animals behaved meaningfully, according to predictions
from Herrnstein’s matching law, which validated the foraging
task as a model for neuronal object valuation and decision
processes.

Base reward probabilities and instantaneous probabilities were
not externally cued but required learning and continual updating.
Thus, internally constructed, subjective value estimates likely
guided the animals’ choices. To examine neuronal value
coding, we estimated these internal values using established
approaches2,4. Logistic regression determined how the history of
past rewards on each object influenced current choices. As
matching also required occasional switching between objects, we
incorporated a term for choice history4. Subjective values for
specific choice objects estimated in this manner likely constituted
the main decision variable for the animals, which we call ‘object
value’.
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We derived value estimates by convolving object-specific
reward and choice histories with filters, obtained from logistic
regression, that assigned higher weight to more recent rewards
and choices2–4. We summed weighted reward and choice
histories for each object to obtain scalar, single-trial measures
of object value. Filter weights were derived by fitting a logistic
regression based on reward and choice history to the animals’
choices. The resulting filter shapes (Fig. 1d) resemble those found
in previous studies2–4, with declining absolute weights as a
function of past trials.

Choices in a representative session were well described by the
value model: model-derived choice probability closely tracked
local and block-wise fluctuations in the animal’s behaviour and
value estimates followed block-wise and local reward income
fluctuations (Fig. 1e). For model validation, we performed an
out-of-sample prediction with filter weights derived from separate
data. This confirmed that object values predicted trial-by-trial

choices (Fig. 1f) and that object value difference fitted the
animals’ choice probabilities (Fig. 1g).

While the value difference between objects likely directed
choices, the sum of object values may have been an important
motivational influence irrespective of choice direction. Such
‘net value’ effects are critical in goal-directed behaviour and have
previously been shown to influence performance44. We tested
whether value sum was related to the animals’ motivation,
measured by trial initiation times (key touch latency). Multiple
regression confirmed value sum as main determinant of trial
initiation time: the animals’ initiated trials faster when value sum
was high (Fig. 1h,i), consistent with a motivational effect due to
overall reward expectation. By contrast, saccadic reaction times
during choice were influenced by the absolute (unsigned) value
difference (Supplementary Fig. 1), consistent with previous
studies and theoretical models that relate absolute value
difference to decision difficulty and confidence28,45,46.
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Figure 1 | Foraging task and matching behaviour. (a) Object-based foraging task. (b) Relationship between log-transformed choice and reward ratios

across sessions. The base reward probability ratio was significantly related to the choice ratio (animal A: 11,040 trials from 139 sessions, t137¼ 13.09, linear

regression; data were similar for animal B: R2¼0.740, P¼4.7� 10� 20; 5306 trials from 65 sessions, t63¼ 13.37). (c) Behaviour in one example session:

choices tracked relative reward probability. Dark blue curve: instantaneous fraction (7-trial running average) of object A choices. Light blue curve:

instantaneous fraction of rewards received from object A. Yellow curves: block-wise reward (light) and choice (dark) ratios. Coloured boxes indicate block

durations, numbers indicate reward ratios: object A to B. (d) Filters used to generate subjective object values: influence of past rewards on current-trial

choice. Filters represent logistic regression weights derived from independent behavioural data (animal A: 5,520 trials, d.f.¼ 5,499; animal B: 2,653 trials,

d.f.¼ 2,632). * Po0.05. (e) Model choices closely tracked the animal’s choices (same session as in (c)). Dark/light blue curve: running average of

animal/model choices for object A. Vertical bars: animal choices for objects A (red) and B (green); long bars indicate rewarded trials. Black traces:

subjective object values derived from weighted and summed reward and choice histories. (f) Out-of-sample prediction of choices from values. Logistic

regression weights for object A value (P¼ 1.3� 10� 22, t-test) and object B value (P¼ 7.1� 10� 20) and cue position (non-significant; coefficients pooled

over animals and sessions; 102 sessions, t-test, d.f.¼ 99). (g) Decision function relating value difference to choice probability (data pooled over animals

and sessions). (h) Multiple regression of trial initiation times (key touch latencies) on value sum and covariates (12,358 trials, d.f.¼ 12,352). Only value

sum and animal coefficients were significant (both Po0.0001, t-test). (i) Single linear regression of trial initiation time on value sum (plot constructed by

binning trials according to value sum and then determining reaction time means; data pooled over animals and sessions). Error bars show s.e.m.
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Taken together, the animals’ choices were well described by
object value estimates that were internally constructed and
continually updated from reward and choice histories. While
value difference was suited to direct choices towards specific
objects, value sum reflected the animals’ overall motivation.

Encoding of object value in single DLPFC neurons. We
conceptualize object value analogous to action value6 as a
decision variable that signals the value of specific choice
alternatives as suitable input to competitive choice mechanisms.
A neuronal response encoding object value should (i) signal value
in time to inform the animal’s choice, (ii) signal the value of one
choice object but not of alternative objects, and (iii) signal value
on each trial, irrespective of whether the object is chosen or not.
Multiple linear regression analysis determined whether neuronal
responses encoded object values according to these criteria
while factoring out other task-related variables and testing for
alternative (relative) decision variables. Our main conclusions
are based on statistical tests within this regression framework;
in addition, we plot activity time-courses and single linear
regressions to illustrate effects.

The activity of the DLPFC neuron in Fig. 2 fulfilled our criteria
for object value coding, as determined by multiple regression
analysis. Before appearance of the choice cues, a phasic response
leading up to the cue period reflected the current value of object
A, with higher activity signalling lower value (Fig. 2a). True to the
object value definition, pre-cue activity reflected the value of
object A but not of object B (Fig. 2b); no trial period showed a

significant relationship to object B value. Activity was better
explained by object value than by object choice (Fig. 2c,d,
non-significant choice coefficient). Our experimental design
precluded relationships to object position or left-right action in
pre-cue periods, as confirmed by non-significant regression
coefficients (Fig. 2d). As a further test of object-specificity, we
adopted a classification approach based on the angle of regression
coefficients in value space (see Methods)44. This resulted in a
classification scheme of responses into absolute (object) value or
relative (sum/difference) value coding depending on the polar
angle (y) of coefficients in value space (coloured areas). This
approach confirmed that the neuronal response coded the
absolute value of object A (Fig. 2e). Thus, the neuron’s pre-cue
activity signalled the value of a specific choice object, irrespective
of whether the object was chosen.

Among 205 DLPFC neurons with 1222 task-related responses
in different task periods (Po0.005, Wilcoxon test), 119 neurons
(58%) had value-related activity as indexed by a significant
value regression coefficient (Po0.05, multiple regression,
Supplementary Table 1). Analysis of different fixed time windows
throughout the trial showed that value activity occurred in all
task-phases, including pre-cue periods before the animals
indicated their choice (Fig. 3a,b). Crucially, visual stimulation
and eye position in pre-cue periods were restricted by constant
fixation requirement; therefore, these activities did not reflect
external sensory information but an internal valuation process.
Fixation was also required following the animal’s saccade choice
until the reward period. In addition, cue position and saccade
choice direction were included as covariates in all regression
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analyses. Sliding window regressions confirmed a substantial
number of DLPFC neurons with value-related activity
(Supplementary Fig. 2, Supplementary Table 2) and showed that
many value signals occurred early in trials around fixation spot
onset. Thus, value signals in the DLPFC neuronal population
occurred in time to influence object-based decision processes.

Additional tests substantiated the statistical significance of
value coding: the observed distribution of value coefficients was
significantly different from a distribution based on randomly
shuffled data, and shifted towards lower negative and higher
positive values (Supplementary Fig. 3). The proportion of
significant value coefficients was higher than expected by
chance (Po0.0001 binomial test); false positive rate in shuffled
data was lower than 5%. Of 273 significant value coefficients
(239 individual responses), 131 had a positive sign, implying

higher activity with higher value, and 142 had a negative sign
(P¼ 0.273, binomial test, Supplementary Fig. 3). Equal numbers
of neurons and responses were found related to object A value
and object B value (136/137 responses significant for object A/B,
81 neurons significant for both objects). The neurons were
recorded from the upper and lower banks of the principal sulcus,
confirmed by histology (Fig. 3c, Supplementary Fig. 4). Thus,
a substantial number of DLPFC neurons showed value-related
responses. We next show that many of these responses satisfied
our criteria for object value coding.

Object specificity and choice independence of value signals.
An object value response should reflect the value of one specific
object without reflecting the value of other objects. True to this
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criterion, the majority of value-related activities (205/239, 85.8%)
were object-specific without coding value for the other object,
as assessed by population activity and significance of value
coefficients (Fig. 3d, Supplementary Fig. 3, Supplementary
Table 3). Significantly fewer activities coded value for both
objects (34/239, 14.2%, Po0.001, z-test), which indicated that
relative value coding—that is, a relationship to the value sum or
difference—occurred in a minority of neurons. An alternative test
of object-specificity used a classification approach based on the
angle of regression coefficients in value space44. Fitting a simpler
model that contained only regressors for object A value and
object B value (equation (4)) resulted in 168 responses with
significant overall model fit (Po0.05, F-test; Fig. 3e).
Classification into object value and relative value was based on
the polar angle (y) of coefficients in value space. The classification
was invariant to the axis choice of value coefficients (see
Methods). This axis-invariant method has been suggested to
provide a fairer classification into absolute and relative value
signals, and can yield different results compared to conventional
regressions44. However, in our data set of DLPFC neurons, this
alternative analysis confirmed our original result: value-related
responses were predominantly object-specific; 124 responses were
classified as coding object value (74%); 44 responses as coding
relative value (Po0.001, z-test). Among relative value-coding
responses, 35 responses coded value sum (21%) and 9 responses
coded value difference (5%). Thus, different analysis approaches
confirmed object-specificity of value coding in DLPFC neurons
(Fig. 3e,f).

True to the concept of a decision variable, object value signals
should occur on trials when the object is chosen and on trials
when the object is not chosen. The majority of value-related
responses satisfied this criterion by not showing a significant
choice coefficient (206/239, 86%, Supplementary Table 3).
Distributions of value and choice coefficients in value-coding
responses differed significantly, with minor overlap (Fig. 3g).
Although both value and choice coding occurred in pre-cue
periods, the proportion of pre-cue value responses was sig-
nificantly higher than that of choice responses (P¼ 10� 7, z-test).
Thus, value coding preceded choice coding in our task.

Our regression model could often not be improved by adding
value� choice interaction terms (Po0.05, partial F-test): many
value-related responses (158 of 1222 task-related responses, 13%)
had non-significant value� choice interaction coefficients
(compared to 206 choice-independent value responses in our
main regression, 17%). Object value responses were also not
explained by chosen value coding (Supplementary Fig. 5,
Supplementary Table 4).

Randomized cue positions precluded coding of left-right cue
position or action before the cue period as confirmed by less
than 5% significant coefficients. Following cue onset, a large
proportion of DLPFC neurons encoded spatial cue position and
left-right action (Supplementary Table 1, Supplementary Fig. 2),
reproducing known effects in DLPFC34,47. Some of these post-cue
responses coded spatial cue position and action jointly with value
(Supplementary Table 3). Thus, in addition to pure object value
coding, some hybrid responses coded value in conjunction with
other task-relevant variables.

Overall, 98 of 611 task-related pre-cue responses (16%) met
our strictest criteria for object value coding: value coding for one
specific object with insignificant coefficients for the alternative
object and insignificant choice coefficient. Taken together, these
results show that a substantial proportion of DLPFC neurons
coded object value in time to inform the animal’s choice and in
compliance with formal criteria for a decision variable.

Action value control. Optimal behaviour in the foraging task
required tracking the value of visual objects rather than of
left-right actions. Nevertheless, we also examined whether
DLPFC responses reflected action value, as found previously22,23.
We recalculated our behavioural model by fitting a logistic
regression to the animals’ left-right choices, based on action and
action-reward history4,5. Despite providing an inferior fit
compared to the object value model, the action value model
showed significant filter weights for recent action and action-
reward history, typically extending up to two trials into the past.
We used the resulting action values as regressors for neuronal
activity in supplementary analyses.
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Including action values alongside object values in the same
model resulted in 165 responses (of 1222 task-related responses,
13%) related to object value but not action value, and 97
responses (8%) related to action value but not object value. The
total number of responses related to object value was significantly
higher than that for action values (257 versus 192, Po0.01,
z-test). In a stepwise regression, 171 responses were uniquely
explained by object value compared to 126 responses uniquely
explained by action value (P¼ 0.0053, w2-test). Thus, object value
was the more important variable in direct comparisons, even
when it competed with action value in the same regression model.

Behavioural relevance of neuronal object values. If neuronal
object values in DLPFC provided a basis for local choices and
global matching behaviour, they should be related to the animals’
behaviour. We tested this prediction as follows.

First, to test behavioural relevance at the level of local choice
probabilities, we compared the average activity of object value
responses for a given value level with the corresponding local
behavioural choice probability. As the value of a given object
increased, the probability of choosing that object also increased,
consistent with our behavioural model (Fig. 4a). Average object
value activity for given value levels closely followed local choice
probabilities, with opposing trends for value responses related to
different objects (left panel). These local choice probabilities were
in turn suitable to generate global matching behaviour, as their
aggregate over a given session reflected the animals’ experienced
reward ratio in that session (right panel). Thus, neuronal object
values, observed at a local timescale of individual trials, provided
a suitable basis for global matching behaviour.

Second, we tested whether the strength of neuronal object value
coding was related to the animals’ matching performance. We
measured the animal’s ‘valuation accuracy’ as the session-specific
correlation between object values and the true, trial-by-trial
object reward probabilities given by the base probabilities and
reinforcement schedule. We then regressed this behavioural
valuation accuracy on the neuronal value coding strength (the
session-specific slope of the relationship between neuronal
activity and value). The strength of neuronal value coding
explained variation in valuation accuracy: stronger neuronal value
coding was associated with more accurate reward probability
estimates (Fig. 4b). In turn, more accurate probability estimates
led to a higher proportion of optimal choices, that is, choosing the
option with higher momentary reward probability (R¼ 0.197,
P¼ 0.0011, linear regression, N¼ 205 sessions from both
animals). Thus, stronger neuronal value coding correlated with
accurate valuation and better performance.

Finally, if neuronal object values are behaviourally relevant,
they should fluctuate with local, trial-by-trial performance,
including errors. In a population analysis, we identified trials
on which the animal committed an error (for example, failed to
release the touch key or broke fixation) and regressed neuronal
activity on object value across value-coding neurons. Immediately
before error trials, population activity was significantly related
to object value (Fig. 4c, ‘Pre-error’). The strength of this
relationship dropped on subsequent trials when the animals
would commit an error (‘Error’), and reappeared on the trial
following the error (‘Post-error’). By contrast, raw impulse rates
were not significantly different between error and non-error trials
(all P40.1, Wilcoxon test). Thus, neuronal object value coding
transiently declined on error trials, suggesting a relationship with
performance fluctuations.

Single-neuron conversion from experience to object value. Our
behavioural analysis showed that the animals’ choices were based

on object values that were internally constructed from recent
reward history and choice history, which constitute precursors
for object values. Consistent with previous findings in DLPFC
neurons20,23,35, direct regression of activity on these history terms
showed significant numbers of responses related to last object
choice (87/1222, 7%), last action (78/1222, 6%), last outcome
(111/1222, 9%) and last object choice� last outcome (78/1222,
6%, Supplementary Fig. 6). The percentage of responses related to
the interaction between last action and last outcome (a control
variable in our study) did not exceed chance level. Supplementary
regression with value and history terms as covariates
(Supplementary Table 5) showed that history variables did not
account for object value responses (292 significant value
coefficients compared to 273 in our main model; 105 value
responses (36%) showed non-significant history terms). However,
the coding of reward and choice history alongside object
value could suggest that individual DLPFC neurons reflect the
trial-by-trial construction and updating of object value from
recent experience. Such value construction is predicted by our
behavioural model, which constructs value from weighted reward
and choice history.

A significant number of DLPFC neurons showed dynamic
coding transitions consistent with the hypothesized value
construction. Across DLPFC neurons, a substantial number were
sensitive to both value and last-trial information (113/205, 55%,
sliding regression). Early in trials, these neurons encoded past
rewards and past choices before encoding a scalar, current-trial
value signal (Fig. 5a, Supplementary Fig. 6). We identified 77
neurons (37%) that encoded both last-trial information and value
in pre-cue periods. Among them, 47 neurons (61%; 23% of all
recorded neurons) encoded last-trial information before encoding
current-trial value. The occurrence of such neurons was
significantly higher than expected by chance (P¼ 1.8� 10� 7,
binomial test).

If neuronal object values are updated based on last-trial
information, individual neurons should have matching selectivity
for last-trial information and current-trial value. That is, a neuron
encoding current-trial value for one specific object should encode
whether that object was chosen on the last trial. We confirmed
this prediction by relating the (signed) coefficients for last-trial
object choice to those for current-trial value: coefficients for the
last-trial choice of object A correlated positively with current-trial
value coefficients for object A (R¼ 0.938, P¼ 2.7� 10� 23, linear
correlation, Fig. 5b) and negatively with coefficients for object
B (R¼ � 0.969, P¼ 5.1� 10� 39). Such matched neuronal
selectivity seems consistent with updating object values from
last-trial experience.

These results indicate that DLPFC neurons frequently encoded
transitions from last-trial information to current-trial object
value. Thus, activity in individual DLPFC neurons appeared to
reflect the construction and updating of object values.

Single-neuron conversion from object value to object choice.
We showed above that a significant number of neurons had
responses in specific task epochs that signalled formal object
value, without signalling object choice. Across task epochs,
however, many neurons exhibited dynamic value-to-choice
transitions in the sense that object choice signals followed earlier
value signals. The existence of such coding transitions in DLPFC
neurons matches the presumed flow of information during
decision-making8,9.

The neuron in Fig. 5c exhibited a value-to-choice conversion:
value coding in the fixation period preceded later choice coding in
the pre-cue period. This conversion is consistent with a process
that transforms an object value input to an object choice output
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during decision-making. As the neuron’s activity did not
subsequently reflect cue position or action, it could not by itself
instruct action selection but resembled an abstract, action-
independent decision process. Other neurons showed dynamic
coding transitions that directly converted value to action. We also
found neurons exhibiting conversions from object choice to cue
position and action (Supplementary Fig. 7), similar to recently
reported DLPFC neurons21. Critically, although cue position and
action signals were related to externally observable events, object
value and object choice signals reflected an internal decision
process.

Among 95 neurons with pre-choice value coding, the majority
(77 neurons, 81%) subsequently coded additional variables.

Specifically, substantial numbers of neurons converted object
value to object choice (58/124 value responses, 46%, fixed
window-analysis), left-right action (74/124 responses, 60%), or
spatial object position (38/124 responses, 31%), with some
neurons coding more than one additional variable. By contrast,
fewer value neurons (19%, Po10� 13, binomial test) either coded
no additional variable or coded additional variables prior to value.
Given the percentages of significant value and choice coefficients
in pre-choice periods, value-to-choice transitions occurred
significantly more frequently than chance (Po10� 11, binomial
test). Across neurons with value or choice coding, value signals
appeared significantly earlier compared to choice coding (Fig. 5d,
Po0.005, Wilcoxon rank-sum test).

In summary, the critical parameters for decision-making in the
foraging task—reward and choice history, object value, and object
choice—were dynamically encoded in DLPFC, often converging
in single neurons (Fig. 5e,f). A large fraction of DLPFC neurons
encoded object value and value precursor variables without
encoding choice (90/205, 44%), consistent with the formal object
value concept. However, a significant proportion of neurons
(29/205, 14%) also combined all three variables. These coding
transitions appear consistent with the presumed information flow
of value construction, object valuation and decision-making.

Decoding object value from DLPFC population activity.
Individual DLPFC neurons likely operate in a population, and
their collective value signals could potentially be read out by
different downstream neurons for different functions. We used a
decoding approach to explore the information about value
contained in patterns of population activity that were not
pre-selected for task-relatedness or value coding (see Methods).
We aggregated trial-specific impulse rates across neurons
and used linear support vector machines (SVMs) and nearest-
neighbour (NN) classifiers to decode object values and related
decision variables. In our main results, we focus on the SVM as it
typically performed more accurately. For validation, we found
that linear SVMs could decode the basic task variables object
choice, cue position and action. For example, action (saccade
direction) could be decoded from post-cue activity with
near-perfect accuracy (98.90±0.17%, Po1.2� 10� 91, rank-sum
test comparison to randomly shuffled data). Time courses of
decoding accuracy closely matched those from single-neuron
regressions (Fig. 6a; Supplementary Figs 2,8; R¼ 0.96,
Po3.4� 10� 20, correlation across task periods of decoding
accuracy with percentages of significant single-neuron regression
coefficients). Notably, the choice for a specific object could be
decoded with modest but above-chance accuracy in pre-cue
periods (53.27±0.98%, Po3.6� 10� 11, rank-sum test), whereas
cue position and action decoding were non-significant before
cue onset, confirming the single-neuron findings. These results
provided a useful validation of our population decoding
approach.

We tested whether the value of specific objects could be
decoded also from population activity (all recorded DLPFC
neurons, without pre-selection for task-relatedness or value
coding), as suggested by the presence of individual object value-
coding neurons. Even without pre-selecting neurons, we decoded
object value with good accuracy from the whole population
(Fig. 6a; Supplementary Fig. 8). As in single neurons, unselected
population activity encoded object value in all task periods, most
strongly in the pre-cue period (79.1±0.35%, Po6.4� 10� 83,
rank-sum test). As the pre-cue period was a likely time point of
decision-making, we explored how population decoding in this
period depended on various parameters.

We quantified value decoding capacity in relation to
population size. Decoding performance for object value increased
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(a) A single DLPFC neuron with pre-cue activity reflecting last-trial choice

before reflecting current-trial object value. Coefficients of partial

determination (partial R2) obtained from multiple regression model applied

with a sliding window. Asterisks indicate coding latencies, that is, first time

points at which activity was significantly related to a variable. (b) Last-trial

object choice and current-trial object value were coded with reference to

the same object in individual neurons. Neuronal value coefficients for object

A (N¼49 coefficients, d.f.¼47) plotted against coefficients for choice

history (defined as last-trial object A choice) for all responses with conjoint

value and choice history encoding. A corresponding negative relationship

was found for object B value coding (N¼63 coefficients, d.f.¼61). (c) A

single DLPFC neuron with pre-cue activity reflecting object value before

reflecting object choice. (d) Comparison of coding latencies for value and

choice. Cumulative record of coding latencies obtained from sliding window

regression. Each curve was normalized to the total number of neurons

significant for that variable (value: N¼ 119 neurons; choice: N¼ 74

neurons). (e) A single DLPFC neuron with pre-cue activity reflecting

transitions from last-trial history variables to current-trial object value, and

from object value to upcoming object choice. (f) Summary of neurons with

significant coding of value, history (reward, choice, reward� choice) and

choice and their conjunctions, obtained from sliding window regression.
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systematically with the number of neurons entered into the
decoder (Fig. 6b, Supplementary Fig. 8): while decoding for single
neurons was close to chance, accuracy increased approximately
linearly over the first 100 neurons as more neurons were added
up to a maximum. Such steady increase suggested a distributed
representation with different neurons carrying partly independent
information about value.

We next analysed how coding in an unselected population
depended on the value sensitivity of individual neurons.
We found a linear relationship between single-neuron value
regression slopes and single-neuron decoding accuracy (Fig. 6c):
neurons that maximized value differences (higher value slope)
enabled better decoding. Indeed, small subsets of individually
significant value neurons provided as good a decoding of object
value as the whole population (Fig. 6d) and decoding accuracy
was significantly related to single-neuron value sensitivity (Fig. 6e;
Po1.0� 10� 16, partial correlation controlling for number
of significant neurons, mean activity range, slope variance).

Thus, neurons with high value sensitivity contributed the
most to population decoding, with smaller contributions by
non-significant neurons.

These results suggested accurate object value decoding from
the DLPFC population. Although decoding generally increased
with higher neuron numbers, individually significant value
neurons contributed most strongly.

Population decoding of value-derived decision variables. In
addition to object value, we could decode from the unselected
population other value variables not emphasized in single neuron
responses, including value sum and signed and unsigned value
difference (Fig. 7a). Value sum is an important motivational
variable related to performance vigour44 and predicted trial
initiation times (Fig. 1h,i). By contrast, signed value difference is
the critical quantity for value comparison in decision models
(Fig. 1f,g)6–9, and unsigned value difference relates to decision
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difficulty (Supplementary Fig. 1) and decision confidence28,45,46.
Average decoding accuracy for value sum and unsigned value
difference was most pronounced in early task periods and,
compared to object value, was lower and less consistent in
later task periods (Fig. 7a). Thus, the unselected neuronal
population encoded variables that combined values of different
objects, including value sum, signed and unsigned value
difference.

Among the different task epochs, the fixation period showed
significantly higher decoding accuracy for summed rather than
individual object value (Fig. 7b, red). In this early period, value
sum decoding reflected single-neuron value sensitivities for both
objects A and B (Fig. 7c, lower panels), and more neurons in the
decoder increased accuracy significantly more for value sum
compared to object value (Fig. 7d, Supplementary Fig. 8c). By
contrast, the subsequent pre-cue period showed significantly
better population decoding for individual rather than summed
object value (Fig. 7b, blue). Here, object value decoding for one
specific object reflected single-neuron sensitivities only for that
particular object (Fig. 7c, upper panels), which was also evident
with the benefit derived from more neurons in the decoder
(Fig. 7d). Thus, the key decision variables of object value and
value sum were best encoded in particular task periods,
which matched the different behavioural functions of value sum
(initial motivation, Fig. 1h,i) and object value (subsequent
decision-making, Fig. 1f,g).

These findings suggested different levels of value coding in the
DLPFC that evolved over trial periods and matched the
behavioural requirements in different tasks stages. Single DLPFC
neurons encoded object value (Fig. 8a). By contrast, activity
in an unselected population encoded additional specific and

well-conceptualized decision variables not represented in single
neurons that may make important contributions to distinct
behavioural functions (Fig. 8b).
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Discussion
We found that individual DLPFC neurons encoded internal value
estimates derived from the fluctuating reward probabilities of
specific choice objects. These value signals fulfilled criteria for a
decision variable: they were object-specific, distinct from sensory
and motor responses, timed to inform decision-making, and
independent of current-trial choice. Further, they tracked
behavioural performance and followed Herrnstein’s matching
law and were thus suited to guide the animals’ behaviour.
Individual DLPFC neurons encoded both the construction of
object values from recent reward experience and their subsequent
conversion to choice signals. Thus, signals related to these
computationally distinct processes converged onto single DLPFC
neurons. Object value signals also enabled flexible population
readout of decision variables not emphasized by single neurons.
Together, our findings suggest that DLPFC realizes a dynamic
single-neuron and population value code that reflects the
translation of recent reward experiences into economic object
values and future choices.

Individual DLPFC neurons mostly encoded value for specific
choice objects, rather than relative valuations. We do not argue
that explicit object value signals are strictly required for
neural decision-making, which likely emerges as a population
phenomenon. However, object-specific value coding by single
neurons is advantageous computationally because it ensures that
value is updated for one specific object but not for others—the
key issue of credit assignment in reinforcement learning6. It also
enables single-neuron conversion from object value to object
choice, which ensures unambiguous identification of chosen
objects. We found that single DLPFC neurons realized these
computational advantages by encoding conversions from
experienced rewards to object values and subsequent choices.
We suggest that explicit object value signals, rather than relative
valuations, would also be observed in situations involving more
than two choice objects, although this prediction remains to be
tested in future studies.

In addition to explicit single-neuron representations,
distributed population codes confer greater flexibility to a neural
system for they allow high-accuracy, flexible readout of multiple
task variables48–50. Consistent with this notion, the population
of DLPFC neurons allowed precise decoding of object values
(Fig. 8a). The approximately linear increase in decoding accuracy
as more neurons were added suggests that neurons carried partly
independent value information. Indeed, value sensitivity varied
considerably across neurons and population decoding depended
on individual neurons’ value sensitivities. Such neuronal tuning
variation may be advantageous for information processing in
associative networks as it can increase storage capacity50.

Population decoding enabled readout of functionally important
variables not emphasized by single neurons. For example, the
sum of object values represents a motivational variable suited
to calibrate performance vigor44 and accordingly correlated
inversely with the animals’ trial initiation times. Consistently,
population activity encoded value sum most strongly at trial start.
Such a value sum signal arises naturally in biologically realistic
decision systems with attractor dynamics, which converge to a
choice state faster when value sum is high7,10. Flexible population
readout of different value variables could be achieved by
selective wiring from object-specific value neurons onto
different downstream neurons or by dynamically adjustable
synaptic connections (Fig. 8b). For example, DLPFC object
value subpopulations could provide common inputs to parts
of the striatum containing value sum-coding neurons44. The
additionally observed (although less accurate) population coding
of unsigned value difference is predicted by computational
decision models46, and considered a key quantity related to

decision confidence28,45,46. (We did not include a behavioural
confidence test in our task but unsigned value difference
correlated with reaction times). Notably, value difference signals
are frequently observed in human neuroimaging population
signals, which average across large numbers of neurons10–15.
Although such techniques successfully localize decision signals
across distributed brain systems10–15, our results suggest that they
may not necessarily accurately identify the information encoded
by single neurons in a given cortical area.

Two previous studies provided critical evidence that the
primate brain computes internal values during matching
behaviour3,5. Our findings build on this earlier work and offer
new insights into the neural basis of value construction. First,
value signals during matching in parietal area LIP and striatum
are spatially referenced and time-locked to sensory targets or
movement onset3,5. By contrast, the DLPFC neurons reported
here signalled the value of choice objects, rather than actions,
irrespective of and prior to action information. Such object-based
valuations confer greater flexibility by enabling arbitrary
mappings from chosen objects to required actions and by
allowing object choices before action information is available.
We suggest, following Sugrue and colleagues3, that abstract,
action-independent valuations as uncovered here in DLPFC
neurons are computed upstream of LIP and subsequently
remapped onto space and action. Our finding that DLPFC
neurons convert object values to choices, spatial representations
and actions indicate that DLPFC participates in this remapping
alongside LIP, although conclusive evidence will require
simultaneous recordings from both areas in the same monkeys,
performing the same task. Second, in contrast to LIP and striatal
neurons, many DLPFC neurons encoded value precursor
variables, such as reward and choice history, before encoding
value. This could suggest that DLPFC participates actively in the
current-trial computation of values from recent reinforcement
history. Third, different from striatal action value neurons5, the
presently described DLPFC object value neurons encoded explicit
conversions from value to choice. This could suggest a role for
DLPFC in the decision process. This interpretation is supported
by a recent study23 showing stronger and earlier action coding in
DLPFC compared to striatum, although value-to-choice
transitions as shown here were not demonstrated. While the
basal ganglia may be important for storing values long term1,5,51,
DLPFC neurons seem important for their construction and
conversion to choice on single trials.

The present value-to-choice conversions in single DLPFC
neurons are consistent with biologically plausible attractor
theories of how decisions arise in neural networks8,9. However,
the present results cannot determine whether these coding
transitions originate in DLPFC or reflect processing in another
brain area. This determination will likely require simultaneous
recordings from multiple brain systems. Thus, although our
experiments cannot directly show that choice computations are
performed in DLPFC, our results support the hypothesis14,24,25

that DLPFC is important for neuronal decision processes.
DLPFC object value neurons resemble offer value neurons in

OFC observed during economic choice16–18 as both types of
neuron encode object-specific values irrespective of choice and
action. However, whereas separate OFC neurons encode values
and choices17, many DLPFC neurons reported here exhibited
dynamic value-to-choice conversions. Further, transitions from
reward experience to value as reported here in DLPFC have not
been found in OFC. This could suggest that OFC and DLPFC
make different contributions to decision-making, or that decision
processes differ between choice tasks with explicit value cues and
those requiring internal, history-based value construction. The
latter interpretation is supported by a recent study with explicitly
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cued flavoured juice rewards21 in which DLPFC neurons
showed choice-to-action conversions while apparently only few
DLPFC neurons encoded offer values. Our DLPFC object-value
signals contrast markedly with explicit relative value (value
difference) signals reported in ventromedial prefrontal cortex52,
striatum44,53,54, and anterior cingulate cortex chosen value
signals55, which could reflect processing differences between
DLPFC and these other regions. Although differences in data
modelling can contribute to different findings between studies, we
confirmed that our results were robust to analysis variations with
several regression approaches and population decoding. DLPFC
object value neurons also differ from explicit reward prediction
by conditioned stimuli39,51,56–58, as their activity was object-
specific, not linked to sensory-motor responses, measured during
free choice, and independent of current-trial choice. These
features distinguish a genuine decision variable40 from known
reward prediction and reward-modulated sensory-motor activity
in DLPFC59,60. Finally, although we replicated previously shown
DLPFC chosen value signals21, these were separate from and
could not account for object value coding.

In conclusion, our data show that single DLPFC neurons
encode reward valuations for specific choice objects based on
recent experience. Object value signals complied with criteria for
a decision variable, tracked the animals’ performance, and
followed Herrnstein’s classical matching law. Individual DLPFC
neurons dynamically encoded conversions from reward and
choice history to object value, and from object value to object
choice. Thus, DLPFC object value neurons seem well suited to
support learning and decision-making in situations requiring
internal, experience-based value construction. DLPFC population
activity encoded additional value variables not emphasized by
single neurons, which could inform motivational and decision
processes at different task stages. Together, our data suggest that
DLPFC implements a dynamic and computationally flexible
object value code, consistent with its signature role in adaptive
behaviour.

Methods
Animals. All animal procedures conformed to US National Institutes of Health
Guidelines and were approved by the Home Office of the United Kingdom. Two
adult male macaque monkeys (Macaca mulatta) weighing 5.5–6.5 kg served for the
experiments. The number of animals used is typical for primate neurophysiology
experiments. The animals had no history of participation in previous experiments.
A head holder and recording chamber were fixed to the skull under general
anaesthesia and aseptic conditions. Standard electrophysiological techniques
permitted extracellular recordings from single neurons in the sulcus principalis
area of the frontal cortex via stereotaxically oriented vertical tracks, as confirmed by
histological reconstruction. After completion of data collection, recording sites
were marked with small electrolytic lesions (15–20 mA, 20–60 s). The animals
received an overdose of pentobarbital sodium (90 mg kg� 1 i.v.) and were
perfused with 4% paraformaldehyde in 0.1 M phosphate buffer through the left
ventricle of the heart. Recording positions were reconstructed from 50-mm-thick,
stereotaxically oriented coronal brain sections stained with cresyl violet.

Behavioural task. Each monkey was trained in an oculomotor free-choice task. In
every trial, the subject chose one of two objects to which reward was independently
and stochastically assigned. Two different abstract pictures served as choice objects
(square, 5� visual angle). Each trial started with presentation of a red fixation spot
(diameter: 0.6�) in the centre of a computer monitor in front of the animal (viewing
distance: 41 cm) (Fig. 1a). The animal fixated the spot and contacted a touch
sensitive, immobile resting key at elbow height. An infrared eye tracking system
continuously monitored eye positions (ISCAN, Cambridge, MA). During the
fixation period at 1.0–2.0 s after eye fixation and key touch, an alert cue covering
the fixation spot appeared for 0.7–1.0 s. At 1.4–2.0 s following offset of the alert
stimulus, two different visual fractal objects (A, B) appeared simultaneously as
ocular choice targets on each side of the fixation spot at 10� lateral to the centre of
the monitor. Left and right positions of objects A and B alternated pseudorandomly
across trials. The animal made a saccadic eye movement to the target of its choice
within a time window of 0.25–0.75 s. A red peripheral fixation spot replaced the
target after 1.0–2.0 s of target fixation. This fixation spot turned to green after
0.5–1.0 s, and the monkey released the touch key immediately after colour change.

Rewarded trials ended with a fixed quantity of 0.7 ml juice delivered immediately
upon key release. A computer-controlled solenoid valve delivered juice reward
from a spout in front of the animal’s mouth. Unrewarded trials ended at key release
and without further stimuli. The fixation requirements restricted the animals’ eye
movements in our main periods from trial start to cue appearance and, following
the animals’ saccade choice, from choice acquisition to reward delivery. This
ensured that neuronal activity was minimally influenced by oculomotor activity,
especially in our main periods of interest before cue appearance.

According to the basic rule of the matching task, the reward probabilities of
objects A and B were independently calculated in every trial, depending on the
numbers of consecutive unchosen trials (equation (1)):

P ¼ 1� 1� P0ð Þnþ 1 ð1Þ
with P as instantaneous reward probability, P0 as experimentally imposed, base
probability setting, and n as the number of trials that the object had been
consecutively unchosen. This equation implies that reward was probabilistically
assigned to the object in every trial, and once a reward was assigned, it remained
available until the associated object was chosen. Therefore the likelihood of being
rewarded on a target increased as the number of trials performed after the object
was last chosen. On the other hand, it stayed at the base probability while the object
was repeatedly chosen. The reward probability fell back to the base probability with
every choice of that object, irrespective of whether that choice was rewarded or not.

We varied the base reward probability in blocks of typically 50–150 trials
without signalling these changes to the animal. The sum of reward probabilities for
objects A and B was held constant so that only relative reward probability varied.

Definition of object value. We followed an established approach for modelling
action value used in previous behavioural and neurophysiological experiments in
macaques2–5. As the optimal strategy in our task involved tracking the changing
values of objects, rather than actions, we formulated the model in terms of object
choices rather than action choices. The approach involves fitting a logistic
regression model to the animal’s trial-by-trial choice data to estimate coefficients
for the recent history of received rewards and recently made choices. The resulting
coefficients quantify the extent to which the animals based their choices on recently
received rewards and made choices for a given option. We used the following
logistic regression model to determine the coefficients for reward history and
choice history (equation (2)):

log
pA ið Þ
pB ið Þ

� �
¼
XN

j¼1

br
j RA i� jð Þ�RB i� jð Þð Þþ

XN

j¼1

bc
j CA i� jð Þ�CB i� jð Þð Þþb0

ð2Þ
with pA(i)[or pB(i)] as the probability of choosing object A (or B) on the ith trial,
RA[or RB] as reward delivery after choice of object A [or B] on the ith trial,
CA[or CB] as choice of object A [or B] on the ith trial, N denoting the number of
past trials included in the model (N¼ 10), br

j and bc
j as regression coefficients for

the effect of past rewards and choices and b0 as bias term. The regression model
was estimated by fitting regressors to a binary choice indicator function using a
binomial distribution with logit link function. The coefficients for reward and
choice history from this analysis are plotted in Fig. 1d as reward filters. Within each
animal, we used half of the behavioural data set to estimate model coefficients and
the remaining half of the data for testing the model. To test the model in an out-of-
sample prediction, we used logistic regressions to fit each animal’s choices in a
given testing session to the corresponding reward and choice histories multiplied
with the filter weights obtained from independent data. For this model, we summed
the weighted reward and choice histories for each object to obtain measures of
object A value and object B value, which constituted our regressors for the out-of-
sample prediction. Figure 1f shows the mean coefficients for these object values
averaged over both animals and all remaining sessions (random effects analysis).
The same object value measures were used as regressors for neuronal data.

Neuronal data analysis. We counted neuronal impulses in each neuron on
correct trials relative to different task events with 500 ms time windows that were
fixed across neurons: before fixation spot (Pre-fix, starting 500 ms before fixation
onset), early fixation (Fix, following fixation onset), late fixation (Fix2, starting
500 ms after fixation spot onset), pre-cue (Pre-cue, starting 500 ms before cue
onset), cue (Cue, following cue onset), post-fixation (Post-fix, following fixation
offset), before cue offset (Pre-cue off, starting 500 ms before cue offset), after cue
offset (Post-cue off, following cue offset), pre-outcome (Pre-outc, starting 500 ms
before reinforcer delivery), outcome (Outc, starting at outcome delivery), late
outcome (Outc2, starting 500 ms after outcome onset).

We first identified task-related responses in individual neurons and then used
multiple regression analysis to test for different forms of value-related activity while
controlling for the most important behaviourally relevant covariates. We identified
task-related responses by comparing activity to a control period (Pre-fix) using
the Wilcoxon test (Po0.005, Bonferroni-corrected for multiple comparisons).
A neuron was included as task-related if its activity in at least one task period was
significantly different to that in the control period. Because the Pre-fixation period
served as control period we did not select for task-relatedness in this period and
included all neurons with observed impulses in the analysis. We chose the

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms12554

12 NATURE COMMUNICATIONS | 7:12554 | DOI: 10.1038/ncomms12554 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


pre-fixation period as control period because it was the earliest period at the start of
a trial in which no sensory stimuli were presented. The additional use of a sliding-
window regression approach for which no comparison with a control period was
performed (see below) confirmed the results of the fixed window analysis that
involved testing for task-relationship. The fixed-window analysis identified the
following numbers of task-related responses in the different task periods: Pre-fix:
205, Fix: 84, Fix2: 93, Pre-cue: 96, Cue: 133, Post-fix: 119, Pre-cue off: 110, Post-cue
off: 103, Pre-outc: 115, Outc: 103, Outc2: 61.

We next used multiple regression analysis to assess relationships between
neuronal activity and task variables. The use of multiple regression was considered
appropriate for the present data after testing assumptions of randomness of
residuals, constancy of variance and normality of error terms. Statistical
significance of regression coefficients was determined using t-test with Po0.05 as
criterion, and was supported by the results of a bootstrap technique as described in
the Results. Our analysis followed established approaches previously used to test
for value coding in different brain structures1,5. All tests performed were two-sided.
Each neuronal response was tested with the following main multiple regression
model (equation (3)):

y ¼b0 þ b1ObjectChoiceþ b2CuePositionþ b3Actionþ b4ObjectValueA

þb5ObjectValueBþ e

ð3Þ

with y as trial-by-trial neuronal impulse rate, ObjectChoice as current-trial object
choice (0 for A, 1 for B), CuePosition as current-trial spatial cue position (0 for
object A on the left, 1 for object A on the right), Action as current-trial action (0 for
left, 1 for right), ObjectValueA as current-trial value of object A, ObjectValueB as
current-trial value of object B, b1 to b5 as corresponding regression coefficients,
b0 as constant, e as residual. Object value regressors were defined as described in
the previous section. Coefficients for all regressors within a model were estimated
simultaneously. Thus, a significant regressor indicated that a significant portion of
the variation in neuronal impulse rate could be uniquely attributed to this variable.
We followed standard procedures for assessing multicollinearity in multiple
regression analysis. We confirmed that variance inflation factors were generally low
(Mean¼ 1.53±0.17 s.e.m.; 99% of VIFso3; VIFs calculated separately within each
neuronal testing session for regression model in equation (3)), indicating that
multicollinearity did not affect our statistical analysis.

For the regression analysis shown in Fig. 3e, we fit the following model to the
neuronal data (equation (4)):

y ¼ b0 þb1ObjectValueAþb2ObjectValueBþ e ð4Þ

A neuronal response was categorized as value-related if it showed a significant
overall model fit (Po0.05, F-test). We then projected each value-related response
onto the value space given by the regression coefficients for object value A and
object value B (Fig. 3e). Following a previous study44, we divided the value space
into eight equally spaced segments of 45� which provided a categorization of
neuronal responses based on their polar angle of coefficients in value space.
Responses were classified as coding object value (‘absolute value’) if their
coefficients fell in the segments pointing toward 0� or 180� (object value A) or
toward 90� or 270� (object value B). Responses were categorized as coding value
difference if their coefficients fell in the segments pointing towards 135� or 315�
and as coding value sum if their coefficients fell in the segments pointing towards
45� or 225�. This method of classification has been called ‘axis-invariant’ as its
results do not depend on the choice of axis for the regression model, that is,
whether the regression model includes separate independent variables for object
values A and B or separate independent variables for the sum and differences
between object values44.

We also used a sliding window multiple regression analysis (using the
regression model in equation (3)) with a 200-ms window that we moved in steps of
25 ms across each trial. To determine whether neuronal activity was significantly
related to a given variable we used a bootstrap approach based on shuffled data as
follows. For each neuron, we performed the sliding window regression 1000 times
on trial-shuffled data and determined a false positive rate by counting the number
of consecutive windows in which a regression was significant with Po0.05. We
found that less than 5% of neurons with trial-shuffled data showed more than six
consecutive significant analysis windows. In other words, we used the shuffled data
to obtain the percentage of neurons with at least one case of six consecutively
significant windows. Therefore, we counted a sliding window analysis as significant
if a neuron showed a significant (Po0.05) effect for more than six consecutive
windows.

Normalization of population activity. We subtracted from the measured impulse
rate in a given task period the mean impulse rate of the control period and divided
by the standard deviation of the control period (z-score normalization). Next, we
distinguished neurons that showed a positive relationship to object value and those
with a negative relationship, based on the sign of the regression coefficient, and
sign-corrected responses with a negative relationship.

Normalization of regression coefficients. Standardized regression coefficients
were defined as xi(si/sy), xi being the raw slope coefficient for regressor i, and si and

sy the standard deviations of independent variable i and the dependent variable,
respectively. These coefficients were used for Figs 2d, 3g, 4b, 5b, 6c,e, 7c,
Supplementary Fig. 1 and Supplementary Fig. 3a,c.

Population decoding. We used SVM and NN classifiers to quantify the infor-
mation contained in DLPFC population activity in defined task periods, following
decoding analysis approaches from previous neurophysiological studies61–63. The
SVM classifier was trained on a set of training data to find a linear hyperplane that
provides the best separation between two patterns of neuronal population activity
defined by a grouping variable (for example, high versus low object value).
Decoding was typically not improved by non-linear (for example, quadratic)
kernels. The NN classifier was similarly trained on a set of test data and decoding
was performed by assigning each trial to the group of its nearest neighbour in a
space defined by the distribution of impulse rates for the different levels of the
grouping variables using the Euclidean distance62. Both SVM and NN classification
are biologically plausible in that a downstream neuron could perform similar
classification by comparing the input on a given trial with a stored vector of synaptic
weights. Both classifiers performed qualitatively similar, although SVM decoding was
typically more accurate. We therefore focus our main results on SVM decoding.

We aggregated z-normalized trial-by-trial impulse rates of independently
recorded DLPFC neurons from specific task periods into pseudo-populations. We
used all recorded neurons that met inclusion criteria for a minimum trial number,
without pre-selecting for value coding, except where explicitly stated. For each
decoding analysis, we created two n by m matrices with n columns defined by the
number of neurons and m rows by the number of trials. We defined two matrices,
one for each group for which decoding was performed (for example, high versus
low object value, left versus right action and so on). Thus, each cell in a matrix
contained the impulse rate from a single neuron on a single trial measured for a
given group. Because neurons were not simultaneously recorded, we randomly
matched up trials from different neurons for the same group and then repeated the
decoding analysis with different random trial matching (within-group trial
matching) 150 times for the SVM and 500 times for the NN. We found these
numbers to produce very stable classification results. (We note that this approach
likely provides a lower bound for decoding performance as it ignores potential
contributions from cross-correlations between neurons; investigation of
cross-correlations would require data from simultaneously recorded neurons.) We
used a leave-one-out cross-validation procedure whereby a classifier was trained to
learn the mapping from impulse rates to groups on all trials except one; the
remaining trial was then used for testing the classifier and the procedure repeated
until all trials had been tested. An alternative approach of using 80% trials as
training data and testing on the remaining 20% produced highly similar results61.
We only included neurons in the decoding analyses that had a minimum number
of 10 trials per group for which decoding was performed, and we confirmed that
results were very similar when increasing this minimum number to 20 trials.

The SVM decoding was implemented in Matlab (Version R2013b, Mathworks,
Natick, MA) using the ‘svmtrain’ and ‘svmclassify’ functions with a linear kernel
and the default sequential minimal optimization method for finding the separating
hyperplane. Decoding could typically not be improved by using radial basis
function or quadratic kernels. The NN decoding was performed in Matlab using
custom-written code. We quantified decoding accuracy as the percentage of
correctly classified trials, averaged over all decoding analyses for different random
within-group trial matchings. To investigate how decoding accuracy depends on
population size, we randomly selected a given number of neurons at each step and
then determined the percentage correct. For each step (that is, each possible
population size) this procedure was repeated 10 times. We also performed
decoding for randomly shuffled data (shuffled group assignment without
replacement) with 1500–5000 iterations to test whether decoding on real data
differed significantly from chance. Statistical significance (Po0.0001) was
determined by comparing vectors of percentage correct decoding accuracy between
real data and randomly shuffled data using the rank sum test62. For all analyses,
decoding was performed on neuronal responses taken from the same task period.
We trained classifiers to distinguish high from low value terciles (decoding based
on median split produced very similar results). Notably, even these discretized
values fit significantly to choices (P¼ 2.4� 10� 6, logistic regression), suggesting
they were behaviourally relevant.

Data availability. The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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