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wards are crucial objects that induce learning, approach behavior, choices, and emo-
tions. Whereas emotions are difficult to investigate in animals, the learning function is
mediated by neuronal reward prediction error signals which implement basic con-

structs of reinforcement learning theory. These signals are found in dopamine neurons, which emit
a global reward signal to striatum and frontal cortex, and in specific neurons in striatum, amygdala,
and frontal cortex projecting to select neuronal populations. The approach and choice functions
involve subjective value, which is objectively assessed by behavioral choices eliciting internal,
subjective reward preferences. Utility is the formal mathematical characterization of subjective
value and a prime decision variable in economic choice theory. It is coded as utility prediction error
by phasic dopamine responses. Utility can incorporate various influences, including risk, delay,
effort, and social interaction. Appropriate for formal decision mechanisms, rewards are coded as
object value, action value, difference value, and chosen value by specific neurons. Although all
reward, reinforcement, and decision variables are theoretical constructs, their neuronal signals
constitute measurable physical implementations and as such confirm the validity of these concepts.
The neuronal reward signals provide guidance for behavior while constraining the free will to act.
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I. INTRODUCTION

Rewards are the most crucial objects for life. Their function
is to make us eat, drink, and mate. Species with brains that
allow them to get better rewards will win in evolution. This
is what our brain does, acquire rewards, and do it in the best
possible way. It may well be the reason why brains have
evolved. Brains allow multicellular organisms to move
about the world. By displacing themselves they can access
more rewards than happen to come along by chance, thus
enhancing their chance of survival and reproduction. How-
ever, movement alone does not get them any food or mating
partners. It is necessary to identify stimuli, objects, events,
situations, and activities that lead to the best nutrients and
mating partners. Brains make individuals learn, select, ap-
proach, and consume the best rewards for survival and
reproduction and thus make them succeed in evolutionary
selection. To do so, the brain needs to identify the reward
value of objects for survival and reproduction, and then
direct the acquisition of these reward objects through learn-
ing, approach, choices, and positive emotions. Sensory dis-
crimination and control of movements serve this prime role
of the brain. For these functions, nature has endowed us

with explicit neuronal reward signals that process all crucial
aspects of reward functions.

Rewards are not defined by their physical properties but by
the behavioral reactions they induce. Therefore, we need
behavioral theories that provide concepts of reward func-
tions. The theoretical concepts can be used for making test-
able hypotheses for experiments and for interpreting the
results. Thus the field of reward and decision-making is not
only hypothesis driven but also concept driven. The field of
reward and decision-making benefits from well-developed
theories of behavior as the study of sensory systems benefits
from signal detection theory and the study of the motor
system benefits from an understanding of mechanics. Re-
ward theories are particularly important because of the ab-
sence of specific sensory receptors for reward, which would
have provided basic physical definitions. Thus the theories
help to overcome the limited explanatory power of physical
reward parameters and emphasize the requirement for be-
havioral assessment of the reward parameters studied.
These theories make disparate data consistent and coherent
and thus help to avoid seemingly intuitive but paradoxical
explanations.

Theories of reward function employ a few basic, fundamen-
tal variables such as subjective reward value derived from
measurable behavior. This variable condenses all crucial
factors of reward function and allows quantitative formal-

Physiol Rev 95: 853–951, 2015
Published June 24, 2015; doi:10.1152/physrev.00023.2014

8530031-9333/15 Copyright © 2015 the American Physiological Society



ization that characterizes and predicts a large variety of
behavior. Importantly, this variable is hypothetical and
does not exist in the external physical world. However, it is
implemented in the brain in various neuronal reward sig-
nals, and thus does seem to have a physical basis. Although
sophisticated forms of reward and decision processes are far
more fascinating than arcane fundamental variables, their
investigation may be crucial for understanding reward pro-
cessing. Where would we be without the discovery of the
esoteric electron by J. J. Thompson 1897 in the Cambridge
Cavendish Laboratory? Without this discovery, the micro-
processor and the whole internet would be impossible. Or,
if we did not know about electromagnetic waves, we might
assume a newsreader sitting inside the radio while sipping
our morning coffee. This review is particularly concerned
with fundamental reward variables, first concerning learn-
ing and then related to decision-making.

The reviewed work concerns primarily neurophysiological
studies on single neurons in monkeys whose sophisticated
behavioral repertoire allows well detailed, quantitative be-
havioral assessments while controlling confounds from sen-
sory processing, movements, and attention. Thus I am ap-
proaching reward processing from the point of view of the
tip of a microelectrode, one neuron at a time, thousands of
them over the years, in rhesus’ brains with more than two
billion neurons. I apologize to the authors whose work I
have not been able to cite in full, as there is a large number
of recent studies on the subject and I am selecting these
studies by their contribution to the concepts being treated
here.

II. REWARD FUNCTIONS

A. Proximal Reward Functions Are Defined
by Behavior

We have sensory receptors that react to environmental
events. The retina captures electromagnetic waves in a lim-
ited range. Optical physics, physical chemistry, and bio-
chemistry help us to understand how the waves enter the
eye, how the photons affect the ion channels in the retinal
photoreceptors, and how the ganglion cells transmit the
visual message to the brain. Thus sensory receptors define
the functions of the visual system by translating the energy
from environmental events into action potentials and send-
ing them to the brain. The same holds for touch, pain,
hearing, smell, and taste. If there are no receptors for par-
ticular environmental energies, we do not sense them. Hu-
mans do not feel magnetic fields, although some fish do.
Thus physics and chemistry are a great help for defining and
investigating the functions of sensory systems.

Rewards have none of that. Take rewarding stimuli and
objects: we see them, feel them, taste them, smell them, or

hear them. They affect our body through all sensory sys-
tems, but there is not a specific receptor that would capture
the particular motivational properties of rewards. As re-
ward functions cannot be explained by object properties
alone, physics and chemistry are only of limited help, and
we cannot investigate reward processing by looking at the
properties of reward receptors. Instead, rewards are defined
by the particular behavioral reactions they induce. Thus, to
understand reward function, we need to study behavior.
Behavior becomes the key tool for investigating reward
function, just as a radio telescope is a key tool for astron-
omy.

The word reward has almost mystical connotations and is
the subject of many philosophical treatises, from the ethics
of the utilitarian philosophy of Jeremy Bentham (whose
embalmed body is displayed in University College London)
and John Stuart Mill to the contemporary philosophy of
science of Tim Schroeder (39, 363, 514). More commonly,
the man on the street views reward as a bonus for excep-
tional performance, like chocolate for a child getting good
school marks, or as something that makes us happy. These
descriptions are neither complete nor practical for scientific
investigations. The field has settled on a number of well-
defined reward functions that have allowed an amazing
advance in knowledge on reward processing and have ex-
tended these investigations into economic decision-making.
We are dealing with three, closely interwoven, functions of
reward, namely, learning, approach behavior and decision-
making, and pleasure.

1. Learning

Rewards have the potential to produce learning. Learning is
Pavlov’s main reward function (423). His dog salivates to a
bell when a sausage often follows, but it does not salivate
just when a bell rings without consequences. The animal’s
reaction to the initially neutral bell has changed because of
the sausage. Now the bell predicts the sausage. No own
action is required, as the sausage comes for free, and the
learning happens also for free. Thus Pavlovian learning
(classical conditioning) occurs automatically, without the
subject’s own active participation, other than being awake
and mildly attentive. Then there is Thorndike’s cat that runs
around the cage and, among other things, presses a lever
and suddenly gets some food (589). The food is great, and
the cat presses again, and again, with increasing enthusi-
asm. The cat comes back for more. This is instrumental or
operant learning. It requires an own action; otherwise, no
reward will come and no learning will occur. Requiring an
action is a major difference from Pavlovian learning. Thus
operant learning is about actions, whereas Pavlovian learn-
ing is about stimuli. The two learning mechanisms can be
distinguished schematically but occur frequently together
and constitute the building blocks for behavioral reactions
to rewards.
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Rewards in operant conditioning are positive reinforcers.
They increase and maintain the frequency and strength of
the behavior that leads to them. The more reward
Thorndike’s cat gets, the more it will press the lever. Rein-
forcers do nt only strengthen and maintain behavior for the
cat but also for obtaining stimuli, objects, events, activities,
and situations as different as beer, whisky, alcohol, relax-
ation, beauty, mating, babies, social company, and hun-
dreds of others. Operant behavior gives a good definition
for rewards. Anything that makes an individual come back
for more is a positive reinforcer and therefore a reward.
Although it provides a good definition, positive reinforce-
ment is only one of several reward functions.

2. Approach behavior and decision-making

Rewards are attractive. They are motivating and make us
exert an effort. We want rewards; we do not usually remain
neutral when we encounter them. Rewards induce ap-
proach behavior, also called appetitive or preparatory be-
havior, and consummatory behavior. We want to get closer
when we encounter them, and we prepare to get them. We
cannot get the meal, or a mating partner, if we do not
approach them. Rewards usually do not come alone, and
we often can choose between different rewards. We find
some rewards more attractive than others and select the best
reward. Thus we value rewards and then decide between
them to get the best value. Then we consume them. So,
rewards are attractive and elicit approach behavior that
helps to consume the reward. Thus any stimulus, object,
event, activity, or situation that has the potential to make us
approach and consume it is by definition a reward.

3. Positive emotions

Rewards have the potential to elicit positive emotions. The
foremost emotion evoked by rewards is pleasure. We enjoy
having a good meal, watching an interesting movie, or
meeting a lovely person. Pleasure constitutes a transient
response that may lead to the longer lasting state of happi-
ness. There are different degrees and forms of pleasure.
Water is pleasant for a thirsty person, and food for a hungry
one. The rewarding effects of taste are based on the pleasure
it evokes. Winning in a big lottery is even more pleasant. But
many enjoyments differ by more than a few degrees. The
feeling of high that is experienced by sports people during
running or swimming, the lust evoked by encountering a
ready mating partner, a sexual orgasm, the euphoria re-
ported by drug users, and the parental affection to babies
constitute different forms (qualities) rather than degrees of
pleasure (quantities).

Once we have experienced the pleasure from a reward, we
may form a desire to obtain it again. When I am thirsty or
hungry and know that water or food helps, I desire them.
Different from such specific desire, there are also desires for

imagined or even impossible rewards, such as flying to
Mars, in which cases desires become wishes (514). Desire
requires a prediction, or at least a representation, of reward
and constitutes an active process that is intentional [in being
about something (529)]. Desire makes behavior purposeful
and directs it towards identifiable goals. Thus desire is the
emotion that helps to actively direct behavior towards
known rewards, whereas pleasure is the passive experience
that derives from a received or anticipated reward. Desire
has multiple relations to pleasure; it may be pleasant in itself
(I feel a pleasant desire), and it may lead to pleasure (I desire
to obtain a pleasant object). Thus pleasure and desire have
distinctive characteristics but are closely intertwined. They
constitute the most important positive emotions induced by
rewards. They prioritize our conscious processing and thus
constitute important components of behavioral control.
These emotions are also called liking (for pleasure) and
wanting (for desire) in addiction research (471) and
strongly support the learning and approach generating
functions of reward.

Despite their immense power in reward function, pleasure
and desire are very difficult to assess in an objectively mea-
surable manner, which is an even greater problem for sci-
entific investigations on animals, despite attempts to an-
thropomorphize (44). We do not know exactly what other
humans feel and desire, and we know even less what ani-
mals feel. We can infer pleasure from behavioral responses
that are associated with verbal reports about pleasure in
humans. We could measure blood pressure, heart rate, skin
resistance, or pupil diameter as manifestations of pleasure
or desire, but they occur with many different emotions and
thus are unspecific. Some of the stimuli and events that are
pleasurable in humans may not even evoke pleasure in an-
imals but act instead through innate mechanisms. We sim-
ply do not know. Nevertheless, the invention of pleasure
and desire by evolution had the huge advantage of allowing
a large number of stimuli, objects, events, situations, and
activities to be attractive. This mechanism importantly sup-
ports the primary reward functions in obtaining essential
substances and mating partners.

4. Potential

Rewards have the potential to produce learning, approach,
decisions, and positive emotions. They are rewards even if
their functions are not evoked at a given moment. For ex-
ample, operant learning occurs only if the subject makes the
operant response, but the reward remains a reward even if
the subject does not make the operant response and the
reward cannot exert its learning function. Similarly an ob-
ject that has the potential to induce approach or make me
happy or desire it is a reward, without necessarily doing it
every time because I am busy or have other reasons not to
engage. Pavlovian conditioning of approach behavior,
which occurs every time a reward is encountered as long as
it evokes at least minimal attention, nicely shows this.
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5. Punishment

The second large category of motivating events besides re-
wards is punishment. Punishment produces negative Pav-
lovian learning and negative operant reinforcement, passive
and active avoidance behavior and negative emotions like
fear, disgust, sadness, and anger (143). Finer distinctions
separate punishment (reduction of response strength, pas-
sive avoidance) from negative reinforcement (enhancing re-
sponse strength, active avoidance).

6. Reward components

Rewarding stimuli, objects, events, situations, and activities
consist of several major components. First, rewards have
basic sensory components (visual, auditory, somatosen-
sory, gustatory, and olfactory) (FIGURE 1, left), with phys-
ical parameters such as size, form, color, position, viscosity,
acidity, and others. Food and liquid rewards contain chem-
ical substances necessary for survival such as carbohy-
drates, proteins, fats, minerals, and vitamins, which contain
physically measurable quantities of molecules. These sen-
sory components act via specific sensory receptors on the
brain. Some rewards consist of situations, which are de-
tected by cognitive processes, or activities involving motor
processes, which also constitute basic components analo-

gous to sensory ones. Second, rewards are salient and thus
elicit attention, which are manifested as orienting responses
(FIGURE 1, middle). The salience of rewards derives from
three principal factors, namely, their physical intensity and
impact (physical salience), their novelty and surprise (nov-
elty/surprise salience), and their general motivational im-
pact shared with punishers (motivational salience). A sepa-
rate form not included in this scheme, incentive salience,
primarily addresses dopamine function in addiction and
refers only to approach behavior (as opposed to learning)
and thus to reward and not punishment (471). The term is
at odds with current results on the role of dopamine in
learning (see below) and reflects an earlier assumption of
attentional dopamine function based on an initial phasic
response component before distinct dopamine response
components were recognized (see below). Third, rewards
have a value component that determines the positively mo-
tivating effects of rewards and is not contained in, nor ex-
plained by, the sensory and attentional components (FIG-
URE 1, right). This component reflects behavioral prefer-
ences and thus is subjective and only partially determined
by physical parameters. Only this component constitutes
what we understand as a reward. It mediates the specific
behavioral reinforcing, approach generating, and emo-
tional effects of rewards that are crucial for the organism’s
survival and reproduction, whereas all other components
are only supportive of these functions.

The major reward components together ensure maximal
reward acquisition. Without the sensory component, re-
ward discrimination would be difficult; without the atten-
tional components, reward processing would be insuffi-
ciently prioritized; and without valuation, useless objects
would be pursued. In practical reward experiments, the
value component should be recognized as a distinct variable
in the design and distinguished and uncorrelated from the
sensory and attentional components.

The reward components can be divided into external com-
ponents that reflect the impact of environmental stimuli,
objects and events on the organism, and internal compo-
nents generated by brain function. The sensory components
are external, as they derive from external events and allow
stimulus identification before evaluation can begin. In anal-
ogy, the external physical salience components lead to stim-
ulus-driven attention. The foremost internal component is
reward value. It is not inherently attached to stimuli, ob-
jects, events, situations, and activities but reflects the brain’s
assessment of their usefulness for survival and reproduc-
tion. Value cannot be properly defined by physical reward
parameters but is represented in subjective preferences that
are internal, private, unobservable, and incomparable be-
tween individuals. These preferences are elicited by ap-
proach behavior and choices that can be objectively mea-
sured. The internal nature of value extends to its associated
motivational salience. Likewise, reward predictors are not

Sensory

Reward (stimulus, object, event)

Attention Motivation

Positive reinforcement
Approach

Decision making
Positive emotion

Physical
salience

Novelty / surprise
salience

Motivational
salience

Positive
Value

Object identification

FIGURE 1. Reward components and their functions. The sensory
component reflects the impact of environmental stimuli, objects,
and events on the organism (blue). Pleasurable activities and situa-
tions belong also in this sensory component. The three salience
components elicting attentional responses (green) derive from the
physical impact (left), novelty (middle), and commonly from reward
and punishment (right). The specific positively motivating function of
rewards derives from the value component (pink). Value does not
primarily reflect physical parameters but the brain’s subjective as-
sessment of the usefulness of rewards for survival and reproduc-
tion. These reward components are either external (sensory, phys-
ical salience) or internal (generated by the brain; value, novelty/
surprise salience, motivational salience). All five components
together ensure adequate reward function.
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hardwired to outside events but require neuronal learning
and memory processes, as does novelty/surprise salience
which relies on comparisons with memorized events. Re-
ward predictors generate top-down, cognitive attention
that establishes a saliency map of the environment before
the reward occurs. Further internal reward components are
cognitive processes that identify potentially rewarding en-
vironmental situations, and motor processes mediating in-
trinsically rewarding movements.

B. Distal Reward Function Is Evolutionary
Fitness

Modern biological theory conjectures that the currently ex-
isting organisms are the result of evolutionary competition.
Advancing the idea about survival of the fittest organisms,
Richard Dawkins stresses gene survival and propagation as
the basic mechanism of life (114). Only genes that lead to
the fittest phenotype will make it. The phenotype is selected
based on behavior that maximizes gene propagation. To do
so, the phenotype must survive and generate offspring, and
be better at it than its competitors. Thus the ultimate, distal
function of rewards is to increase evolutionary fitness by
ensuring survival of the organism and reproduction. Then
the behavioral reward functions of the present organisms
are the result of evolutionary selection of phenotypes that
maximize gene propagation. Learning, approach, economic
decisions, and positive emotions are the proximal functions
through which phenotypes obtain the necessary nutrients
for survival, mating, and care for offspring.

Behavioral reward functions have evolved to help individ-
uals to propagate their genes. Individuals need to live well
and long enough to reproduce. They do so by ingesting the
substances that make their bodies function properly. The
substances are contained in solid and liquid forms, called
foods and drinks. For this reason, foods and drinks are
rewards. Additional rewards, including those used for eco-
nomic exchanges, ensure sufficient food and drink supply.
Mating and gene propagation is supported by powerful
sexual attraction. Additional properties, like body form,
enhance the chance to mate and nourish and defend off-
spring and are therefore rewards. Care for offspring until
they can reproduce themselves helps gene propagation and
is rewarding; otherwise, mating is useless. As any small edge
will ultimately result in evolutionary advantage (112), ad-
ditional reward mechanisms like novelty seeking and explo-
ration widen the spectrum of available rewards and thus
enhance the chance for survival, reproduction, and ultimate
gene propagation. These functions may help us to obtain
the benefits of distant rewards that are determined by our
own interests and not immediately available in the environ-
ment. Thus the distal reward function in gene propagation
and evolutionary fitness defines the proximal reward func-
tions that we see in everyday behavior. That is why foods,
drinks, mates, and offspring are rewarding.

The requirement for reward seeking has led to the evolution
of genes that define brain structure and function. This is
what the brain is made for: detecting, seeking, and learning
about rewards in the environment by moving around, iden-
tifying stimuli, valuing them, and acquiring them through
decisions and actions. The brain was not made for enjoying
a great meal; it was made for getting the best food for
survival, and one of the ways to do that is to make sure that
people are attentive and appreciate what they are eating.

C. Types of Rewards

The term reward has many names. Psychologists call it pos-
itive reinforcer because it strengthens behaviors that lead to
reward, or they call it outcome of behavior or goal of ac-
tion. Economists call it a good or commodity and assess the
subjective value for the decision maker as utility. We now
like to identify the kinds of stimulus, object, event, activity,
and situation that elicit the proximal functions of learning,
approach, decision-making, and positive emotions and thus
serve the ultimate, distal reward function of evolutionary
fitness.

1. Primary homeostatic and reproductive rewards

To ensure gene propagation, the primary rewards mediate
the survival of the individual gene carrier and her reproduc-
tion. These rewards are foods and liquids that contain the
substances necessary for individual survival, and the activ-
ities necessary to mate, produce offspring, and care for the
offspring. They are attractive and the main means to
achieve evolutionary fitness in all animals and humans. Pri-
mary food and liquid rewards serve to correct homeostatic
imbalances. They are the basis for Hull’s drive reduction
theory (242) that, however, would not apply to rewards
that are not defined by homeostasis. Sexual behavior fol-
lows hormonal imbalances, at least in men, but is also
strongly based on pleasure. To acquire and follow these
primary alimentary and mating rewards is the main reason
why the brain’s reward system has evolved in the first place.
Note that “primary” reward does not refer to the distinc-
tion between unconditioned versus conditioned reward; in-
deed, most primary rewards are learned and thus condi-
tioned (foods are primary rewards that are typically learnt).

2. Nonprimary rewards

All other rewards serve to enhance the function of primary
alimentary and mating rewards and thus enhance the
chance for survival, reproduction, and evolutionary selec-
tion. Even though they are not homeostatic or reproductive
rewards, they are rewards in their own rights. These nonpri-
mary rewards can be physical, tangible objects like money,
sleek cars, or expensive jewelry, or material liquids like a
glass of wine, or particular ingredients like spices or alco-
hol. They can have particular pleasant sensory properties
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like the visual features of a Japanese garden or a gorgeous
sunset, the acoustic beauty of Keith Jarrett’s Cologne Con-
cert, the warm feeling of water in the Caribbean, the gor-
geous taste of a gourmet dinner, or the irresistible odor of a
perfume. Although we need sensory receptors to detect
these rewards, their motivating or pleasing properties re-
quire further appreciation beyond the processing of sensory
components (FIGURE 1). A good example is Canaletto’s
Grand Canal (FIGURE 2) whose particular beauty is based
on physical geometric properties, like the off-center Golden
Ratio position reflecting a Fibonacci sequence (320). How-
ever, there is nothing intrinsically rewarding in this ratio of
physical proportions. Its esthetic (and monetary) value is
entirely determined by the subjective value assigned by our
brain following the sensory processing and identification of
asymmetry. Although we process great taste or smell as
sensory events, we appreciate them as motivating and pleas-
ing due to our subjective valuation. This rewarding func-
tion, cultivated in gourmet eating, enhances the apprecia-
tion and discrimination of high-quality and energy-rich pri-
mary foods and liquids and thus ultimately leads to better
identification of higher quality food and thus higher sur-
vival chances (as gourmets are usually not lacking food, this
may be an instinctive trait for evolutionary fitness). Sexual
attraction is often associated with romantic love that, in
contrast to straightforward sex, is not required for repro-
duction and therefore does not have primary reward func-
tions. However, love induces attachment and facilitates
care for offspring and thus supports gene propagation. Sex-
ual rewards constitute also the most straightforward form
of social rewards. Other social rewards include friendship,
altruism, general social encounters, and societal activities
that promote group coherence, cooperation, and competi-
tion which are mutually beneficial for group members and
thus evolutionarily advantageous.

Nonphysical, nonmaterial rewards, such as novelty, gam-
bling, jokes, suspense, poems, or relaxation, are attractive
but less tangible than primary rewards. These rewards have
no homeostatic basis and no nutrient value, and often do

not promote reproduction directly. We may find the novelty
of a country, the content of a joke, or the sequence of words
in a poem more rewarding than the straightforward physi-
cal aspects of the country or the number of words in the joke
or poem. But novelty seeking, and to some extent gambling,
may help to encounter new food sources. Jokes, suspense,
poems, and relaxation may induce changes of viewpoints
and thus help to understand the world, which may help us
to consider alternative food sources and mating partners,
which is helpful when old sources dry up. Although these
rewards act indirectly, they increase evolutionary fitness by
enhancing the functions of primary alimentary and repro-
ductive rewards.

Rewards can also be intrinsic to behavior (31, 546, 547).
They contrast with extrinsic rewards that provide motiva-
tion for behavior and constitute the essence of operant be-
havior in laboratory tests. Intrinsic rewards are activities
that are pleasurable on their own and are undertaken for
their own sake, without being the means for getting extrin-
sic rewards. We may even generate our own rewards
through internal decisions. Mice in the wild enter wheels
and run on them on repeated occasions without receiving
any other reward or benefit, like the proverbial wheel run-
ning hamster (358). Movements produce proprioceptive
stimulation in muscle spindles and joint receptors, touch
stimulation on the body surface, and visual stimulation
from seeing the movement, all of which can be perceived as
pleasurable and thus have reward functions. Intrinsic re-
wards are genuine rewards in their own right, as they induce
learning, approach, and pleasure, like perfectioning, play-
ing, and enjoying the piano. Although they can serve to
condition higher order rewards, they are not conditioned,
higher order rewards, as attaining their reward properties
does not require pairing with an unconditioned reward.
Other examples for intrinsic rewards are exploration, own
beauty, gourmet eating, visiting art exhibitions, reading
books, taking power and control of people, and investigat-
ing the natural order of the world. The pursuit of intrinsic
rewards seems private to the individual but may inadver-

FIGURE 2. Subjective esthetic reward value derived from
objective physical properties. The beauty of the Canaletto
picture depends on the Golden Ratio of horizontal propor-
tions, defined as (a ! b)/a " a/b # 0.618; a and b for
width of image. The importance of geometric asymmetry
becomes evident when covering the left part of the image
until the distant end of the canal becomes the center of the
image: this increases image symmetry and visibly reduces
beauty. However, there is no intrinsic reason why physical
asymmetry would induce subjective value: the beauty ap-
pears only in the eye of the beholder. (Canaletto: The Upper
Reaches of the Grand Canal in Venice, 1738; National
Gallery, London.)
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tently lead to primary and extrinsic rewards, like an ex-
plorer finding more food sources by venturing farther afield,
a beauty queen instinctively promoting attractiveness of
better gene carriers, a gourmet improving food quality
through hightened culinary awareness, an artist or art col-
lector stimulating the cognitive and emotional capacities of
the population, a scholar providing public knowledge from
teaching, a politician organizing beneficial cooperation,
and a scientist generating medical treatment through re-
search, all of which enhance the chance of survival and
reproduction and are thus evolutionary beneficial. The dou-
ble helix identified by Watson and Crick for purely scientific
reasons is now beneficial for developing medications. The
added advantage of intrinsic over solely extrinsic rewards is
their lack of narrow focus on tangible results, which helps
to develop a larger spectrum of skills that can be used for
solving wider ranges of problems. Formal mathematical
modeling confirms that systems incorporating intrinsic re-
wards outperform systems relying only on extrinsic rewards
(546). Whereas extrinsic rewards such as food and liquids
are immediately beneficial, intrinsic rewards are more likely
to contribute to fitness only later. The fact that they have
survived evolutionary selection suggests that their later ben-
efits outweigh their immediate costs.

D. What Makes Rewards Rewarding?

Why do particular stimuli, objects, events, situations, and
activities serve as rewards to produce learning, approach
behavior, choices, and positive emotions? There are four
separate functions and mechanisms that make rewards re-
warding. However, these functions and mechanisms serve
the common proximal and distal reward functions of sur-
vival and gene propagation. Individuals try to maximize
one mechanism only to the extent that the other mecha-
nisms are not compromised, suggesting that the functions
and mechanisms are not separate but interdependent.

1. Homeostasis

The first and primary reward function derives from the need
of the body to have particular substances for building its
structure and maintaining its function. The concentration
of these substances and their derivatives is finely regulated
and results in homeostatic balance. Deviation from specific
set points of this balance requires replenishment of the lost
substances, which are contained in foods and liquids. The
existence of hunger and thirst sensations demonstrates that
individuals associate the absence of necessary substances
with foods and liquids. We obviously know implicitly
which environmental objects contain the necessary sub-
stances. When the blood sodium concentration exceeds its
set point, we drink water, but depletion of sodium leads to
ingestion of salt (472).

Two brain systems serve to maintain homeostasis. The hy-
pothalamic feeding and drinking centers together with in-

testinal hormones deal with immediate homeostatic imbal-
ances by rapidly regulating food and liquid intake (24, 46).
In contrast, the reward centers mediate reinforcement for
learning and provide advance information for economic
decisions and thus are able to elicit behaviors for obtaining
the necessary substances well before homeostatic imbal-
ances and challenges arise. This preemptive function is evo-
lutionarily beneficial as food and liquid may not always be
available when an imbalance arises. Homeostatic imbal-
ances are the likely source of hunger and thirst drives whose
reduction is considered a prime factor for eating and drink-
ing in drive reduction theories (242). They engage the hy-
pothalamus for immediate alleviation of the imbalances
and the reward systems for preventing them. The distinc-
tion in psychology between drive reduction for maintaining
homeostasis and reward incentives for learning and pursuit
may grossly correspond to the separation of neuronal con-
trol centers for homeostasis and reward. The neuroscientific
knowledge about distinct hypothalamic and reward sys-
tems provides important information for psychological the-
ories about homeostasis and reward.

The need for maintaining homeostatic balance explains the
functions of primary rewards and constitutes the evolution-
ary origin of brain systems that value stimuli, objects,
events, situations, and activities as rewards and mediate the
learning, approach, and pleasure effects of food and liquid
rewards. The function of all nonprimary rewards is built
onto the original function related to homeostasis, even
when it comes to the highest rewards.

2. Reproduction

In addition to acquiring substances, the other main primary
reward function is to ensure gene propagation through sex-
ual reproduction, which requires attraction to mating part-
ners. Sexual activity depends partly on hormones, as shown
by the increase of sexual drive with abstinence in human
males. Many animals copulate only when their hormones
put them in heat. Castration reduces sexual responses, and
this deficit is alleviated by testosterone administration in
male rats (146). Thus, as with feeding behavior, hormones
support the reward functions involved in reproduction.

3. Pleasure

Pleasure is not only one of the three main reward functions
but also provides a definition of reward. As homeostasis
explains the functions of only a limited number of rewards,
the prevailing reason why particular stimuli, objects,
events, situations, and activities are rewarding may be plea-
sure. This applies first of all to sex (who would engage in the
ridiculous gymnastics of reproductive activity if it were not
for the pleasure) and to the primary homeostatic rewards of
food and liquid, and extends to money, taste, beauty, social
encounters and nonmaterial, internally set, and intrinsic
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rewards. Pleasure as the main effect of rewards drives the
prime reward functions of learning, approach behavior,
and decision making and provides the basis for hedonic
theories of reward function. We are attracted by most re-
wards, and exert excruciating efforts to obtain them, simply
because they are enjoyable.

Pleasure is a passive reaction that derives from the experi-
ence or prediction of reward and may lead to a longer
lasting state of happiness. Pleasure as hallmark of reward is
sufficient for defining a reward, but it may not be necessary.
A reward may generate positive learning and approach be-
havior simply because it contains substances that are essen-
tial for body function. When we are hungry we may eat bad
and unpleasant meals. A monkey who receives hundreds of
small drops of water every morning in the laboratory is
unlikely to feel a rush of pleasure every time it gets the 0.1
ml. Nevertheless, with these precautions in mind, we may
define any stimulus, object, event, activity, or situation that
has the potential to produce pleasure as a reward.

Pleasure may add to the attraction provided by the nutrient
value of rewards and make the object an even stronger
reward, which is important for acquiring homeostatically
important rewards. Once a homeostatic reward is experi-
enced, pleasure may explain even better the attraction of
rewards than homeostatis. Sensory stimuli are another
good example. Although we employ arbitrary, motivation-
ally neutral stimuli in the laboratory for conditioning, some
stimuli are simply rewarding because they are pleasant to
experience. The esthetic shape, color, texture, viscosity,
taste, or smell of many rewards are pleasant and provide
own reward value independently of the nutrients they con-
tain (although innate and even conditioned mechanisms
may also play a role, see below). Examples are changing
visual images, movies, and sexual pictures for which mon-
keys are willing to exert effort and forego liquid reward (53,
124), and the ever increasing prices of paintings (fame and
pride may contribute to their reward value). Not surpris-
ingly, the first animal studies eliciting approach behavior by
electrical brain stimulation interpreted their findings as dis-
covery of the brain’s pleasure centers (398), which were
later partly associated with midbrain dopamine neurons
(103, 155) despite the notorious difficulties of identifying
emotions in animals.

4. Innate mechanisms

Innate mechanisms may explain the attractions of several
types of reward in addition to homeostasis, hormones, and
pleasure. A powerful example is parental affection that de-
rives from instinctive attraction. Ensuring the survival of
offspring is essential for gene propagation but involves ef-
forts that are neither driven by homeostasis nor pleasure. As
cute as babies are, repeatedly being woken up at night is not
pleasurable. Generational attraction may work also in the
other direction. Babies look more at human faces than at

scrambled pictures of similar sensory intensity (610), which
might be evolutionary beneficial. It focuses the baby’s at-
tention on particularly important stimuli, initially those
coming from parents. Other examples are the sensory as-
pects of rewards that do not evoke pleasure, are nonnutri-
tional, and are not conditioned but are nevertheless attrac-
tive. These may include the shapes, colors, textures, viscos-
ities, tastes, or smells of many rewards (539), although
some of them may turn out to be conditioned reinforcers
upon closer inspection (640).

5. Punisher avoidance

The cessation of pain is often described as pleasurable. Suc-
cessful passive or active avoidance of painful events can be
rewarding. The termination or avoidance might be viewed
as restoring a “homeostasis” of well being, but it is unre-
lated to proper vegetative homeostasis. Nor is avoidance
genuine pleasure, as it is built on an adverse event or situa-
tion. The opponent process theory of motivation conceptu-
alizes the reward function of avoidance (552), suggesting
that avoidance may be a reward in its own right. Accord-
ingly, the simple timing of a conditioned stimulus relative to
an aversive event can turn punishment into reward (584).

E. Rewards Require Brain Function

1. Rewards require brains

Although organisms need sensory receptors to detect re-
wards, the impact on sensory receptors alone does not ex-
plain the effects of rewards on behavior. Nutrients, mating
partners, and offspring are not attractive by themselves.
Only the brain makes them so. The brain generates subjec-
tive preferences that reflect on specific environmental stim-
uli, objects, events, situations, and activities as rewards.
These preferences are elicited by choices and quantifiable
from behavioral reactions, typically choices but also reac-
tion times and other measures. Reward function is ex-
plained by assuming the notion of value attributed to indi-
vidual rewards. Value is not a physical property but deter-
mined by brain activity that interprets the potential effect of
a reward on survival and reproduction. Thus rewards are
internal to the brain and based entirely on brain function
(547).

2. Explicit neuronal reward signals

Information processing systems work with signals. In
brains, the signals that propagate through the circuits are
the action potentials generated by each neuron. The output
of the system is the observable behavior. In between are
neurons and synapses that transmit and alter the signals.
Each neuron works with thousands of messenger molecules
and membrane channels that determine the action poten-
tials. The number of action potentials, and somewhat their
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pattern, varies monotonically with sensory stimulation, dis-
crimination, and movements (3, 385). Thus the key sub-
strates for the brain’s function in reward are specific neuro-
nal signals that occur in a limited number of brain struc-
tures, including midbrain dopamine neurons, striatum,
amygdala, and orbitofrontal cortex (FIGURE 3). Reward sig-
nals are also found in most component structures of the
basal ganglia and the cerebral cortical areas, often in asso-
ciation with sensory or motor activity. The signals can be
measured as action potentials by neurophysiology and are
also reflected in transmitter concentrations assessed by elec-
trochemistry (638) and as synaptic potentials detected by
magnetic resonance imaging in blood oxygen level depen-
dent (BOLD) signals (328). Whereas lesions in humans and
animals demonstrate necessary involvements of specific
brain structures in behavioral processes, they do not inform
about the way the brain processes the information underly-
ing these processes. Electric and optogenetic stimulation
evokes action potentials and thus helps to dissect the influ-
ence of individual brain structures on behavior, but it does
not replicate the natural signals that occur simultaneously
in several interacting structures. Thus the investigation of
neuronal signals is an important method for understanding
crucial physiological mechanisms for the survival and re-
production of biological organisms.

3. Reward retina

Neuronal signals in sensory systems originate in specific
receptors that define the signal content. However, rewards
have no dedicated receptors. Neuronal processing would
benefit from an explicit signal that identifies a reward irre-
spective of sensory properties and irrespective of actions

required to obtain it. The signal might be analogous to
visual responses of photoreceptors in the retina that consti-
tute the first processing stage for visual perception. To ob-
tain an explicit reward signal, the brain would extract the
rewarding component from heterogeneous, polysensory en-
vironmental objects and events. A signal detecting the re-
ward properties of an apple should not be concerned with
its color unless color informs about reward properties of the
fruit. Nor should it code the movement required to obtain
the apple, other than assessing the involved effort as eco-
nomic cost. External visual, somatic, auditory, olfactory,
and gustatory stimuli predicting original, unconditioned re-
wards become conditioned rewards through Pavlovian con-
ditioning. The issue for the brain is then to extract the
reward information from the heterogeneous responses to
the original and conditioned rewards and generate a com-
mon reward signal. Neurons carrying such a signal would
constitute the first stage in the brain at which the reward
property of environmental objects and events would be
coded and conveyed to centers engaged in learning, ap-
proach, choice, and pleasure. Such abstract reward neurons
would be analogous to the retinal photoreceptors as first
visual processing stage (519).

Despite the absence of specific reward receptors, there are
chemical, thermal, and mechanical receptors in the brain,
gut, and liver that detect important and characteristic re-
ward ingredients and components, such as glucose, fatty
acids, aromatic amino acids, osmolality, oxygen, carbon
dioxide, temperature, and intestinal volume, filling, and
contractions. In addition to these exteroceptors, hormone
receptors are stimulated by feeding and sex (24, 46). These
receptors are closest to being reward receptors but never-
theless detect only physical, sensory reward aspects,
whereas reward value is still determined by internal brain
activity.

The absence of dedicated receptors that by themselves sig-
nal reward value may not reflect evolutionary immaturity,
as rewards are as old as multicellular organisms. Rather
valuation separate from physical receptors may be an effi-
cient way of coping with the great variety of objects that can
serve as rewards at one moment or another, and of adapting
reward value to changing requirements, including depriva-
tion and satiation. Rather than having a complex, omnipo-
tent, polysensory receptor that is sensitive to all possible
primary and conditioned rewards and levels of deprivation,
however infrequent they may occur, it might be easier to
have a neuronal mechanism that extracts the reward infor-
mation from the existing sensory receptors. The resulting
neuronal reward signal would be able to detect rewarding
properties in a maximum number of environmental objects,
increase the harvest of even rare rewards, and relate their
value to current body states, which all together enhance the
chance of survival. Such a signal would be an efficient so-
lution to the existential problem of benefitting from the
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FIGURE 3. Principal brain structures for reward and decision-
making. Dark blue: main structures containing various neuronal
subpopulations coding reward without sensory stimulus or motor
action parameters (“explicit reward signals”). Light blue: structures
coding reward in conjunction with sensory stimulus or motor action
parameters. Maroon: non-reward structures. Other brain struc-
tures with explicit or conjoint reward signals are omitted for clarity.
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largest possible variety of rewards with reasonable hard-
ware and energy cost.

III. LEARNING

A. Principles of Reward Learning

1. Advantage of learning

Learning is crucial for evolutionary fitness. It allows biolog-
ical organisms to obtain a large variety of rewards in a wide
range of environments without the burden of maintaining
hard-wired mechanisms for every likely and unlikely situa-
tion. Organisms that can learn and adapt to their environ-
ments can live in more widely varying situations and thus
acquire more foods and mating partners. Without learning,
behavior for these many situations would need to be pre-
programmed which would require larger brains with more
energy demands. Thus learning saves brain size and energy
and thus enhances evolutionary fitness. These advantages
likely prompted the evolutionary selection of the learning
function of rewards.

Learning processes lead to the selection of those behaviors
that result in reward. A stimulus learned by Pavlovian con-
ditioning elicits existing behavior when the stimulus is fol-
lowed by reward. Natural behavioral reactions such as sal-
ivation or approach that improve reward acquisition be-
come more frequent when a stimulus is followed by a
reward. Male fish receiving a Pavlovian conditioned stimu-
lus before a female approaches produce more offspring than
unconditioned animals (223), thus demonstrating the evo-
lutionary benefit of conditioning. Operant learning en-
hances the frequency of existing behavior when this results
in reward. Thorndike’s cat ran around randomly until it
came upon a lever that opened a door to a food source.
Then its behavior focused increasingly on the lever for the
food. Thus Pavlovian and operant learning commonly lead
to selection of behavior that is beneficial for survival.

Learning is instrumental for selecting the most beneficial
behaviors that result in the best nutrients and mating part-
ners in the competition for individual and gene survival. In
this sense selection through learning is analogous to the
evolutionary selection of the fittest genes. For both, the
common principle is selection of the most efficient charac-
teristics. The difference is on the order of time and scale.
Selection of behavior through learning is based on outcome
over minutes and hours, whereas selection of traits through
evolution is based on survival of the individual. Evolution-
ary selection includes the susceptibility to reward and the
related learning mechanisms that result in the most efficient
acquisition of nutrients and mating partners.

2. Pavlovian learning

In Pavlov’s experiment, the dog’s salivation following the
bell suggests that it anticipates the sausage. A Pavlovian
conditioned visual stimulus would have a similar effect. The
substances that individuals need to live are packaged in
objects or liquids or are contained in animals they eat. We
need to recognize a pineapple to get its juice that contains
necessary substances like water, sugar, and fibers. Recogni-
tion of these packages could be hard wired into brain func-
tion, which would require a good number of neurons to
detect a reasonable range of rewards. Alternatively, a flex-
ible mechanism could dynamically condition stimuli and
events with the necessary rewards and thus involve much
less neurons representing the rewards. That mechanism
makes individuals learn new packages when the environ-
ment changes. It also allows humans to manufacture new
packages that were never encountered during evolution.
Through Pavlovian conditioning humans learn the labels
for hamburgers, baby food, and alcoholic beverages. Thus
Pavlovian conditioning touches the essence of reward func-
tions in behavior and allows individuals to detect a wide
range of rewards from a large variety of stimuli while pre-
venting run away neuron numbers and brain size. It is the
simplest form of learning that increases evolutionary fitness
and was thus selected by evolution.

Pavlovian conditioning makes an important conceptual
point about reward function. We do not need to act to
undergo Pavlovian conditioning. It happens without our
own doing. But our behavior reveals that we have learned
something, whether we wanted to or not. Pavlov’s bell by
itself would not make the dog salivate. But the dog salivates
when it hears the bell that reliably precedes the sausage.
From now on, it will always salivate to a bell, in particular
when the bell occurs in the laboratory in which it has re-
ceived all the sausages. Salivation is an automatic compo-
nent of appetitive, vegetative approach behavior.

Although initially defined to elicit vegetative reactions, Pav-
lovian conditioning applies also to other behavioral reac-
tions. The bell announcing the sausage elicits also approach
behavior involving eye, limb, and licking movements. Thus
Pavlovian learning concerns not only vegetative reactions
but also skeletal movements. Furthermore, Pavlovian con-
ditioning occurs in a large variety of behavioral situations.
When operant learning increases actions that lead to re-
ward, the more reward inadvertently conditions the in-
volved stimuli in a Pavlovian manner. Thus Pavlovian and
operant processes often go together in learning. When we
move to get a reward, we also react to the Pavlovian con-
ditioned, reward-predicting stimuli. In choices between dif-
ferent rewards, Pavlovian conditioned stimuli provide cru-
cial information about the rewarded options. Thus Pavlov-
ian and operant behavior constitute two closely linked
forms of learning that extend well beyond laboratory ex-
periments. Finally, Pavlovian conditioning concerns not
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only the motivating components of rewards but also their
attentional aspects. It confers motivational salience to arbi-
trary stimuli that elicits stimulus-driven attention and di-
rects top-down attention to the reward and thus focuses
behavior on pursuing and acquiring the reward. Taken to-
gether, Pavlovian conditioning constitutes a fundamental
mechanism that is crucial for a large range of learning pro-
cesses.

3. Reward prediction and information

Appetitive Pavlovian conditioning takes the past experience
of rewards to form predictions and provide information
about rewards. The bell in Pavlov’s conditioning experi-
ment has become a sausage predictor for the animal. By
licking to the bell the dog demonstrates an expectation of
the sausage that was evoked by the bell. Thus Pavlovian
conditioning of the bell to the sausage has made the intrin-
sically neutral bell a reward predictor. The external stimu-
lus or event (the bell) has become a predictor (of the sau-
sage) and evokes an internal expectation (of the sausage) in
the animal (FIGURE 4). The same holds for any other reward
predictor. The pineapple and the hamburger are predictors
of the nutrients they contain.

Predictions tell us what is going to happen. This includes
predictors of probabilistic rewards, even if the reward does
not occur in every instance. Pavlov’s bell predicts a sausage
to the dog and at the same time induces salivation, licking,
and approach. Thus Pavlovian conditioning confers two
components, a predictive and an incentive property. The
predictive component indicates what is going to happen
now. The incentive property induces action, such as saliva-
tion, licking, and approach, which help to obtain and ingest
the sausage. The two properties are separated in time in the
classic and widely used delayed response tasks in which
initial instructive stimuli have reward-predicting properties
without eliciting a reward-directed action (but ocular sac-
cades), whereas the final trigger or releasing stimulus in-
duces the behavioral action and thus has both predictive
and incentive properties. The predictive and incentive prop-
erties are separated spatially with different stimulus and
goal (lever) positions and are dissociable in the behavior of

particular rat strains. Specially bred sign-tracking rats ap-
proach the conditioned predictive stimulus, whereas goal
trackers go directly to the reward upon stimulus appear-
ance, indicating separation of predictive and incentive
properties in goal trackers (163).

The predictive component can be further distinguished
from an informational component. Once a stimulus has
been Pavlovian conditioned, it confers information about
the reward. The information does not necessarily predict
explicitly what is actually going to happen every time, not
even probabilistically. Through Pavlovian conditioning I
have learned that a particular sign on a building indicates a
pub because I have experienced the beer inside. The atmo-
sphere and the beer represent a value to me that is assigned
in a Pavlovian manner to the pub sign. I can pass the pub
sign without entering the pub, however difficult that may
be. Thus the sign is informational but does not truly predict
a pint, only its potential, nor does it have the incentive
properties at that moment to make me go in and get one.
Then I may run into an unknown pub and experience a
different beer, and I undergo another round of Pavlovian
conditioning to the value of that particular pub sign. When
I need to choose between different pubs, I use the informa-
tion about their values rather than explicit predictions of
getting a beer in every one of them. Thus Pavlovian condi-
tioning sets up predictions that contain reward informa-
tion. The predictions indicate that a reward is going to
occur this time, whereas the reward informations do not
necessarily result in reward every time.

The distinction between explicit prediction and informa-
tion is important for theories of competitive decision-mak-
ing. Value information about a reward is captured in the
term of action value in machine learning, which indicates
the value resulting from a particular action, without requir-
ing to actually choosing it and obtaining that value (575). In
analogy, object value indicates the value of a reward object
irrespective of choosing and obtaining it. Individuals make
decisions by comparing the values between the different
actions or objects available and then selecting only the ac-
tion or object with the highest value (see below FIGURE
36C). Thus the decision is based on the information about

Expectation of reward 

Value

Reward predicting
stimulus

Reward

FIGURE 4. Pavlovian reward prediction. With conditioning,
an arbitrary stimulus becomes a reward predictor and elicits
an internal expectation of reward. Some of the behavioral
reactions typical for reward occur also after the stimulus
(Pavlovian stimulus substitution), in particular approach be-
havior, indicating that the stimulus has acquired reward value
(blue arrow).
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each reward value and not on the explicit prediction that
every one of these rewards will be actually experienced, as
only the chosen reward will occur. In this way, Pavlovian
conditioning is a crucial building block for reward informa-
tion in economic decisions. Separate from the decision
mechanism, the acquisition and updating of action values
and object values requires actual experience or predictions
derived from models of the world, which is captured by
model free and model-based reinforcement learning, respec-
tively. Other ways to establish reward predictions and in-
formations involve observational learning, instructions,
and deliberate reflections that require more elaborate cog-
nitive processes. All of these forms produce reward infor-
mation that allows informed, competitive choices between
rewards.

4. Pavlovian learning produces higher order rewards

Reward-predicting stimuli established through Pavlovian
conditioning become higher order, conditioned rewards. By
itself a red apple is an object without any intrinsic meaning.
However, after having experienced its nutritious and pleas-
antly tasting contents, the apple with its shape and color has
become a reinforcer in its own right. As a higher order,
conditioned reward, the apple serves all the defining func-
tions of rewards, namely, learning, approach behavior, and
pleasure. The apple serves as a reinforcer for learning to find
the vendor’s market stand. When we see the apple, we ap-
proach it if we have enough appetite. We even approach the
market stand after the apple has done its learning job. And
seeing the delicious apple evokes a pleasant feeling. The
apple serves these functions irrespective of explicitly pre-
dicting the imminent reception of its content or simply in-
forming about its content without being selected. Thus Pav-
lovian conditioning labels arbitrary stimuli and events as
higher order rewards that elicit all reward functions. All this
happens without any physical change in the apple. The only
change is in the eye of the beholder, which we infer from
behavioral reaction.

The notion that Pavlovian conditioning confers higher or-
der reward properties to arbitrary stimuli and events allows
us to address a basic question. Where in the body is the
original, unconditioned effect of rewarding substances lo-
cated (517, 640)? The functions of alimentary rewards de-
rive from their effects on homeostatic mechanisms involved
in building and maintaining body structure and function. In
the case of an apple, the effect might be an increase in blood
sugar concentration. As this effect would be difficult to
perceive, the attraction of an apple might derive from vari-
ous stimuli conditioned to the sugar increase, such vision of
the apple, taste, or other conditioned stimuli. Mice with
knocked out sweet taste receptors can learn, approach, and
choose sucrose (118), suggesting that the calories and the
resulting blood sugar increase constitute the unconditioned
reward effect instead of or in addition to taste. Besides being
an unconditioned reward (by evoking pleasure or via innate

mechanisms, see above), taste may also be a conditioned
reward, similar to the sensory properties of other alimen-
tary rewards, including temperature (a glass of unpleasant,
luke warm water predicting reduced plasma osmolality)
and viscosity (a boring chocolate drink predicting calories).
These sensations guide ingestion that will ultimately lead to
the primary reward effect. However, the conditioned prop-
erties are only rewarding as long as the original, uncondi-
tioned reward actually occurs. Diets lacking just a single
essential amino acid lose their reward functions within a
few hours or days and food aversion sets in (181, 239, 480).
The essential amino acids are detected by chemosensitive
neurons in olfactory cortex (314), suggesting a location for
the original effects of amino acids with rewarding func-
tions. Thus the better discernible higher order rewards fa-
cilitate the function of primary rewards that have much
slower and poorly perceptible vegetative effects.

A similar argument can be made for rewards that do not
address homeostasis but are based on the pleasure they
evoke. The capacity of some unconditioned rewards to
evoke pleasure and similar positive emotions is entirely de-
termined by brain physiology. Pleasure as an unconditioned
reward can serve to produce higher order, conditioned re-
wards that are also pleasurable. A good example are sexual
stimuli, like body parts, that have unconditioned, innate
reward functions and serve to make intrinsically neutral
stimuli, like signs for particular stores or bars, predictors of
sexual events and activity.

Taken together, the primary, homeostatic, or pleasurable
reward functions are innate and determined by the physiol-
ogy of the body and its brain that emerged from evolution-
ary selection. Individuals without such brains or with brains
not sensing the necessary rewards have conceivably per-
ished in evolution. The primary rewards come in various
forms and “packages” depending on the environment in
which individuals live. The same glucose molecule is pack-
aged in sugar beets or bananas in different parts of the
world. Conditioning through the actual experience within a
given environment facilitates the detection of the primary
rewards. Thus, in producing higher order rewards, Pavlov-
ian learning allows individuals to acquire and optimally
select homeostatic and pleasurable rewards whose primary
actions may be distant and often difficult to detect.

5. Operant learning

Getting rewards for free sounds like paradise. But after
Adam took Eve’s apple, free rewards became more rare, and
Pavlovian learning lost its exclusiveness. We often have to
do something to get rewards. Learning starts with a reward
that seems to come out of nowhere but actually came from
an action, and we have to try and figure out what made it
appear. The rat presses a lever by chance and receives a drop
of sugar solution. The sugar is great, and it presses again,
and again. It comes back for more. The frequency of its
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behavior that results in the sugar increases. This is positive
reinforcement, the more reward the animal gets the more it
acts, the essence of Thorndike’s Law of Effect (589). Crucial
for operant learning is that the animal learns about getting
the sugar drop only by pressing the lever. Without lever
pressing it would not get any sugar, and the behavior would
not get reinforced. If the sugar comes also without lever
pressing, the sugar does not depend on lever pressing, and
the rat would not learn to operate the lever (but it might
learn in a Pavlovian manner that the experimental box pre-
dicts sugar drops).

Operant reinforcement means that we act more when we
get more from the action. However, due to the somewhat
voluntary nature of the action involved, the inverse works
also. The more we act, the more we get. Our behavior
determines how much we get. We get something for an
action, which is the bonus or effort function of reward. We
can achieve something by acting. We have control over
what we get. Knowing this can motivate us. Operant learn-
ing allows behavior to become directed at a rewarding goal.
We act to obtain a reward. Behavior becomes causal for
obtaining reward. Thus operant learning represents a mech-
anism by which we act on the world to obtain more re-
wards. Coconuts drop only occasionally from the tree next
to us. But we can shake the tree or sample other trees, not
just because the coconut reinforced this behavior but also
because we have the goal to get more coconuts. In eliciting
goal-directed action, operant learning increases our possi-
bilities to obtain the rewards we need and thus enhances our
chance for survival and reproduction.

6. Value updating, goal-directed behavior, and habits

Value informations for choices need to be updated when
reward conditions change. For example, food consumption
increases the specific satiety for the consumed reward and
thus decreases its subjective value while it is being con-
sumed. In addition, the general satiety evolving in parallel
lowers the reward value of all other foods. Although the
values of all rewards ever encountered could be continu-
ously updated, it would take less processing and be more
efficient to update reward values only at the time when the
rewards are actually encountered and contribute to choices.
Reward values that are computed relative to other options
should be updated when the value of any of the other option
changes.

Operant learning directs our behavior towards known out-
comes. In goal-directed behavior, the outcome is repre-
sented during the behavior leading to the outcome, and
furthermore, the contingency of that outcome on the action
is represented (133). In contrast, habits arise through re-
peated performance of instrumental actions in a stereo-
typed fashion. Habits are not learned with a new task from
its outset but form gradually after an initial declarative,
goal-directed learning phase (habit formation rather than

habit learning). They are characterized by stimulus-re-
sponse (S-R) performance that becomes “stamped-in” by
reinforcement and leads to inflexible behavior. Despite their
automaticity, habits extinguish with reinforcer omission, as
do other forms of behavior. In permitting relatively auto-
matic performance of routine tasks, habits free our atten-
tion, and thus our brains, for other tasks. They are efficient
ways of dealing with repeated situations and thus are evo-
lutionary beneficial.

Value updating differs between goal-directed behavior,
Pavlovian predictions, and habits (133). Specific tests in-
clude devaluation of outcomes by satiation that reduces
subjective reward value (133). In goal-directed behavior,
such satiation reduces the operant response the next time
the action is performed. Crucially, the effect occurs without
pairing the action with the devalued outcome, which would be
conventional extinction. The devaluation has affected the rep-
resentation of the outcome that is being accessed during the
action. In contrast, habits continue at unreduced magnitude
until the devalued outcome is experienced after the action, at
which point conventional extinction occurs. Thus, with
habits, values are only retrieved from memory and updated
at the time of behavior. Devaluation without action-out-
come pairing is a sensitive test for distinguishing goal-di-
rected behavior from habits and is increasingly used in neu-
roscience (133, 399, 646). Like goal-directed behavior, Pav-
lovian values can be sensitive to devaluation via
representations and update similarly without repairing,
convenient for rapid economic choices (however, Pavlovian
conditioning is not goal “directed” as it does not require
actions). Correspondingly, reward neurons in the ventral
pallidum start responding to salt solutions when they be-
come rewarding following salt depletion, even before actu-
ally experiencing the salt in the new depletion state (591). In
conclusion, whether updating is immediate in goal-directed
behavior or gradually with habit experience, values are only
computed and updated at the time of behavior.

B. Neuronal Signals for Reward Learning

1. Basic conditions of learning: contiguity and
contingency

In both Pavlovian and operant conditioning, an event (stim-
ulus or action) is paired in time, and often in location, with
a reinforcer to produce learning. In delay conditioning, the
stimulus or action lasts until the reinforcer occurs. In trace
conditioning, which is often less effective (47, 423), the
stimulus or action terminates well before the reinforcer.
Trace conditioning, but not delay conditioning, with aver-
sive outcomes is disrupted by lesions of the hippocampus
(47, 356, 553), although presenting the stimulus briefly
again with the outcome restores trace conditioning (27).
Thus temporal contiguity is important for conditioning.
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What Pavlov did not know was that stimulus-reward pair-
ing was not sufficient for conditioning. Rescorla showed in
his “truly random” experiment that the key variable under-
lying conditioning is the difference in outcome between the
presence and absence of a stimulus (or action) (459). Con-
ditioning occurs only when reinforcement is dependent or
“contingent” on the stimulus (or an action), and this con-
dition applies also to rewards (126). When the same reward
occurs also without the stimulus, the stimulus is still paired
with reward but carries no specific reward information, and
no conditioning occurs. Thus contingency refers to the in-
tuitive notion that we learn only something that carries
specific information or that decreases the uncertainty in the
environment (reduction of informational entropy). Contin-
gency is usually defined as difference in reinforcement be-
tween stimulus (or action) presence and background (stim-
ulus absence) (FIGURE 5A). A positive difference produces
excitatory conditioning (positive learning, left of diagonal),
whereas a negative difference produces inhibitory condi-

tioning (negative learning, right of diagonal). Zero contin-
gency produces no conditioning (diagonal line) (but likely
perceptual learning). Backward conditioning (reward be-
fore stimulus) is ineffective or even produces inhibitory
conditioning because the reward occurs without relation
to the stimulus. Timing theories of conditioning define
contingency as stimulus-to-intertrial ratio of reinforce-
ment rates (175). More frequent reward during the stim-
ulus compared with the no-stimulus intertrial interval
makes the reward more contingent on the stimulus.
When the same reward occurs later after stimulus onset
(temporal discounting), stimulus-to-intertrial reward ra-
tio decreases and thus lowers contingency, although
other explanations are also valid (see below). Thus, after
contiguity and stimulus-outcome pairing, contingency is
the crucial process in conditioning. It determines reward
predictions and informations, which are crucial for effi-
cient decisions, and it produces higher order rewards,
which drive most of our approach behavior.
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FIGURE 5. Reward contingency. A: role of contingency in learning. Contingency is shown as reward differ-
ence between stimulus presence and absence (background). Abscissa and ordinate indicate conditional
reward probabilities. Higher reward probability in the presence of the stimulus compared with its absence
(background) induces positive conditioning (positive contingency, triangle). No learning occurs with equal
reward probabilities between stimulus and background (diagonal line, rhombus). Reward contingency applies
to Pavlovian conditioning (shown here; reward contingent on stimulus) and operant conditioning (reward
contingent on action). [Graph inspired by Dickinson (132).] B: contingency-dependent response in single
monkey amygdala neuron. Top: neuronal response to conditioned stimulus (reward P " 0.9; red) set against
low background reward probability (P " 0.0; blue) (triangle in A). Bottom: lack of response to same stimulus
paired with same reward (P " 0.9) when background produces same reward probability (P " 0.9) (rhombus
in A) which sets reward contingency to 0 and renders the stimulus uninformative. Thus the neuronal response
to the reward-predicting stimulus depends entirely on the background reward and thus reflects reward
contingency rather than stimulus-reward pairing. A similar drop in neuronal responses occurs with comparable
variation in reward magnitude instead of probability (41). Perievent time histograms of neuronal impulses are
shown above raster displays in which each dot denotes the time of a neuronal impulse relative to a reference
event (stimulus onset, time " 0, vertical line at left; line to right indicates stimulus offset). [From Bermudez and
Schultz (41).]
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2. Neuronal contingency tests

Standard neuronal learning and reversal studies test conti-
guity by differentially pairing stimuli (or actions) with re-
ward. Although they sometimes claim contingency testing,
the proper assessment of contingency requires the distinc-
tion against contiguity of stimulus-reward pairing. As sug-
gested by the “truly random” procedure (459), the distinc-
tion can be achieved by manipulating reward in the absence
of the stimulus (or action).

A group of amygdala neurons respond to stimuli predicting
more frequent or larger rewards compared with back-
ground without stimuli (FIGURE 5B, top). These are typical
responses to reward-predicting stimuli seen for 30 years in
all reward structures. However, many of these neurons lose
their response in a contingency test in which the same re-
ward occurs also during the background without stimuli,
even though stimulus, reward during stimulus and stimu-
lus-reward pairing are unchanged (41) (FIGURE 5B, bot-
tom). Thus the responses do not just reflect stimulus-reward
pairing but depend also on positive reward contingency,
requiring more reward during stimulus presence than ab-
sence (however, amygdala neurons are insensitive to nega-
tive contingency). Although the stimulus is still paired with
the reward, it loses its specific reward information and pre-
diction; the amygdala responses reflect that lost prediction.
Correspondingly, in an operant test, animals with
amygdala lesions fail to take rewards without action into
account and continue to respond after contingency degra-
dation (399), thus showing an important role of amygdala
in coding reward contingency.

Reward contingency affects also dopamine responses to
conditioned stimuli. In an experiment designed primarily
for blocking (see below FIGURE 8A), a phasic environmental
stimulus constitutes the background, and the crucial back-
ground test varies the reward with that environmental stim-
ulus. Dopamine neurons are activated by a specific re-
warded stimulus in the presence of an unrewarded environ-
mental stimulus (positive contingency) but lose the
activation in the presence of a rewarded environmental
stimulus (zero contingency) (618). The stimulus has no spe-
cific information and prediction when the environmental
stimulus already fully predicts the reward. Another experi-
ment shows that these contingency-dependent dopamine
responses may be important for learning. Using optoge-
netic, “rewarding” stimulation of dopamine neurons, be-
havioral responses (nose pokes) are only learned when the
stimulation was contingent on the nose pokes, whereas con-
tingency degradation by unpaired, pseudorandom stimula-
tion during nose pokes and background induces extinction
[truly random control with altered p(stimulation|nose
poke)] (641).

Taken together, amygdala and dopamine neurons take the
reward in the absence of the stimulus into account and thus

are sensitive to contingency rather than simple stimulus-
reward pairing. They fulfill the crucial requirement for cod-
ing effective reward information and prediction and thus
may provide crucial inputs to neuronal decision mecha-
nisms. Also, these neuronal signals demonstrate a physical
basis for the theoretical concept of contingency and thus
strengthen the plausibility of the most basic assumption of
animal learning theory.

3. Prediction error learning theory

Contingency, in addition to stimulus-reward pairing (contigu-
ity), is necessary for rewards to induce conditioning. Reward is
contingent on a stimulus only when it differs between stimulus
presence and absence. When reward is identical, including its
time of occurrence, between stimulus presence and absence, it
is already predicted by the objects that exist during stimulus
presence and absence and therefore not surprising. Hence, the
stimulus will not be learned.

The formal treatment of surprise in conditioning employs
the concept of prediction error. A reward prediction error
PE is the difference between received reward ! and reward
prediction V in trial t

PE(t) " !(t) # V(t) (1)

This formal definition of “error” extends beyond the collo-
quial meaning of inaccurate behavior. Prediction errors oc-
cur whenever Equation 1 applies, irrespective of whether
they simply occur during behavioral learning or are actually
being used for learning.

Animal learning theory aims to explain the role of contin-
gency in conditioning by formalizing how prediction errors
update reward predictions from previously experienced re-
wards (460). The new prediction V for trial t!1 derives
from the current prediction V(t) and the prediction error
PE(t) weighted by learning rate $

V(t % 1) " V(t) % $ ! PE(t) (2)

Note that V captures the sum of predictions if several stim-
uli are present. According to this account, conditioning con-
stitutes error driven learning (FIGURE 6A). When the out-
come differs from the prediction, a prediction error propor-
tional to that difference is generated and added to the
current prediction after weighting by learning rate $. When
$ is set to 1.0, the new prediction is updated in one trial.
However, learning rates are usually $1.0, which leads to
the typical asymptotic learning curves during which predic-
tion errors decline gradually (FIGURE 6B).

Rewards that are better than predicted generate positive
prediction errors and lead to response acquisition, whereas
worse rewards generate negative prediction errors and lead
to extinction of behavior. When the prediction error be-
comes zero, no further learning occurs and the prediction
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remains stable. Thus learning advances only to the extent to
which a reward is unpredicted and slows progressively with
increasingly accurate predictions. This formalism views
learning intuitively as a change in behavior that occurs
when encountering something new or different than pre-
dicted, whereas behavior stays the same when everything
occurs according to “plan.”

Positive prediction errors direct organisms to maximal re-
wards, whereas negative prediction errors direct them away
from poor outcomes. Obviously, individuals appreciate
positive prediction errors and hate negative ones. Optimal
behavior for maximizing rewards is characterized by many
positive prediction errors and few negative ones.

Contingency is based on prediction errors. Contingency is
non-zero, and prediction errors are elicited, when reward
differs between stimulus presence and absence. This is the
crucial requirement for learning. When reward is identical
during stimulus presence and absence, there is no contin-
gency, no prediction error, and no learning.

Specific learning situations benefit from extensions of the
basic Rescorla-Wagner rule. Attentional learning rules re-
late the capacity to learn (associability) to the degree of
attention evoked by the stimulus, which depends on degree
of surprise (prediction error) experienced in the recent past
(prediction error in the current trial cannot contribute to
attention to the stimulus, as the error occurs only after the
stimulus). Learning rate $ is modified according to the
weighted unsigned (absolute) prediction error in the recent
past (425)

$ " &'!(t) # V(t)' (3)

with & as weighting parameter. Thus learning rate increases
with large prediction errors, as in the beginning of learning
or with large step changes, resulting in strong influences of
prediction error and thus fast learning according to Equa-

tion 2. In contrast, learning slows with small prediction
errors from small changes.

When rewards are drawn from different probability distri-
butions, comparable learning can be achieved by scaling the
update component $*PE to the standard deviation ( of the
respective reward distribution by either (438)

$X " $ ⁄ ( (3A)

or

PE(t)X " PE(t) ⁄ ( (3B)

Behavioral tests with measurable prediction errors demon-
strate that scaling learning rate $ (Equation 3A) by stan-
dard deviation may produce constant learning rates with
probability distributions differing only in standard devia-
tion (384), which can be formulated as

$ " &/( '!(t) # V(t)' (3C)

Thus risk may affect learning in two separate ways, by
increasing learning rate $ via the attentional effect of the
prediction error (Equation 3), and by decreasing learning
rate or prediction error via division by standard deviation (
(Equations 3A and 3B).

The Rescorla-Wagner learning rule models Pavlovian con-
ditioning: changes in outcome lead to prediction errors that
lead to changes in prediction and consequently changes in
behavior. The learning rule extends to operant condition-
ing: changes in outcome produce prediction errors that lead
to behavioral changes which then result in changes in pre-
diction.

In realistic situations, rewards may be unstable, which re-
sults in frequent prediction errors, continuous updating of
predictions, and correspondingly varying behavior. Thus
learning of a single, stable reward is a special case of, and
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changed. V is reward prediction, ! is reward, $ is learning
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gradually declining prediction errors [!(t) % V(t)].
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formally equivalent to, the general process of updating of
reward predictions.

Although the Rescorla-Wagner rule models the acquisition
of predictions (V in Equation 2), it does not conceptualize
predictions as conditioned, higher order reinforcers. How-
ever, higher order reward properties are responsible for
most reward functions in learning, approach behavior, and
emotional reactions, as outlined above (640). The temporal
difference (TD) reinforcement model in machine learning
captures the learning functions of higher order rewards
(574). Its prediction error includes both unconditioned and
higher order reinforcers, without distinguishing between
them, as

TDPE(t) " [!(t) % )!V(t)] # V(t # 1) (4)

The t stands now for time step within a given trial, ) is a
temporal decay (discounting) factor. A temporal, rather
than trial by trial, prediction error is adequate when includ-
ing higher order reinforcers that derive from reward predic-
tors and necessarily occur at earlier times than uncondi-
tioned reinforcers. The term [!(t) !)!V(t)] replaces the !(t)
term in Equation 1 and incorporates at every time step t the
unconditioned reward !(t) and the discounted ()) sum (!)
of future rewards predicted by V(t) serving as higher order
reward. The TDPE includes a higher order prediction error
that indicates how much the reward predicted by a condi-
tioned stimulus varies relative to an earlier reward predic-
tion. Thus TDPEs are generated by successive conditioned
stimuli to the extent that these stimuli carry different re-
ward predictions than the preceding stimulus.

Substituting PE of Equation 2 by TDPE of Equation 4 leads
to the TD learning model

V(t % 1) " V(t) % $ * TDPE(t) (5)

Thus TD learning advances backwards from an uncondi-
tioned reward to the earliest reward predictor. Updating of
the earliest reward prediction employs the prediction value
of the subsequent stimulus and does not need to wait for the
final, unconditioned reward. Thus each of the conditioned,
reward-predicting stimuli serves as a higher order reward,
which is biologically plausible by reflecting the frequent
occurrence of conditioned rewards and addressing the often
difficult distinction between the primary or conditioned na-
ture of natural rewards (640). The use of truly uncondi-
tioned rewards in TD learning is straightforward (573). TD
reinforcement models are efficient and learn complex tasks
involving sequential states, like balancing a pole on a mov-
ing platform (32) or playing backgammon (586).

4. Dopamine reward prediction error signal

Most midbrain dopamine neurons show rather stereotyped,
phasic activations with latencies of $100 ms and durations
of $200 ms following unpredicted food or liquid rewards

(FIGURE 7, A AND B). The response codes the prediction
error, namely, the quantitative difference between received
and predicted reward value in each trial t, which can be
generically be expressed as

DaResp(t) " !(t) # V(t) (6)

The neuronal response is bidirectional, as a reward that is
better than predicted elicits an activation (positive predic-
tion error response) and a reward that is worse than pre-
dicted induces a depression (negative error response) in
monkeys, rats, and mice (FIGURE 7C). A fully predicted re-
ward draws no response. These responses occur with all-or-
none reward prediction errors (321, 365, 410, 503, 517,
521, 524), and with graded, quantitative prediction errors
(more or less reward than predicted) (33, 102, 144, 161,
376, 598). Thus the dopamine response codes a reward
prediction error (Equation 1) that may constitute a biolog-
ical instantiation of the reinforcement term in Rescorla-
Wagner learning (365), TD learning (374), and spectral
timing (71).

The negative dopamine reward prediction error response
consists of a depression of activity against low background
activity. Adequate assessment requires measuring impulse
rate over the maximal length of the depression (34), thus
avoiding an almost ungraded negative response (33). Even
with a graded negative response (161), the negative error
response has less dynamic range than the positive error
response. However, the complete cessation of dopamine
activity for varying durations may have stronger impact on
postsynaptic neurons than graded increases and thus may
compensate for the limited dynamic range. Even before it
comes to synaptic transmission, voltammetrically measured
dopamine concentration changes resulting from negative
reward prediction errors are symmetric to the changes re-
sulting from positive errors (204). Thus the dopamine re-
ward prediction error signal seems to be bidirectional.

Dopamine responses show features beyond the Rescorla-
Wagner learning rule. About one-third of dopamine neu-
rons show also slower activations preceding reward that
vary with the standard deviation (risk) of reward probabil-
ity distributions (161). The risk response reflects the un-
signed (absolute) prediction error and, in keeping with the
attentional learning rules (425), may affect learning rate $
(Equation 3) and thus serve to adjust learning speed. Fur-
thermore, the prediction error response itself scales with the
standard deviation of reward probability distributions
(598) according to Equation 3B, which may be driven by
the slower activation coding standard deviation and serve
to achieve comparable learning with different standard de-
viations. Third, the prediction error response is sensitive to
predictions in model-based learning (see below).

The dopamine response at the time of reward fulfils strin-
gent tests for prediction errors conceptualized by animal
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learning theory (FIGURE 7D). In the blocking test, a test
stimulus is blocked from acquiring reward prediction
when the reward is fully predicted by another stimulus
(zero contingency). If reward does occur after the non-
predictive test stimulus, it will produce a positive predic-
tion error, and dopamine neurons are activated by that
reward (618). In the conditioned inhibition test, a reward
occurring after a stimulus explicitly predicting reward
absence elicits a super strong positive reward prediction
error (because of a negative prediction being subtracted

from the reward, Equation 1), and dopamine neurons
accordingly show supranormal activation by the surpris-
ing reward (Equation 6) (598). Thus the phasic dopa-
mine responses follow the formal theoretical require-
ments for prediction error coding.

Reward-predicting stimuli induce phasic activations in
most dopamine neurons (60-75%) (FIGURE 7C) (322, 503)
and increase correlations between dopamine impulses
(256). These responses are gradually acquired through
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learning and thus code the prediction V of Rescorla-Wagner
and TD models. Correspondingly, voltammetrically mea-
sured striatal dopamine release shifts from reward to re-
ward-predicting stimuli during conditioning (117). Acqui-
sition of dopamine responses to conditioned stimuli re-
quires prediction errors, as the blocking test shows.
Compounding a novel stimulus with an established reward
predictor without changing the reward fails to elicit a pre-
diction error and prevents the stimulus from being learned
(FIGURE 8A). A conditioned inhibitor elicits a depressant
instead of an activating response (FIGURE 8B).

Results from tests with sequential reward-predicting stimuli
suggest that dopamine responses signal higher order reward
prediction errors compatible with TD learning (374). Thus
the dopamine responses are well described by extending
Equation 6 and using t as time steps, which can be generi-
cally be expressed as

DaResp(t) " [!(t) % )!V(t)] # V(t # 1) (7)

The dopamine response jumps sequentially backwards
from the “unconditioned” liquid reward via stimuli predict-
ing this reward to the earliest reward-predicting stimulus,
while losing the response to the predicted intermediate stim-
uli and the predicted reward (FIGURE 8C) (453, 521). Simi-
lar to TD learning, the dopamine responses do not distin-
guish between primary and higher order reward prediction
errors. Only their magnitudes, and fractions of responding
neurons, decrease due to temporal discounting, which in
TD learning is incorporated as ). With several consecutive
conditioned stimuli, dopamine neurons code the TD predic-
tion error exactly as the predicted value changes between
the stimuli (398). In such tasks, dopamine responses match
closely the temporal profiles of TD errors that increase and
decline with sequential variations in the discounted sum of
future rewards (FIGURE 8D) (144). Thus dopamine neurons
code reward value at the time of conditioned and uncondi-
tioned stimuli relative to the reward prediction at that mo-
ment.

The reward-predicting instruction stimuli in delay tasks
have little incentive properties and thus provide a distinc-
tion between predictive and incentive stimulus properties
(see above). These instructions contain information and
elicit saccadic eye movements for acquiring the information
contained in the stimulus, but the animal is not allowed to
react immediately with a movement towards a rewarded
target; it must wait for a later, incentive, movement-trigger-
ing stimulus. The consistent dopamine responses to these
predictive instructions (FIGURE 8C) (301, 349, 453, 521,
527, 579), and their lack of ocular relationships (527), sug-
gest predominant coding of predictive stimulus properties,
without requiring incentive properties. In contrast, in spe-
cific sign- and goal-tracking rat strains, striatal voltammet-
ric dopamine responses are stronger to stimuli with incen-
tive compared with reward-predictive properties (163).

These differences may be due to different methods (electro-
physiological impulses vs. voltammetric dopamine concen-
trations) and genetic differences in the specifically bred sign
versus goal trackers differentially affecting the dopamine
response transfer from reward to predictive stimulus.

Hundreds of human neuroimaging studies demonstrate ac-
tivations induced by reward related stimuli and reward-
related actions in the main reward structures (280, 590). A
BOLD neuromagnetic (fMRI) signal reflecting reward pre-
diction error is found in the ventral striatum (351, 390) and
constitutes probably the most solid reward response in the
brain. It likely reflects the dopamine prediction error signal,
as it increases with dopamine agonists and decreases with
dopamine antagonists (431). It is detected more easily in
striatal and frontal dopamine terminal areas than in mid-
brain cell body regions (111, 431, 615), because it presum-
ably reflects summed synaptic potentials (328), which may
be stronger after the massive axon collaterilization in the
striatum. The human reward signal allows also to assess
neuronal correlates of positive emotional reward functions,
which is intrinsically difficult in animals despite recent ef-
forts (44). With the use of raclopride binding with positron
emission tomography (PET), amphetamine-induced dopa-
mine concentrations correlate highly with subjective eupho-
ria ratings in ventral (but not dorsal) striatum (140). BOLD
responses in ventral striatum correlate with pleasantness
ratings for thermal stimuli (along with orbitofrontal and
anterior cingulate activations) (486) and with momentary
happiness ratings derived from a combination of certain
rewards, gambles, and reward prediction errors (along with
anterior cingulate and anterior insula activations) (498).
These responses in the dopamine receiving striatum suggest
a role of dopamine in signaling pleasure and happiness.

5. Dopamine error signal incorporates model-based
predictions

Standard conditioning occurs through prediction errors de-
rived from actually experienced outcomes. However, indi-
viduals also learn about contexts, situations, rules, se-
quences, and conditional probabilities, which may be sum-
marily called models of the world. Knowledge derived from
such models can affect the prediction in the neuronal pre-
diction error computation, result in a more appropriate
teaching signal, and thus tremendously improve learning.

Model-based learning involves two separate processes, the
acquisition and updating of the model, and the influence of
the model on reinforcement learning, which likely occurs by
influencing predictions of the outcome (139, 575). The ac-
quisition and updating of some of the models likely involves
cortical rather than dopamine signals. In contrast, dopa-
mine responses seem to incorporate the predictive informa-
tion from models once they are established.
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In one such experiment, sequences of unrewarded trials lead
to higher conditional reward probability with increasing
trials (increasing hazard function). The underlying tempo-
ral structure constitutes a model in which reward prediction
increases progressively. Due to increasing reward predic-
tion, later reward delivery induces increasingly weaker pos-
itive prediction errors, and reward omission elicits stronger
negative prediction errors. In contrast, model-free rein-
forcement learning would only consider the past unre-
warded trials and hence generate progressively decreasing
reward prediction and an opposite pattern of errors. In this
experiment, dopamine prediction error responses decrease
with increasing numbers of trials since the last reward and
thus reflect the increasing reward prediction (FIGURE 8E)
(382). In another experiment, dopamine reward prediction

error responses adapt to previously learned reward proba-
bility distributions (598). The responses scale to expected
value and standard deviation and show similar magnitudes
with 10-fold differences in reward magnitude. In another
example of model-based learning, acquisition of a reversal
set allows animals to infer reward value of one stimulus
after a single reversed trial with the other stimulus. Accord-
ingly, dopamine prediction error responses reflect the in-
ferred reversed reward prediction (68). In each of these
examples, the observed dopamine prediction error re-
sponses are not fully explained by the immediate experience
with reward but incorporate predictions from the task
structure (model of the world). Thus dopamine neurons
process prediction errors with both model free and model-
based reinforcement learning.
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6. Dopamine response in cognitive tasks

Bidirectional dopamine prediction error responses occur
also in tasks with elaborate cognitive components. Dopa-
mine neurons, and their potential input neurons in lateral
habenula, show bidirectional prediction error responses
that signal values derived from differential discounting with
conditioned reinforcers (66, 67), although concurrent risk
influences on subjective value need to be ruled out. More
complex tasks require distinction of many more possible
confounds. Early studies used spatial delayed, spatial alter-
nation, and delayed matching-to-sample tasks typical for
investigating neurons in prefrontal cortex and striatum and
report positive and negative prediction error responses to
rewards and reward-predicting stimuli compatible with TD
learning models (321, 521, 579). Similar dopamine error
responses occur in tasks employing sequential movements
(503), random dot motion (389), and somatosensory detec-
tion (122). Advanced data analyses from these complex
tasks reveal inclusion of model-based temporal predictions
into the dopamine error response (382) and compatibility
with TD models (144). Variations in stimulus coherence
(389) and visual search performance (349) result in graded
reward probabilities that induce reward prediction errors
that are coded by dopamine neurons, although the error
coding may not be easily apparent (426). Thus, in all these
high-order cognitive tasks, the phasic dopamine response
tracks only, and reliably, the reward prediction error.

7. Dopamine event detection response

The dopamine reward prediction error response is preceded
by a brief activation that detects any sufficiently strong
event before having identified its reward value (FIGURE 9,
A–C, blue areas). The early response component occurs with
latencies of $100 ms with all sensory modalities, including
loud noises, light flashes, and rapidly moving visual stimuli
(229, 322, 527, 563) and evokes dopamine release (117).
The activation reflects the sensory impact and physical sa-
lience of rewards, punishers, and their predictive stimuli

(157, 159, 160). It does not fully reflect motivational sa-
lience, as it is absent with negative motivating events of low
sensory impact (160, 366), negative reward prediction er-
rors (321, 517, 521, 524, 597, 618), and conditioned inhib-
itors (597). The detection response covaries inversely with
the hazard rate (of temporal event occurrence) and thus
codes surprise salience (286) or a temporal prediction error
(389) as conceptualized in TD models (574). Thus the early
dopamine response component reflects the detection of an
event before having identified its value.

This initial response component develops into the graded re-
ward prediction error response, which ranges from depression
with strong negative prediction errors to strong activation
with positive prediction errors (158, 285, 301, 376, 597). The
transition from the first to the second response component
depends on the time necessary for assessing the value of the
stimulus and thus may vary considerably between behavioral
tasks. With easy identification, the transfer takes #50 ms and
fuses the two components, for example, when fixed stimulus
positions allow rapid stimulus identification without eye sac-
cades (FIGURE 9, A AND B). Then the two components are
fused and may appear as a single response whose identity has
long been unclear and may occasionally be labeled as atten-
tional (355, 356). A possible intermediate sensory identifica-
tion step is either not discernible or is not engaging dopamine
neurons. In contrast, the components separate into two sepa-
rate responses with slower stimulus identification, as seen with
random dot motion stimuli requiring &200 ms behavioral
discrimination time (FIGURE 9C) (389). Thus the early dopa-
mine activation detects events rapidly before identifying them
properly, whereas the subsequent bidirectional response com-
ponent values the event and codes a proper reward prediction
error.

The accurate value coding by the second response compo-
nent is reflected in the error response at the time of the
reward (398, 618). Despite the initial dopamine activation
by an unrewarded stimulus, a subsequent reward is regis-
tered as a surprise eliciting a positive prediction error re-

FIGURE 8. Dopamine responses to conditioned stimuli in monkeys. A: stimulus responses of a single dopamine neuron during a blocking test.
A pretrained stimulus predicts liquid reward and induces a standard dopamine response (top). During compound training, a test stimulus is
shown together with the pretrained stimulus while keeping the reward unchanged (middle left). Thus the reward is fully predicted by the
pretrained stimulus, no prediction error occurs, and the test stimulus is blocked from learning a reward prediction. Correspondingly, the test
stimulus alone fails to induce a dopamine response (bottom). [From Waelti et al. (618).] B: stimulus responses of a single dopamine neuron
during a conditioned inhibition test. The reward normally occurring with the pretrained stimulus (top) fails to occur during compound training with
a test stimulus (middle left). This procedure makes the test stimulus a predictor of no reward which correspondingly induces a dopamine
depression (bottom). [From Tobler et al. (597).] C: stepwise transfer of dopamine response from reward to first reward-predicting stimulus,
corresponding to higher order conditioning conceptualized by temporal difference (TD) model. CS2: instruction, CS1: movement releasing
(trigger) stimulus in delayed response task. [From Schultz et al. (521).] D: reward prediction error responses closely parallel prediction errors
of formal TD model. Left: sequential movement-reward task. One or two stimuli (white N1, N2) precede the movements leading to reward
(orange, 1st, 2nd, 3rd). Right: averaged population responses of 26 dopamine neurons at each sequence step (gray bars, numbers indicate
reward probabilities in %) and time course of modeled prediction errors {[!(t) ! )!V(t)] % V(t % 1)} (black line). [From Enomoto et al. (144).] E:
dopamine prediction error responses reflect model-based reward prediction derived from temporal task structure. The model specifies an
increase in conditional reward probability P(reward | no reward yet) from initial P " 0.0625 to P " 1.0 after six unrewarded trials.
Correspondingly, positive prediction errors with reward occurrence decrease across successive trials, and negative errors with reward omission
increase. Averaged population responses of 32 dopamine neurons show similar temporal profiles (blue and red, as impulses/s above neuronal
background activity). [From Nakahara et al. (382), with permission from Elsevier.]
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sponse (FIGURE 9D, top); accordingly, reward absence fails
to induce a negative prediction error response (FIGURE 9D,
bottom). Thus, from the second response component on,
and before a behavioral reaction can occur, dopamine re-
sponses accurately reflect the unrewarded stimulus nature.
This constitutes the information postsynaptic neurons are
likely to receive, which may explain why animals do not
show generalized behavioral responses despite initial neu-
ronal response generalization.

The initial dopamine detection response component varies
with four factors. First, it increases with the sensory impact
of any physical event, which confers physical salience (FIG-
URE 10A) (160). This is most likely what the early studies on
dopamine salience responses observed (229, 322, 563). Sec-
ond, also involving memory processing stages, the dopa-
mine detection component is enhanced by stimulus novelty
(conferring novelty salience) (322) or surprise (conferring
surprise salience) (255, 286, 345). Although novelty may
constitute outright reward (458), dopamine neurons are not
activated by novelty per se but require stimuli with suffi-
cient sensory impact. The neurons do not respond to small
novel stimuli, even though they show prediction error re-

sponses to the same small stimuli after learning (597, 618).
The total dopamine response decreases with stimulus repe-
tition, together with the animal’s ocular orienting re-
sponses, and increases again with reward prediction learn-
ing (FIGURE 10B) (517). Third, the dopamine detection
component increases with generalization to rewarded stim-
uli, even when animals discriminate behaviorally well be-
tween them. The neuronal generalization is analogous to
generalization in behavioral conditioning when an uncon-
ditioned stimulus resembles closely a conditioned stimulus
and the “associative strength” spills over (335). The inci-
dence of activations to unrewarded, including aversive,
stimuli increases with closer similarity and same sensory
modality as rewarded stimuli (527, 597, 618). A change
from auditory to visual modality of the rewarded stimulus,
while leaving the visual aversive stimulus unchanged, in-
creases the initial activations from $15 to 65% of dopa-
mine neurons (FIGURE 10C) (366). Generalization likely
also induces motivational salience via similar positively val-
ued stimuli. Generalization may explain the more frequent
dopamine activations to conditioned compared with pri-
mary aversive stimuli (345), which defies basic learning
concepts. The initial response component evoked by reward
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FIGURE 9. Two components of phasic dopamine
responses. A: averaged population responses of 69
monkey dopamine neurons to conditioned stimuli
(CS) predicting reward (gray) and no reward (black).
Note the initial indiscriminate detection response
component (blue) and the subsequent reward re-
sponse component distinguishing between reward
and no reward prediction (red). [From Tobler et al.
(597).] B: averaged population responses of 54
monkey dopamine neurons to conditioned stimuli
(CS) predicting rewards at different delays (2, 4, 8,
and 16 s; brown, green, orange, and blue, respec-
tively). The value reduction due to temporal discount-
ing affects only the second, reward prediction error
component (red). [From Kobayashi and Schultz
(285).] C: differentiation of dopamine response into
initial detection response and subsequent prediction
error response. Increasing motion coherence (from
0 to 50%) improves binary dot motion discrimination
and translates into increasing reward probability
(from P " 0.49 to P " 0.99). The first response
component is nondifferentially constant (blue),
whereas the second component grows with increas-
ing reward value (derived from probability, bottom to
top, red). [From Nomoto et al. (389).] D: accurate
value coding at time of reward despite initial indis-
criminate stimulus detection response. After the un-
rewarded conditioned stimulus (CS-), surprising re-
ward (R) elicits a positive prediction error response
(top), whereas predicted reward absence (noR) fails
to elicit a negative error response (bottom). [From
Waelti et al. (618).]
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generalization induces dopamine release in nucleus accum-
bens (117). Fourth, the dopamine detection component in-
creases in rewarding contexts (286), via pseudocondition-
ing or higher order context conditioning (367, 536, 537),
without explicit reward pairing. Accordingly, reducing the
separation between unrewarded and rewarded trials, and
thus infecting unrewarded trials with reward context,
boosts the incidence of dopamine activations to unre-
warded stimuli (from 3 to 55% of neurons) (FIGURE 10D)
(286), as does an increase of reward from 25 to 75% of
trials (from 1 to 44% of neurons) (597, 618). Thus the
initial response component reflects the detection of environ-
mental events related to reward in the widest possible way,
which conforms well with the reward function of the phasic
dopamine signal.

Other neuronal systems show similar temporal evolution of
stimulus responses. During visual search, frontal eye field

neurons respond initially indiscriminately to target and dis-
tractor and distinguish between them only after 50–80 ms
(see below, FIGURE 38B) (588). Neurons in primary visual
cortex V1 take 100 ms after the initial visual response to
show selective orientation tuning (468) and spatial fre-
quency selectivity (61). Over a time course of 140 ms, V1
neurons initially detect visual motion, then segregate the
figure created by dot motion from background motion, and
finally distinguish the relevant figure from a distractor
(474). V1 and frontal eye field neurons respond initially
indiscriminately to targets and distractors and distinguish
between them only after 40–130 ms (434). During percep-
tual decision making, LIP and prefrontal neurons respond
initially indiscriminately to stimulus motion and distinguish
between motion strength only at 120–200 ms after stimulus
onset (see below, FIGURE 38A) (274, 483, 535). Pulvinar
neurons show initial, nondifferential detection responses
and subsequent differential stimulus ambiguity responses
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response generated by sensory impact, conferring physical salience. Louder, nonaversive sounds with higher
physical salience generate stronger activations (72 and 90 dB, respectively; behavioral choice preferences
demonstrated their nonaversive nature). Averaged population responses measured as impulses/s (imp/s) of
14 and 31 monkey dopamine neurons, respectively. [From Fiorillo et al. (160).] B: detection response, and
possibly also second response component, enhanced by stimulus novelty, conferring novelty or surprise salience.
Stimulus novelty itself is not sufficient to induce dopamine activations, as shown by response absence with small
stimuli (horizontal line), but enhances detection response when stimuli are physically larger and more salient
(vertical axis). Neuronal responses wane with stimulus repetition due to loss of novelty and increase again with
conditioning to reward (from left to right). [Composite scheme from Schultz (517), derived from original data
(221, 597, 618).] C: detection response enhanced by generalization to rewarded stimuli. Blue: minor
population response to conditioned visual aversive stimulus alternating with auditory reward-predicting stimu-
lus (REW auditory) (active avoidance task). Red: substantial activation to identical visual aversive stimulus when
the alternate reward-predicting stimulus is also visual (REW visual), a situation more prone to stimulus
generalization. As control, both auditory and visual reward-predicting stimuli induce typical dopamine activa-
tions (not shown). [From Mirenowicz and Schultz (366).] D: detection response enhanced by reward context.
Left (separate contexts): minor dopamine population activations induced by unrewarded big and small pictures
when non-reward context is well separated from reward context by testing in separate trial blocks, using
distinct background pictures and removing liquid spout in picture trials. Right (common reward context): major
activations by same unrewarded pictures without separation between non-reward and reward context. [From
Kobayashi and Schultz (286).]
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during visual categorization (288). Tactile responses in
mouse barrel cortex require 200 ms to become differential
(300). Similar multicomponent responses are seen with re-
ward coding. Amygdala neurons initially detect a visual
stimulus and may code its identity and then transition
within 60–300 ms to differential reward value coding (9,
422, 428). V1 and inferotemporal cortex responses show
initial visual stimulus selectivity and only 50–90 ms later
distinguish reward values (371, 557). Thus there is a se-
quence in the processing of external events that advances
from initial detection via identification to valuation.
Whereas sensory processing involves only the first two
steps, reward processing requires in addition the third step.

8. No aversive dopamine activation

Aversive stimuli are well known for &30 years to activate
10–50% of dopamine neurons in awake and anesthetized
monkeys, rats, and mice (102, 193, 255, 345, 362, 366,
525, 604) and to enhance dopamine concentration in nu-
cleus accumbens (75). Five neurons close to juxtacellularly

labeled ventral tegmental area (VTA) dopamine neurons
were activated by footshocks (64), similar to the effects of
airpuffs and footshocks on non-dopamine neurons in the
area (102, 582). The activations may have derived from
dopamine neurons or not; the 30–45% of dopamine neu-
rons lacking spontaneous activity (76, 166, 176, 211) may
include nonactivated neurons and thus go undetected while
taking up the label. In monkeys, some putative dopamine
neurons, often located above substantia nigra, are activated
by air puffs (345), although they respond more frequently
to conditioned stimuli than primary rewards and thus defy
the higher aversiveness of primary than conditioned pun-
ishers. However, just as rewards, punishers have distinct
sensory, attentional, and motivating components, and none
of these studies has distinguished between them. A recent
psychophysical study that made this distinction by varying
these components independently reports that dopamine ac-
tivations by aversive stimuli reflect the physical, sensory
stimulus impact rather than their aversiveness (FIGURE 11)
(160). Once the sensory impact is controlled for, the aver-
sive nature of stimuli either fails entirely to affect dopamine
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thus find them rewarding, as outcome value is
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siveness of saline solution within individual
test days (behavioral aversiveness assess-
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Fiorillo et al. (160).]
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neurons (157), reduces the total reward value of liquid so-
lutions and their evoked dopamine activations (157, 160),
and induces outright depressant dopamine responses (73,
102, 345, 362, 366, 608). In awake animals, the aversive
nature of stimuli does not generate dopamine activations,
but induces negative reward prediction errors either be-
cause of the negative value or by not being rewarding, and
correspondingly induces depressant dopamine responses
(157). Thus the different fractions of “aversively” activated
dopamine neurons seen in earlier studies likely reflect the
different intensities of physical stimuli employed (159). The
graded activations with punisher probability (345) might
reflect salience differences of conditioned stimuli (286), or
graded anticipatory relief to punisher termination (75) that
is considered as rewarding (552). Salience, rather than neg-
ative reinforcer value, might also explain the surprising
higher incidence of activations to conditioned stimuli com-
pared with primary punishment (345). The sensory rather
than negative value nature of dopamine responses to aver-
sive stimuli would also explain the dopamine activations by
aversive stimuli under anesthesia (64, 525, 604) where mo-
tivational impact is ruled out.

The “aversive” dopamine activation constitutes a short la-
tency response that is shorter than the reward response, is
substantially boosted by generalization from rewarded
stimuli, and is often curtailed by a subsequent depression
(366). With these characteristics, the aversive dopamine
activations seem to constitute the initial dopamine detec-
tion response that reflects mostly physical salience. In agree-
ment with this interpretation, the aversive dopamine neu-
rons are also driven by rewards and unrewarded stimuli and
thus are highly sensitive to a large range of stimuli (366)
compatible with coding physical impact rather than moti-
vational value. Furthermore, dopamine neurons are neither
depressed nor activated by negative aversive prediction er-
rors (157, 255, 345), and show only enhanced activations
with positive aversive prediction errors possibly reflecting
surprise salience. Thus the current evidence suggests that
aversive stimuli activate some dopamine neurons through
physical impact rather than through their negative, aversive
motivational value, although some dopamine neurons with
truly aversive activations can never be completely ruled out.

9. Comprehensive account of phasic dopamine
response

Of the two phasic dopamine response components (FIGURE
12), the initial detection activation occurs before the neu-
rons have identified the current reward value of the stimulus
and arises even with motivationally neutral events and pun-
ishers. It increases with sensory impact, novelty, reward
generalization, and rewarded contexts. Thus the initial
component detects potential rewards and provides an early
report before having identified the value of the event prop-
erly, which relates closely to the reward coding of dopamine
neurons. The second response component arises once the

neurons have well identified the reward value of the stimu-
lus and codes only reward. As longest and strongest com-
ponent it constitutes the major phasic dopamine influence
on postsynaptic processing. The two components are inte-
gral parts of the dopamine reward prediction error re-
sponse, which seems to be split into an early temporal error
component and a subsequent value error component (also
time sensitive), thus providing an interesting biological in-
stantiation of a TD reinforcement teaching signal (574).

The phasic dopamine reward signal is homogeneous in la-
tency, duration, and sensitivity across different dopamine neu-
rons and very similar between different rewards, thus contrast-
ing sharply with the widely varying reward processing in other
brain structures. Graded variations in dopamine responses de-
rive from the initial detection response component that varies
in a continuous manner across the mediolateral or dorsoven-
tral extent of the ventral midbrain. If this graded initial com-
ponent occurs with aversive stimuli and is interpreted as aver-
sive rather than detection response, some dopamine neurons
may seem categorically different from those showing a smaller
or no detection component (64, 255), suggesting neuronal
response heterogeneity (345). However, these variations, as
well as variations in the subsequent reward prediction error
response (159), conform to a single-peak probability distribu-
tion rather than amounting to categorical differences and dis-
tinct dopamine subpopulations. In addition to their continu-
ous phasic response distribution, dopamine neurons are het-
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erogeneous in most other anatomical, physiological, and
neurochemical respects.

The initial activation component may reflect physical, mo-
tivational, and surprise salience and thus may enhance the
impact of the prediction error response in reward learning
compatible with associability learning rules (425, 336). In
being highly sensitive to novelty, reward generalization,
and rewarded contexts, this component may reflect an early
assumption about the nature of an event that is novel, re-
sembles a reward, or occurs within a generally rewarding
context. Such events have a chance to be rewards and thus
are potential rewards. In responding to such stimuli, dopa-
mine neurons detect a maximal range of potentially reward-
ing events and objects. Through the very short latency of
these responses, dopamine neurons detect these stimuli very
rapidly, even before having identified their value, and can
rapidly initiate neuronal processes for approach behavior.
Once the stimulus has been identified and turns out not to
be a reward, it is still time to alter neuronal processing and
modify or halt behavioral reactions. If the stimulus is indeed
a reward, precious time may be gained and the reward
approached before anybody else without such a rapid de-
tection system arrives. By overreacting and processing also
potential rewards, the mechanism would prevent prema-
ture asymptotes in reward detection and minimize reward
misses (avoiding “I do not move unless the reward is for
sure”). Such a mechanism would be particularly important
when sparse resources present challenges for survival. With
early detection facilitating rapid behavioral reactions, the
two-component nature of the phasic dopamine response
results in better reward acquisition and thus provides com-
petitive evolutionary advantages.

The phasic dopamine reward signal is only one manifestation
of dopamine function in the brain. In addition to the distinct
and slightly less phasic dopamine risk signal (see below), do-
pamine exerts a tonic enabling effect on postsynaptic neurons,
whose function is considerably more heterogeneous than
the rather stereotyped dopamine prediction error response,
even when considering its initial detection component
(518). Many of these tonic functions depend on the func-
tion of the brain structure influenced by tonic extracellular
dopamine concentrations, as inferred from behavioral and
neuronal alterations arising from inactivations, receptor ag-
onist or antagonist applications, and polymorphisms.
These functions extend from motor processes in the stria-
tum evidenced by Parkinsonian movement deficits to pre-
frontal processes of working memory, attention, reversal
learning, categorization, and response control (470). An
active involvement of phasic dopamine signals in these
vastly different functions is questionable, in particular
for functions that are recovered by dopamine receptor
agonists without reinstating phasic dopamine signaling.
Parkinsonism does not result from deficient dopamine
reward prediction error signaling. Thus dopamine func-

tion in the brain is vast and heterogeneous and extends
well beyond the phasic dopamine reward signal. Sero-
tonin has a similar tonic enabling function, which in-
cludes aversive and reward processes (100, 201, 481,
534, 635). The question “what is dopamine doing” re-
flects the initial idea of “one neurotransmitter-one func-
tion” that may originate from “one brain structure-one
function.” In view of the many different neuronal dopa-
mine processes, a better question might be “what is the
function of the specific dopamine process we are looking
at.” For the phasic dopamine signal, the answer seems to
be bidirectional reward prediction error coding, with ad-
ditional, slightly slower risk coding.

10. Dopamine responses during reward learning

During learning episodes, dopamine responses show grad-
ual changes that reflect the evolution of prediction errors.
Dopamine neurons acquire responses to reward-predicting
stimuli (322) that transfer back to the first reward-predict-
ing stimulus in longer task schedules (144, 521). Their ac-
tivations disappear gradually with extinction (598), possi-
bly due to inhibition from neighboring pars reticulata neu-
rons activated during extinction (408). When learning
several tasks in sequence, positive reward prediction errors
are generated every time a reward occurs during initial trials
but subside once rewards become predictable and perfor-
mance approaches asymptote. Dopamine neurons show
corresponding prediction-dependent reward responses dur-
ing these periods (FIGURE 13, A AND B) (322, 521). A tem-
poral difference model using dopamine-like prediction er-
rors replicates well behavioral learning and performance in
these tasks (FIGURE 13C) (573). During learning set perfor-
mance with one rewarded and one unrewarded option, re-
ward is initially predicted with P " 0.5. Chance selection of
each option leads to positive and negative 0.5 prediction
errors, respectively, and to corresponding phasic dopamine
activations and depressions during initial learning trials
(221). The error responses decrease with increasingly cor-
rect choices.

The transfer of dopamine activation from “uncondi-
tioned” reward to reward-predicting stimuli constitutes
conditioning formalized by the Rescorla-Wagner and TD
learning rules. Straightforward implementations of the
TD model assume gradual TD error backpropagation via
imaginary “internal” stimuli (374, 524). However, bio-
logical dopamine neurons do not show such gradual
backpropagating responses (162) but transfer in single
steps from reward to preceding actual stimuli and show
simultaneous responses to both reward and stimuli with
intermediate learning steps (410). Dopamine concentra-
tion transients in ventral striatum show similar transfer
(FIGURE 14A) (117, 598). Biologically plausible TD im-
plementations and spectral timing models achieve the
single step response transfer to an earlier stimulus with
stimulus and eligibility traces that mark recently active
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postsynaptic neurons for plasticity, as originally sug-
gested (FIGURE 14, B–D) (71, 410, 573, 574). The eligibil-
ity traces may consist of intracellular calcium changes
(154, 637), formation of calmodulin-dependent protein
kinase II (236), IP3 increase in dopamine neurons (203),
and sustained neuronal activity in striatum and frontal
cortex (522) reflecting previous events and choices in
prefrontal neurons (30, 531). Thus use of eligibility
traces results in good learning without small step back-
propagation via imaginary stimuli (410, 573). These
models account also better for the temporal sensitivity of
prediction error responses (113, 573).

The acquisition of dopamine responses to conditioned stim-
uli enhances the strength of excitatory synapses onto dopa-
mine neurons (568), and cocaine administration increases
spike-time-dependent LTP in dopamine neurons (19, 318).
In elucidating the mechanism, burst stimulation of dopa-
mine neurons, mimicking dopamine reward responses, in-
duces NMDA receptor-dependent LTP of synaptic re-
sponses in dopamine neurons (203). Compatible with the
temporal characteristics of behavioral conditioning (423,
589), the burst needs to follow the synaptic stimulation by
at least 0.5 or 1.0 s, whereas postsynaptic burst omission
reverses LTP, and inverse timing induces long-term depres-
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sion (FIGURE 14E). The 0.5- to 1.0-s delay is required to
increase intracellular IP3 as potential stimulus eligibility
trace. Thus excitatory synapses onto dopamine neurons
seem to mediate the acquisition of dopamine neurons to
conditioned stimuli.

11. Non-dopamine prediction error signals

The colloquial meaning of error refers to incorrect motor per-
formance. Climbing fibers of the cerebellum and neurons in
superior colliculus and frontal and supplementary eye field
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signal errors of arm or eye movements (182, 266, 278, 292,
395, 569, 607). Cerebellar circuits implement a Rescorla-
Wagner type prediction error for aversive conditioning (273,
357). The identification of bidirectional dopamine error sig-
naling extended neuronal error coding to reward.

Bidirectional reward prediction error signals occur in sev-
eral brain structures. Lateral habenula neurons show bidi-
rectional reward prediction error signals that are sign in-
verted to dopamine responses and may affect dopamine
neurons via inhibitory neurons (FIGURE 15A) (344). Select
groups of phasically and tonically firing neurons in the
striatum and globus pallidus code positive and negative
reward prediction errors bidirectionally (FIGURE 15B) (15,
134, 227, 275, 402). Some neurons in the amygdala display
separate, bidirectional error coding for reward and punish-
ment (FIGURE 15C) (36). In the cortex, select neurons in
anterior cingulate (261, 531) and supplementary eye field
(FIGURE 15D) (551) code reward prediction errors bidirec-
tionally. The bidirectional reward prediction error re-
sponses in these subcortical and cortical neurons are
straightforwardly appropriate for affecting plasticity at spe-
cific postsynaptic neurons for reinforcement learning.

Positive and negative components of reward prediction er-
rors are also coded in select groups of non-dopamine re-
ward neurons. Some neurons in the pedunculopontine nu-
cleus are activated by both predicted and unpredicted re-
wards and by conditioned stimuli (136, 396, 410) but fail to
show depressions to omitted rewards and thus process re-
ward without producing a clear error signal (281). Pedun-
culopontine neurons with midbrain projections above sub-
stantia nigra show bidirectional error responses to reward
versus no-reward-predicting cues, but only positive predic-
tion error responses to the reward (228). Positive responses
to unpredicted but not predicted rewards occur in norepi-
nephrine neurons as part of their attentional sensitivity
(22), and in nucleus basalis Meynert neurons (466). In the
striatum, some phasically or tonically firing neurons are
influenced by unpredicted reward delivery or unpredicted
reward omission (21, 255, 275, 556). Some of these striatal
responses are stronger in Pavlovian than operant tasks (17)
or occur only after particular behavioral actions (556), sug-
gesting selectivity for the kind of behavior that resulted in
the reward. In the amygdala, some neurons are more acti-
vated by unpredicted than predicted rewards (36, 40) or
show unidirectional, rectified activations with both unpre-
dicted reward delivery and omission (475). In anterior cin-
gulate and dorsolateral prefrontal cortex, activations in-
duced by reward omission or erroneous task performance
are known for &30 years (386). In some orbitofrontal neu-
rons, unpredicted rewards outside of tasks elicit activations,
whereas reward omission fails to elicit responses (602).
Some neurons in anterior and posterior cingulate and sup-
plementary eye field are activated by unpredicted delivery
or omission of reward (11, 21, 246, 261, 354, 551) and by
unpredicted positive or negative feedback provided by con-
ditioned visual reinforcers (344). Unpredictedness enhances
existing reward responses in anterior cingulate cortex
(206). The unidirectional activations to unpredicted deliv-
ery or omission of reward may reflect surprise salience or
rectified positive and negative reward prediction errors. In
reflecting surprise salience, they may code the learning rate
parameter $ of attentional learning rules (425) according to
Equation 3 and serve to adjust the speed of learning (475).

12. Non-dopamine responses during reward learning

Tonically active striatal interneurons (TANs) acquire dis-
criminant responses to reward-predicting auditory stimuli
within 15 min of pairing with liquid, and lose these re-
sponses within 10 min of extinction (14). Neurons in rat
striatum, orbitofrontal cortex, and amygdala acquire dis-
criminatory responses to movement-instructing and re-
ward-predicting visual, auditory, and olfactory stimuli dur-
ing learning and reversal (253, 422, 512). The acquired
responses are rapidly lost during extinction (29).

Repeated learning of new stimuli leads to learning set per-
formance in which animals acquire novel stimuli within a
few trials (202), thus allowing to record from single neurons

A

-4 -2 0 2 4
0

4

8

12

Reward

Reward
received

Reward
predicted-

Im
p/

s
+ PE

- PE

0 0.4 0.8s
Reward/none

0

20

40

Im
p/

s

0

20

40
Im

p/
s

10

30

0 0.5 1 s

Reward = + PE

No reward = - PE

0.1

N
or

m
al

iz
ed

 a
ct

iv
ity

0

0.2
--
-
+
++

0 1 2 s-1

PE

- PE

0 PE

+ PE

B

C D

FIGURE 15. Bidirectional non-dopamine reward prediction error
signals. A: averaged responses from 43 neurons in monkey lateral
habenula during first trial of position-reward reversals. Red: positive
prediction error; blue: negative prediction error. Note the inverse
response polarity compared with dopamine error responses. PE "
prediction error. [From Matsumoto and Hikosaka (344). Reprinted
with permission from Nature Publishing Group.] B: averaged re-
sponses from 8 neurons in rat striatum. Subjective reward values
(tiny, small, large, huge) are estimated by a Rescorla-Wagner rein-
forcement model fit to behavioral choices. [From Kim et al. (275).]
C: response of single neuron in monkey amygdala. [From Belova et
al. (36), with permission from Elsevier.] D: response of single neuron
in monkey supplementary eye field. [From So and Stuphorn (551).]

WOLFRAM SCHULTZ

881Physiol Rev • VOL 95 • JULY 2015 • www.prv.org



during full learning episodes. Striatal and orbitofrontal neu-
rons show three forms of reward related activity during
learning (626, 600, 603, 639). Some neurons fail initially to
respond to novel stimuli and acquire reward discriminatory
responses during learning. Apparently they code valid re-
ward predictions. To the opposite, other neurons respond
initially indiscriminately to all novel stimuli and differenti-
ate as learning advances, possibly reflecting exploration. A
third group of neurons shows reward expectation activity

that reflects an initial general expectation and becomes se-
lective for rewarded trials as learning progresses (FIGURE
16A). The increases in learning rate with electrical striatal
stimulation suggest that some of these striatal neurons may
mediate reward learning (639).

In analogy to learning set, repeated reversals of reward
predictions of the same stimuli lead to reversal set perfor-
mance in which animals switch after a single reversed trial
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Publishing Group.]
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to the alternative option rather than requiring multiple
learning trials, even without having experienced a reward.
Prefrontal, orbitofrontal, and amygdala neurons show
rapid response loss to previously learned stimuli and acqui-
sition of the currently rewarded stimuli (626), closely cor-
responding to behavioral changes (FIGURE 16B) (422, 485).
The changes occur several trials earlier in striatal neurons
compared with prefrontal neurons (421), but are similar
between orbitofrontal and amygdala neurons (378). Some
striatal and cortical responses reflect the correct or incorrect
performance of the previous trial in reversal sets, thus bridg-
ing information across consecutive trials (FIGURE 16C)
(217).

Both learning sets and reversal sets define task structures
and behavioral rules which allow individuals to infer re-
ward values of stimuli without having actually experienced
the new values. During reversals, responses in globus palli-
dus, lateral habenula, and dopamine neurons reflect the
new reward value of a target already after the first reversed
trial, based solely on inference from the other target (FIG-
URE 16D) (68). Neuronal responses in dorsolateral prefron-
tal cortex reflect reward value based on inference from
paired associates (FIGURE 16E) (411) or transitivity (409).
Neuronal responses in the striatum reflect inference by ex-
clusion of alternative stimuli (409). These responses seem to
incorporate the acquired rule into their responses, suppos-
edly by accessing model-based learning mechanisms.

C. Dopamine Implementation of Reward
Learning

1. Origin of reward prediction error response

The dopamine reward prediction error signal may derive
from two basic mechanisms. The dopamine neurons may
receive a complete bidirectional reward prediction error
signal from presynaptic input. Alternatively, they may com-
pute the signal from heterogeneous components by sub-
tracting the predicted from the experienced reward at the
time of the reward and, in the spirit of TD models, at the
time of reward predictors. The computation would re-
quire separate inputs for positive and negative errors,
both at the time of the final reward and at the time of cues
predicting all future rewards.

Dopamine neurons receive main reward information from
striatum, amygdala, subthalamic nucleus, pedunculopon-
tine nucleus, rostromedial reticular nucleus, and GABAer-
gic neurons of pars reticulata of substantia nigra (625).
They receive homeostatic signals from lateral hypothala-
mus (464). However, dorsal, medial, and orbital prefrontal
cortical areas in monkeys provide probably less direct in-
puts to dopamine neurons than often assumed (625) but
could influence them transsynaptically via the striatum.

Bidirectional reward prediction error response components
may arise from lateral habenula signals (FIGURE 15A) (344)
which themselves derive from globus pallidus (227) but are
sign inverted compared with dopamine responses. The ha-
benula exerts strong and exclusively inhibitory influences
on dopamine neurons (95, 250, 344) via GABAergic neu-
rons in the rostromedial reticular nucleus (226, 249). The
same habenula neurons show bidirectional punishment pre-
diction error signals opposite to their reward prediction
error responses. They respond to positive reward prediction
errors in a very similar way as to negative punishment pre-
diction errors (by depression), and to negative reward pre-
diction errors similarly as to positive punishment prediction
errors (by activation), thus coding value monotonically
across rewards and punishers (346). However, it is unclear
why the aversive habenula input would not impact on do-
pamine neurons (157, 160). Bidirectional reward predic-
tion error inputs may also arise from select neurons in a
number of other structures, including the striatum (FIGURE
15B) (15, 134, 275), amygdala (FIGURE 15C) (36), anterior
cingulate (261, 531), and supplementary eye field (FIGURE
15D) (551). To make these neurons input candidates for the
bidirectional dopamine prediction error signal would re-
quire demonstration of their projection to dopamine neu-
rons, which may become technically possible by using se-
lective optogenetic stimulation of error processing neurons
that project to dopamine neurons.

Positive dopamine prediction error response components
may arise from direct excitatory inputs from pedunculo-
pontine neurons (131) responding to sensory stimuli, re-
ward-predicting cues, and rewards (136, 228, 396, 410). In
support of this possibility, inactivation of pedunculopon-
tine neurons reduces dopamine stimulus responses (410).
Norepinephrine neurons activated by attentional reward
components (22) and nucleus basalis Meynert neurons ac-
tivated by rewards (466) may also project to dopamine
neurons. Different groups of striatal neurons exert activat-
ing influences on dopamine neurons via double inhibition
(407) and respond to reward-predicting stimuli irrespec-
tive of the stimuli being themselves predicted (222) or
incorporate reward predictions (17, 21, 255, 275, 402,
556). Positive response components may also derive from
amygdala neurons that are activated by rewards irrespec-
tive of prediction (422), by unpredicted rewards (40), or
by unpredicted reward delivery and omission (475). Re-
ward responses in monkey frontal cortex (11, 21, 206,
246, 261, 347, 354) may reach dopamine neurons via the
striatum.

Negative dopamine error responses may arise from
GABAergic inputs from VTA, substantia nigra pars reticu-
lata, or striatum (625). Some of these inputs are activated
by aversive stimuli (10, 102, 582). Optogenetic activation
of pars reticulata GABAergic neurons reduces dopamine
impulse activity (613). Inhibition from GABAergic pars re-

WOLFRAM SCHULTZ

883Physiol Rev • VOL 95 • JULY 2015 • www.prv.org



ticulata neurons showing sustained activations during re-
ward prediction may also result in cancellation of reward
activations in dopamine neurons by predicted rewards
(102).

The computation of reward prediction error requires a re-
ward prediction to be present at the time of the primary or
higher order reward. This prediction may be mediated by
the well-known sustained activations preceding rewards
and reward-predicting stimuli in neurons of structures pro-
jecting mono- or polysynaptically to dopamine neurons,
including orbitofrontal cortex (544, 602, 628), dorsal and
ventral striatum (18, 205, 215, 523), and amygdala (40)
(see below, FIGURE 37, D AND E).

2. Postsynaptic influences

The phasic, time specific, reward prediction error reporting
dopamine signal is propagated from specific dopamine pop-
ulations in VTA and substantia nigra pars compacta (SNpc)
to nucleus accumbens, dorsal striatum, frontal cortex,
amygdala, and other forebrain structures. The widespread
and diverging anatomical dopamine projections to postsyn-
aptic structures show limited topography (FIGURE 17A)
(177, 251, 342). Dopamine release and postsynaptic influ-
ence vary within small regions and are locally finely regu-
lated (92). The tonic local dopamine concentration has
separable, powerful enabling effects on a large variety of
motor, cognitive, and motivational processes that are chal-
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lenged by impaired dopamine function induced by Parkin-
son’s disease, lesions, and psychopharmacological interven-
tions (518). Distinction of the tonic function against the
phasic signal is crucial for adequate conceptualization of
dopamine’s role in behavior. Importantly, interference of
dopamine neurotransmission does not allow distinction be-
tween the two functions without special procedures. The
deficits derive often from impaired tonic dopamine function
and thus do not match the normal functions conveyed by
phasic signals.

Dopamine synapses on dendritic spines of postsynaptic
neurons in striatum and frontal cortex show a triad ar-
rangement with cortical afferents that constitutes an archi-
tecture for three-factor Hebbian plasticity and allows the
global dopamine reinforcement signal to exert differential
influences on selectively active corticostriatal neurotrans-
mission (FIGURE 17B) (171, 186, 461, 517). Indeed, electri-
cal midbrain stimulation induces dopamine D1 receptor
dependent long-term potentiation in striatal neurons in
vivo (461) and expansion of cortical auditory fields for
costimulated frequencies (28). Dopamine plays crucial
roles in long-term potentiation (LTP) and depression
(LTD) in striatum (82, 265, 294, 583), frontal cortex
(194, 400), hippocampus (401), and amygdala (495).
Dopamine turns tetanus stimulation-induced cortical
LTD into LTP when paired with NMDA receptor activa-
tion (343). In spike-time-dependent plasticity (STDP)
protocols, LTP occurs differentially when presynaptic
stimulation precedes postsynaptic stimulation by a few
tens of milliseconds, whereas LTD occurs with reverse
sequence (48). Slice STDP protocols induce anatomical
enlargement of striatal dendritic spines by burst-stimu-
lating dopamine axons 0.3–2.0 s after depolarization of
medium spiny striatal neurons, involving dopamine D1,
but not D2, receptors and striatal NMDA receptors
(642). The specific sequence of striatal excitation fol-
lowed, but not preceded, by dopamine stimulation cor-
responds well to the temporal requirements for behav-
ioral conditioning (423, 589). Correspondingly, dopa-
mine D1 receptors are necessary for both LTP and LTD
in striatal neurons, whereas D2 receptors may be more
involved in the time course of plasticity (FIGURE 17C)
(424). The effects may differ between striatal neuron
types (540), as LTP in indirect pathway neurons does not
depend on dopamine (294). In cultured hippocampus
neurons, stimulation of dopamine D1 receptors enhances
STDP LTP and turns LTD into LTP (648). These in vitro
STDP data suggest a necessary role of dopamine in plas-
ticity and should be carried to in vivo preparations for
better functional assessment of their role in natural learn-
ing situations. Formal modeling demonstrates the suit-
ability and power of dopamine-like reward prediction
error signals in STDP learning (170, 247, 446), including
prevention of run-away synaptic weights (375, 457).

3. Necessary dopamine involvement in learning
(inactivation)

Hundreds of lesioning and psychopharmacological studies
over the past 30 years demonstrate behavioral learning def-
icits with impaired dopamine function in a large variety of
tasks. Following the three-factor Hebbian learning scheme
(461, 517), intra-accumbens or systemically applied D1 re-
ceptor blockers or knockout of NMDA receptors on D1
receptor expressing striatal neurons impairs simple types of
stimulus-reward learning (FIGURE 18A) (130, 163, 413).
Similarly, intracortical D1 antagonist application impairs
acquisition of differential neuronal responses in monkey
prefrontal cortex and parallel behavioral learning in a de-
layed conditional motor task (440). Learning is somewhat
less impaired by systemic D1 receptor blockade in tasks
involving less direct reactions to stimuli and engaging less
phasic dopamine responses (sign trackers versus goal track-
ers, FIGURE 18B) (45, 163, 415). The learning deficits occur
irrespective of performance deficits (163, 440, 624, 649,
650). Thus prediction error responses of dopamine neurons
are not indiscriminately involved in all learning forms and
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tracking rats. Goal trackers bypass the stimulus and directly ap-
proach the goal. [A and B from Flagel et al. (163). Reprinted with
permission from Nature Publishing Group.] C: knockout (KO) of
NMDA receptors on mouse midbrain dopamine neurons reduces
phasic impulse bursts (not shown) and induces learning deficits in
pseudorandomly alternating T-maze reward arms. [From Zweifel et
al. (650).]
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play more important roles when prediction errors have
more direct effects.

Genetic NMDA receptor knockout on mice dopamine neu-
rons reduces neuronal burst responses to reward-predicting
stimuli and, in parallel, induce deficits in a wide range of
learning situations including conditioned place preference,
maze learning, and operant conditioning (FIGURE 18C)
(624, 649, 650). Correspondingly, GABAA receptor knock-
out on dopamine neurons enhances dopamine release and
T-maze and lever press learning (414). Without permitting
adaptation during ontogenetic development, inactivation of
dopamine neurons by local muscimol impairs learning from
unexpected reward increase or omission (478). Transient

direct or transsynaptic optogenetic inhibition of dopamine
neurons induces place dispreference learning in choices be-
tween two compartments (see FIGURE 19E below) (244,
582).

Taken together, learning depends on intact dopamine
function in simple reward contiguity situations with ex-
plicit, easily identifiable rewards and conditioned stimuli
that engage phasic dopamine responses. Learning may
not depend on dopamine neurons in situations in which
they do not show phasic responses. Learning may also
occur despite dopamine impairments when other learn-
ing systems compensate within the employed time
frames, which may consist of switching to other struc-
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available at http://www.cerebromente.org.br/n18/history/stimulation_i.htm.] B: place preference condi-
tioning by phasic but not tonic optogenetic activation of dopamine neurons in mice. [From Tsai et al. (605).
Reprinted with permission from AAAS.] C: operant nosepoke learning induced by optogenetic activation of
dopamine neurons at stimulated target (blue) but not at inactive target (black) in rats. [From Witten et al.
(641), with permission from Elsevier.] D: optogenetic activation of dopamine neurons unblocks learning of
visual stimulus for nosepoke in rats, as shown by stronger response to stimulus paired with optogenetic
stimulation in a blocking procedure (blue) compared with unpaired stimulus (orange) and stimulation in wild-type
animals (gray). Response decrements are typical for unreinforced tests (“in extinction”). [From Steinberg et al.
(562). Reprinted with permission from Nature Publishing Group.] E: place dispreference conditioning by direct
optogenetic inhibition of dopamine neurons in mice (yellow; optical stimulation alone, gray). [From Tan et al.
(582), with permission from Elsevier.] F: operant conditioning of approach (blue) and avoidance (red) behavior
by optogenetic activation of D1 and D2 dopamine receptor expressing striatal neurons, respectively, in mice.
[From Kravitz et al. (293). Reprinted by permission of Nature Publishing Group.]
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tures after receptor blockade or lesions or altering onto-
genetic development in gene knockouts. Fine-grained be-
havioral analysis may nevertheless reveal subtle remain-
ing learning deficits. Given the crucial importance of
reward for survival, multiple, flexible systems that sus-
tain basic forms of learning despite partial impairments
are biologically plausible and would enhance evolution-
ary fitness.

4. Sufficient dopamine involvement in learning
(stimulation)

Intracranial electrical self-stimulation (398) induces oper-
ant learning of lever pressing (FIGURE 19A). The effect is
partly based on activation of VTA and SNpc dopamine
neurons (103, 155) and involves dopamine release onto D1
receptors in nucleus accumbens (117). Optogenetic activa-
tion of midbrain dopamine neurons in rodents elicits learn-
ing of place preference, nose poking and lever pressing, and
restores learning in a blocking procedure (FIGURE 19, B–D)
(2, 244, 271, 562, 605, 641). Optogenetically induced nose
poke learning occurs also with activation of dopamine ax-
ons in rat nucleus accumbens and is attenuated by intra-
accumbens infusion of dopamine D1 and D2 receptor an-
tagonists, suggesting involvement of dopamine projections
to nucleus accumbens (562). The stimulations are similar in
frequency to natural dopamine activations (20–50 Hz) but
often exceed their natural durations of 150–250 ms by 2–7
times (500-1,000 ms), although stimulation durations of
200 ms are also effective (271, 641). The longer-than-nat-
ural activations induce more dopamine release in vitro
(641) but may be compromised by the limited capacity of
dopamine neurons for prolonged discharges due to pro-
nounced tendency for depolarization block (54, 463). In
contrast to 50-Hz phasic optogenetic dopamine activation,
tonic (1 Hz) stimulation does not induce place preference
learning (605), emphasizing the efficacy of phasic activa-
tions. In monkeys, electrical 200 Hz/200 ms VTA micro-
stimulation induces choice preferences and neuromagnetic
striatal activations, presumably reflecting dopamine activa-
tions (20). Opposite to excitations of dopamine neurons,
direct optogenetic inhibition of dopamine neurons, or their
indirect inhibition via activation of local, presynaptic
GABA neurons, leads to place dispreference learning (FIG-
URE 19E) (244, 582). Conceivably the optogenetic excita-
tion and inhibition of dopamine neurons mimic positive
and negative dopamine prediction error signals and affect
learning accordingly.

Learning induced by stimulation of dopamine neurons and
their postsynaptic targets demonstrates the acquisition of as-
sociations with stimulation reward rather than simply reflect-
ing arousal, response bias, direct effects on behavior, or per-
formance enhancement, as the learned behavior is retained
over several days, declines only gradually during extinction
(271, 293, 582, 605) and is sensitive to devaluation by contin-
gency degradation (641). The learning may involve striatal

dopamine receptors, as optogenetic stimulation of D1 receptor
expressing striatal neurons induces approach learning and
stimulation of D2 receptor containing striatal neurons induces
avoidance learning (FIGURE 19F) (293). The dichotomous stri-
atal functions go back to learning models showing choice pref-
erence mediated by D1, and dispreference by D2, receptor
containing striatal neurons and their respectively associated
direct and indirect pathways (169). Taken together, electrical
and optogenetic activation of dopamine neurons seem to
mimic the natural dopamine prediction error responses to re-
wards and elicit learning behavior. The wider question is, to
which extent would dopamine responses to a natural reward
bias Pavlovian associations with that reward or operantly con-
dition actions leading to the reward?

IV. APPROACH AND CHOICE

Rewards induce approach behavior and serve as arguments
for economic choices. These functions involve a fundamen-
tal requirement, the prediction of reward that elicits reward
expectation. We can approach an object because we expect
it to be a reward. Without that expectation, we would ap-
proach an unknown object only when we are exploring the
world. The same holds for choices. Final outcomes are often
not apparent at the time of choices. Without such informa-
tion, choices would be guesses and thus be very inefficient.
One simply cannot make informed decisions without
knowing what to expect from each option. Explorations are
not informed choices but are helpful for detecting poten-
tially better rewards. Thusgoal-directed approach behavior
and informed choices are based on predictions of reward.

Predictions are acquired in the most basic form by Pavlov-
ian conditioning. The sound of the bell predicts the sausage
to Pavlov’s dog. Also, the stimuli occurring during operant
conditioning become Pavlovian conditioned reward predic-
tors as the improving behavior results in more rewards.
Each stimulus may become a higher order reward through
conditioning and learning and thus has distinct economic
value. Money does not have homeostatic or reproductive
functions on its own but allows individuals to acquire nu-
tritional and mating rewards and thus is a non-primary
reward. More complex forms of prediction learning involve
observation of other individuals, inference of events based
on acquired knowledge, as in Bayesian updating in which
the “posterior” probability of event occurrence arises from
the “prior” probability, and conditional and reflective rea-
soning (“if I do this I can expect to obtain that reward”). In
mediating Pavlovian and operant conditioning, in addition
to stimulus-reward and action-reward pairing, the three-
term contingency under which a discriminative stimulus
signals an effective action-reward relationship constitutes
the key factor for goal-directed approach behavior and in-
formed choices. Contingency requires prediction errors,
which serve to acquire and update the crucial predictions.
Reward neurons are sensitive to contingency (FIGURE 5)
(41) and code reward prediction errors (FIGURE 7) (517).
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A. Basic Reward Processing

1. Events eliciting reward responses

Explicit neuronal reward signals code only reward informa-
tion. They occur as phasic responses to the delivery of “un-
conditioned” rewards, as phasic responses to conditioned,
reward-predicting stimuli, and as sustained activity during
the expectation of reward (FIGURE 20A). They reflect only
reward properties and do not vary with sensory or motor
aspects (FIGURE 20, B AND C).

“Unconditioned” liquid or food rewards elicit explicit reward
signals in all main components of the brain’s reward system
(see FIGURES 7; 8, A–C; 13B; AND 27A) (16, 18, 42, 60, 205,
215, 322, 383, 387, 405, 422, 451, 492, 541, 592). Reward

responses are found also in premotor, prefrontal, cingulate,
insular, and perirhinal cortex (8, 246, 369, 569). Some pre-
frontal neurons code the reward of the preceding trial (30,
179).

Conditioned, reward-predicting stimuli induce phasic
explicit reward signals in all main reward structures of
the brain, including orbitofrontal cortex, striatum,
amygdala, and dopamine neurons (VTA and SNpc) (FIG-
URE 20, B AND C; see also FIGURES 5B; 7C; 8C; 9, A, B,
AND D; 27, B AND D) (e.g., Refs. 41, 205, 276, 319, 371,
387, 405, 422, 516, 542, 601). These responses occur
irrespective of the physical properties of the conditioned
stimuli. Similar reward-related stimulus responses occur
also in dorsolateral prefrontal cortex and anterior insula
(338, 369, 411).
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nal reward signals in monkeys. A: scheme
of explicit reward processing. Reward-pre-
dicting responses occur to an initial cue or
to an action-inducing stimulus. Anticipatory
activity occurs during the expectation of re-
ward elicited by an external stimulus or ac-
tion. Reward detection responses occur to
the final reward. These different activities
occur in separate neurons, except for do-
pamine neurons which all show similar re-
sponses (and no sustained reward expec-
tation activations). B: neuronal reward pro-
cessing irrespective of spatial position in
orbitofrontal cortex. Differential activation
by conditioned stimulus predicting grena-
dine juice but not apple juice, irrespective of
spatial stimulus position and required
movement (spatial delayed response task).
C: neuronal reward processing irrespective
of visual stimulus features in orbitofrontal
cortex. Differential activations by condi-
tioned stimuli predicting grape juice but not
orange juice, irrespective of visual stimulus
features. [A and B from Tremblay and
Schultz (601).] D: scheme of conjoint re-
ward-action processing. Predicted reward
affects neuronal activity differentiating be-
tween different movement parameters dur-
ing the instruction, preparation, and execu-
tion of action (e.g., spatial or go-nogo, blue
vs. gray). E: conjoint processing of reward
type (raisin vs. cabbage) and differentiating
between spatial target positions in dorso-
lateral prefrontal cortex (spatial delayed re-
sponse task). [From Watanabe (627). Re-
printed with permission from Nature Pub-
lishing Group.] F: conjoint processing of
reward (vs. no reward) and movement (vs.
no movement) in caudate nucleus (delayed
go-nogo task). The neuronal activities in E
and F reflect the specific future reward to-
gether with the specific action required to
obtain that reward. [From Hollerman et al.
(222).]
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During reward expectations evoked by reward-predicting
stimuli, select neurons in orbitofrontal cortex, striatum,
and amygdala show slower, sustained explicit reward sig-
nals (see FIGURES 16A AND 38, D AND E) (18, 37, 215, 601)
which may also reflect reward timing (528) and temporal
reward structure (40).

In addition to inducing explicit reward signals, rewards
affect existing sensory-specific and action-specific activity.
Neurons coding reward together with differential sensory
information are found in orbitofrontal, dorsolateral pre-
frontal, perirhinal, and inferotemporal cortex (231, 319,
371, 394, 411). Reward affects neuronal activity differen-
tiating between different movement parameters during the
instruction, preparation and execution of action in prefron-
tal and premotor cortex (FIGURE 20, D AND E) (135, 282,
313, 348, 476, 606, 627), anterior and posterior cingulate
cortex (354, 542), parietal cortex (381, 427, 433), striatum
(FIGURE 20F) (107, 205, 222, 260, 308), globus pallidus
(178), substantia nigra pars reticulata (502), superior col-
liculus (243), and amygdala (428). By processing informa-
tion about the forthcoming reward during the preparation
or execution of action, these activities may reflect a repre-
sentation of the reward before and during the movement
toward the reward, which fulfills a crucial requirement for
goal-directed behavior (133). However, in motor struc-
tures, increased movement-related activity with larger re-
wards may reflect the more energized movements rather
than representing a true conjoint reward-action signal
(476). After reward delivery, responses in dorsolateral pre-
frontal neurons differentiate between movement directions
(606).

Taken together, reward neurons show passive responses to
reward-predicting stimuli and rewards, and sustained activ-
ities in advance of predicted rewards. Explicit reward sig-
nals in a limited number of brain structures reflect reward
information but code neither sensory nor motor informa-
tion. In contrast, sensory and motor neurons in several
brain structures process reward information conjointly
with sensory responses and action activity (FIGURE 21). Re-
ward coding involves the large majority of dopamine neu-
rons, which all respond in a very similar manner to the
effective events. In contrast, only specific and much smaller
fractions of neurons in the other reward structures show
reward activity, and their responses can be quite selective
for one or the other of several task events.

2. Subjective reward perception

Neuronal reward responses may depend on the subjective
perception of reward-predicting stimuli. In a signal detec-
tion task, monkeys correctly or incorrectly report the pres-
ence of stimuli (hit and false alarm, respectively), and cor-
rectly or incorrectly report stimulus absence (correct rejec-
tion and miss) (122). Dopamine neurons are activated by an
initial task stimulus only when the animal correctly reports
its detection, whereas they are not activated by the same
physical stimulus when the animal reports its absence
(miss). Thus subjective perception of the stimulus is neces-
sary to activate dopamine neurons. However, subjective
perception is not sufficient, as dopamine neurons do not
respond when the physically absent stimulus is incorrectly
reported as present (false alarm) (FIGURE 22). The predic-
tion error responses to a subsequent cue and to the final
reward reflect also the subjective perception of the initial
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stimulus. The responses are lower, and thus incorporate the
prediction from the initial stimulus, when the animal had
accurately reported stimulus presence compared with inac-
curately reporting stimulus absence, even though the stim-
ulus was physically the same. Thus dopamine responses
reflect the animal’s subjective perception and valuation of
reward-predicting stimuli beyond their purely physical
properties.

3. Distinction to unrewarding events

Reward neurons differentiate reward against neutral and
aversive events. Dopamine neurons code reward but are not
activated by aversive stimulus components (FIGURE 11)
(157, 159, 160), even though their initial event detection
response covaries with physical salience, novelty salience,
stimulus generalization, and reward context (FIGURE 10). In
contrast, neurons in other reward structures respond selec-
tively to aversive stimuli. Non-dopamine VTA neurons are
activated by airpuffs and footshocks (102, 582). Some
amygdala neurons are activated by airpuffs and condi-
tioned stimuli predicting airpuffs, separately from reward
neurons (422). Neurons in nucleus accumbens are differen-
tially activated by sucrose or quinine, including their pre-
dictive stimuli (484). Neurons in orbitofrontal and anterior
cingulate cortex, and TANs in striatum, respond differen-
tially to aversive airpuffs, reward liquids, and their predic-
tive stimuli and follow reversal between punishment and
reward (10, 255, 452, 592). In dorsolateral prefrontal cor-
tex, more neurons respond to reward than airpuff (283) and
are differentially activated by gains or losses of reward to-
kens (532). In medial prefrontal cortex, dorsal neurons re-
spond more frequently to air puffs, whereas ventral neurons
are more sensitive to liquid reward (372). Thus punishment
responses are often well separated from reward processing.

Some reward neurons respond also to punishers and thus
process the motivational salience common to both reinforc-
ers rather than reward or punishment separately. These

reinforcer neurons are seen in amygdala (387), dorsolateral
prefrontal cortex (283), and parietal cortex (309). In con-
trast to separate monotonic variations with reward and
punishment magnitude, salience responses peak with high
reward and high punishment and thus follow a U function
(309). Thus restricted populations of reward neurons fail to
discriminate against punishers and thus code motivational
salience.

However, there is a caveat when interpreting the results of
studies using aversive stimuli for probing negative motiva-
tional value. As indicated for dopamine responses above, it
is crucial to distinguish between the physical impact of the
stimulus and its motivational aversiveness. However, most
studies apply presumably aversive stimuli without assessing
their aversiveness to the individual animal. A good method
to do so in neurophysiological studies is to estimate the
negative value quantitatively on a common currency basis,
using psychophysical choice procedures against rewards
(FIGURE 11A) (160). Even substantial airpuffs are surpris-
ingly not reported by the animals as having negative reward
value (160).

B. Reward Value

1. Central role of subjective reward value

The ultimate function of reward is evolutionary fitness,
which requires us to survive and reproduce. Thus rewards
have survival value that is specific for us, and thus subjec-
tive. “Subjective” does not refer to conscious awareness but
simply to the own person. Our brain detects the rewards
that are necessary for this function. It is not really important
what the objective, physical amount of a reward is, and
often not even possible to know, as long as the reward
provides us with the best chance for survival and reproduc-
tion. If we have plenty of food, a bit more does not matter
much, but if we are starving, even a small amount is impor-
tant. We do not necessarily go for the largest reward if it
does not mean anything for us. We go for the reward that
most satisfies our needs at that moment. A rat normally
readily does not drink a salt solution but will do so when it
is deprived of salt (472). Striving for the highest subjective
value is built into our behavior by evolutionary selection. If
we do not choose the highest value, we are at a disadvantage
and over time fall behind and ultimately lose out against
competitors that get better values. The striving for subjec-
tive value might also explain why we sometimes make
choices that others do not understand. They are good for us
at the moment, because we make them based on our own,
private, subjective values, irrespective of whether we are
consciously aware of them or not. Subjective valuation is
also mechanistically reasonable. Reward function in indi-
viduals is defined by behavior driven by the brain, and the
brain has evolved for our individual survival and reproduc-
tion rather than for an impersonal cause. We can identify all
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substances in a wine and add up their prices from a catalog,
but as a chemist and not as a wine connoisseur who is trying
to maximize the personal pleasure based on subjective taste
preferences. It is not the chemists’s impersonal cause di-
rected at the physical molecules but the wine connoisseur’s
subjective pleasure that contributes to fitness (by providing
relaxation and encouraging taste discrimination training).

2. Assessing subjective value from behavior

Although subjective value is the key variable underlying
approach and choices, it is a theoretical construct and not
an objective measure. Utilitarianism aimed to achieve the
greatest happiness for the greatest number of people (39).
This might be assessed by an external person with honor-
able intentions (the benevolent dictator), by a hypothetical
hedonimeter that measures happiness (142), or by subjec-
tive ratings (for example as “experienced utility”) (259).
However, benevolent dictators are implausible, hedonim-
eters are technically difficult, and ratings are subjective.
Furthermore, there is no way of comparing subjective val-
ues between individuals because we cannot compare their
feelings or, as a famous economist put it, “You cannot feel
how much my tooth aches.” In contrast, behavioral reac-
tions and choices are measurable. They are often described
in terms of preferences. However, preferences are internal
private states and therefore prone to misjudgement and mis-
report. To operationalize preferences and remove their
metaphysical and emotional connotations of purpose, de-
sire, and pleasure, Samuelson (501) coined the term re-
vealed preferences that are elicited by choices and follow
specific axioms, notably consistency and transitivity. Thus
choices elicit private and unobservable preferences hidden
deep inside us and make them measurable as utility in an
objective way. Other, more loosely defined, terms for value
include survival value (survival of individuals or genes, re-
ferring to the reward function in evolutionary fitness), mo-
tivational or incentive value (eliciting approach behavior),
and affective value (linking reward to emotion). There will
be a more specific definition of economic utility further
down with neuronal value signals.

There are several mechanisms for inferring subjective value
from approach behavior and choices. In approach behav-
ior, reward value is revealed by the speed (e.g., reaction
time), duration, intensity, frequency, accuracy (e.g., error
rate), and persistence of behavioral reactions. The reward
eliciting the strongest approach behavior presumably has
the highest “value.” In choices, reward value is revealed by
the probability of choosing one option over all other alter-
natives. The reward being consistently selected is consid-
ered to have the highest subjective value (assuming “ratio-
nal” choices). In animals, psychophysical assessment of
choices provides good measures for value. In humans, auc-
tion mechanisms allow to assess the subjective value of
goods (willingness to pay). Thus approach and choices re-
veal the unobservable variable of value. When I see some-

one move faster towards an object or choose the object over
another one, I get the intuitive notion that the object must
have a higher value for the person. Value becomes simply a
shortcut term denoting the impact of a reward on measur-
able behavioral choices. To avoid the circular definition
when using value for explaining behavior we say that indi-
viduals behave “as if” they are maximizing value. Deducing
the variable of value from behavior allows us to search for
neuronal value signals for approach and choices. Such neu-
ronal value signals would provide a physical basis for the
theoretical notion of value and thus inform and validate
economic choice theory.

3. Relative choices and common currency value

Behavioral choices reflect the values of choice options rela-
tive to each other. They will remain stable irrespective of
value variations as long as the relative values of the options
remain unchanged. For example, doubling of all option
values should not affect choices. Thus value can only be
expressed relative to other options within a given set of
options. We can define a common reference reward, com-
pare behavioral choices between that reference reward and
any other reward, and thus establish a common value rank-
ing or numeric scale defined by the reference reward which
then serves as common currency. Money is a good example.
It assesses the value of any reward in common monetary
units. Any reward can be used as common currency for
rewards differing in type, magnitude, probability, risk, de-
lay, and other attributes. Just as different physical objects
are measured on common scales of length or weight, differ-
ent rewards can be measured on a common scale of value.
Note that the common scale is only valid for an individual
decision maker and does not provide a common measure to
all decision makers. One dollar, or any other common cur-
rency, may constitute a different value for you than for me.

How can we choose between apples and oranges? We can
compare the sensory properties of different objects using
standardized scales of physical and chemical measures. As
reward value is not a physical but a behavioral measure, this
does not help. Rather, we should assess the values of such
incommensurable rewards relative to each other. The idea
of common currency allows us to quantify value relative to
a unique reference that quantifies the value of rewards with
vastly different properties. The activity of orbitofrontal and
dopamine neurons reflects the subjective, common currency
value integrated from different liquid rewards in close cor-
respondence to behavioral choices (405) and extends to
food rewards (301) (FIGURE 23), suggesting a physical basis
for the theoretical notion of common currency. Common
currency is a necessary and sufficient feature of value cod-
ing, as it reflects independence from sensory properties and
follows the idea of a reward retina as earliest neuronal
detector of value (519).
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Relative values do not always correlate with choices. Deci-
sion makers have a tendency to select the highest option
unproportionally more often than its relative value against
other options. Such maximizing choices favor the highest
valued option irrespective of value variations as long as the
ordinal value ranking among the options remains un-
changed. Maximizing is reduced during exploratory behav-
ior, when individuals occasionally check an inferior option
for potential improvement, but exploration declines with
increasingly stable values. These mechanisms are captured
by the “temperature” parameter of the softmax function
that models choices (333, 575). Exploration, modeled by
higher temperature, may lead to effective decorrelation be-
tween choice probability and value and reveal serious con-
straints on the computation of value from choices. How-
ever, specific test methods control for these possible mis-
readings, including assessment of indifference points
(subjective equivalence between choice options) in psycho-
physical procedures.

4. Value in natural rewards

Natural rewards, for which reward processing has evolved,
contain nutrients and other substances of survival value.
These rewards, like foods and drinks, have sensory proper-
ties, like shape, color, texture, viscosity, taste, and smell
that help to detect, identify, and distinguish the reward
objects. However, the sensory properties do not have nutri-
ent value. Approach behavior and choices maximize reward
value, not sensory properties. The transfer from sensory
properties to value involves experiencing the value of the
object, associating that value with the object’s sensory

properties using Pavlovian and higher forms of learning,
and then using the predicted value for approach and
choices. Thus sensory discrimination serves to identify the
object via sensory receptors rather than determining its
value. The sensory-value distinction lies at the core of re-
ward processing; the sensory properties belong to the exter-
nal object, whereas the reward properties derive from inter-
nal brain function attributing value to external objects.

Reward neurons distinguish between the sensory and value
attributes of rewards. Amygdala and dopamine neurons
show faster sensory and slower value responses (160, 422).
Orbitofrontal and amygdala neurons follow reversed value
associations of physically unchanged stimuli (422, 485).
Orbitofrontal and striatal reward neurons discriminate be-
tween different food and liquid rewards but are insensitive
to their visual and spatial attributes (205, 405, 601). Satia-
tion on particular rewards reduces reward value responses
in orbitofrontal and ventromedial prefrontal cortex (58,
105) but leaves sensory responses in primary gustatory cor-
tex unaffected (487). Salt depletion induces reward re-
sponses in ventral pallidum to physically unchanged salt
solutions (591). Thus the intuitive distinction between sen-
sory and value attributes of rewards has a neurophysiolog-
ical basis.

5. Non-value factors in choices

Besides being based on positive and negative economic
value (gain and loss and their corresponding emotions) and
exploration, real life economic choices are also determined
by other factors. The factors include strategy, heuristics,
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reward) reveal 3.2 times lower value of reward B than
reward A (which serves as common scale reference). B:
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sponse to reward-predicting stimulus increases with
amount of either juice, irrespective of juice. This activity
codes the decision variable of chosen value. [A and B from
Padoa-Schioppa and Assad (405). Reprinted by permis-
sion from Nature Publishing Group.] C: rank ordered,
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rewards, as assessed in behavioral choices between
blackcurrant juice (blue drop) and mashed mixture of ba-
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indifferent; $, preferred. D: common currency coding of
subjective value in dopamine neurons (averages from 20
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personal history, peer example, social pressure, conven-
tions, traditions, prejudice, idiosyncrasies, morals, ethics,
culture, religion, superstition, nationalism, chauvinism,
daily irrationalities, and many others. Some originate from
experiences that maximized gains and minimized losses and
then led to automatisms that are no longer questioned for
economic value. (Note that such automatisms are distinct
from habits which may develop from goal-directed behav-
ior and are based on value.) Other choice factors have
evolved without explicit understanding of distant gains.
Just as birds do not know the partial differential equations
describing the coordination of their movements, individuals
engage in behaviors without understanding why they do
them, how they do them, and what the benefits are. These
automatisms have evolved through evolution and provide
guidance of behavior to varying but often large extents.
Their advantages are transmission of beneficial behavioral
traits, but their possible disadvantages are inconsistencies
and domination by higher values during choices. Decisions
based on automatisms would involve brain processes re-
lated to schemata and models of behavior, rules, emotions,
social memory, theory of mind, and other cognitive func-
tions.

The impact of automatisms should be considered in relation
to value as key variable for economic choices. The true
character of most automatisms differs fundamentally from
that of gains and losses, and decision makers may not com-
pute economic values when following habitual strategies or
conventions. Then deriving value from economic choices
would be very difficult and needs to be restricted to specific
situations in which the automatism component can be esti-
mated. This is often difficult and may easily lead to incon-
sistent choices when different situations engage different
automatisms. What is truly missing is a definition of value
independent of choice behavior. A neuronal value signal
might provide such a measure and allow interpretations of
economic choices. For example, a neuronal value signal
identified independently of a particular choice situation
might help to assess the contribution of value in choices in
which automatisms also play a role.

C. Construction of Neuronal Value Signals

1. Value functions

Intuitively, the value of a reward increases monotonically
with its physical magnitude. A larger drop of juice is worth
more than a smaller drop, except when satiation results in
asymptotic and then decreasing value and thus breaks
monotonicity (see below). The value of a reward depends
also on the frequency of its occurrence which is modeled as
probability. Stimuli that predict more likely rewards are
valued higher. Given their occurrence with specific magni-
tudes and probabilities, rewards constitute probability dis-
tributions of individual reward magnitudes, and choices

between two rewards can be viewed as choices between
probability distributions (417). The first statistical moment
in probability distributions is the expected value (EV),
which constitutes the sum of probability-weighted magni-
tudes (first moment of probability distributions)

EV " #i [mi * pi(mi)] ; over all i (8)

with m as magnitude (objective property of good), p as
objective probability, and i as individual reward occur-
rences. The mean of increasingly large samples approaches
the EV.

Probability is a theoretical construct that is derived from the
measured frequency of event occurrence. Probability the-
ory, as developed by Pascal and Fermat, allowed transfer-
ring the measure of experienced event frequency into the
predictive measure of probability. For biological agents and
their neurons, this transfer requires learning and memory,
as the frequency of events impinging on sensory receptors
needs to be counted in relation to other events and ex-
pressed as probability. The fact that there are no sensory
receptors for probability strengthens the notion of a theo-
retical construct. Thus probability assessments mediate the
transition from reacting to individual events to predicting
future event occurrence. The past experience of reward fre-
quency is registered by neurons and, true to the nature of
predictions, processed to predict rewards and guide future
behavior. By presenting events with a given frequency to
animals, we assume that this transfer takes place, and we
can search for neuronal activity that reflects reward proba-
bilities. As described above with Pavlovian conditioning,
the activity is necessarily predictive of the overall frequency
of reward occurrence and thus reflects the reward value of
the predictive stimulus. Thus the brain reacts to and assesses
the frequency of individual rewards and transfers this mea-
sure into predictive activity reflecting the probability of fu-
ture rewards.

The intuition of subjective value underlying economic
choices combines with the failure to explain human choices
by EV (43) and led to the axiomatic formulation of Ex-
pected Utility Theory (504, 617), which defines expected
utility as a measure of subjective value in analogy to Equa-
tion 8 as

EU " !i$u(mi) * pi(mi)% ; over all i (9)

with u(m) as (subjective) utility. The main utility functions
are power, logarithmic, exponential, and quadratic as well
as their combinations (295), which can model human
choices adequately (225). Logarithmic utility may combine
the logarithmic Weber function that describes the sensory
impact of reward objects with a logarithmic valuation func-
tion of objective, physical reward magnitude and probabil-
ity.
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Utility is a hypothetical variable reflecting the subjective
preferences elicited by behavioral choices. Whereas objec-
tive, physical value is measurable directly in milliliters or
grams, utility is not measurable directly but inferred from
behavioral choices (and maximized by decision makers).
Thus the only physical measure from which utility can be
inferred is behavioral choices. Choices are the tool to assess
utility, and choices are the key method that economists
accept for this assessment. There is a crucial difference be-
tween subjective value and utility. Although both subjective
value and utility are estimated from measured behavioral
choices, utility is a mathematical function of objective value
[u(m)] that allows to predict the subjective value even for
choices that have not been measured. Such mathematical
functions allow to determine whole distributions of subjec-
tive values and establish useful terms such as EU for com-
parison between choice options. Utility is a universal mea-
sure of subjective value that does not require immediate
behavioral assessment every time and thus constitutes the
fundamental variable of economic decision theory.

The curvature of utility functions reflects marginal utility.
Marginal utility is defined as the increment in utility gained
from one additional unit of consumption, or the decrement
from one unit less consumption, which is mathematically
the first derivative of the utility function. Progressively de-
creasing marginal utility leads to concave functions (down-
ward concave, as viewed from below, decreasing first deriv-
ative), which models the decreasing welfare one derives
from ever more reward (FIGURE 24A). A “well-behaved”
economic utility function is concave, continuous, monoton-
ically increasing, and nonsaturating (295, 341). It is based
on money of which apparently one cannot get enough. Util-
ity functions vary between different rewards, different risk
levels (631), and different individuals. Utility functions for
other rewards, like foods and drinks, do saturate and may
even decrease, as too much food or liquid may become
aversive and thus have negative marginal utility, effectively
destroying monotonicity of the utility function (FIGURE
24B). The “bliss point” is the utility producing maximal
satisfaction. In contrast, increasing marginal utility leads to
convex functions (FIGURE 24C), suggesting that wins in high
ranges are considered more important than the same gains
in lower ranges (“small change”). In some cases, gains are
valued increasingly more but ultimately become less impor-
tant, leading to an initially convex and then concave utility
function (173, 339) (FIGURE 24D). Effectively, all combina-
tions of curvatures of utility functions are possible, but the
typical, “well-behaved” concave utility function is the stan-
dard model in economics.

The subjective weighting of value extends to reward prob-
ability. In particular, low and high probabilities are often
distorted. Prospect Theory refines Equation 9 to

EU " !i&u(mi) * +$pi(mi)%' ; over all i (10)

with + as probability weighting function (and P replacing
EU in popular notation) (258) (Prospect Theory in addition
incorporates references, different curvatures, and different
slopes for losses than gains). The probability weighting
function +(p) is most nonlinear at 0.0 $ P $ #0.2 and
#0.5 $ P $ 1.0 and can be modeled with a one- or two-
parameter function ($) (435) with an inflection point
+(p) " p at about P " 0.37, or a linear-in-log-odds function
(187) in which gamma reflects curvature (low " inverted S,
high " regular S) and $ reflects elevation. Low probabilities
can be distorted by a factor of 10,000. Well-trained mon-
keys show similar nonlinear, inverted S-shape probability
weighting as humans with similar inflections points around
P " 0.37 (FIGURE 25) (559).

Given that rewards affect behavior primarily through their
subjective value, and that utility u(m) constitutes the central
subjective reward function in economics, we can use Equa-
tions 9 and 10 to state reinforcement learning Equations 1,
2, 4, and 5 in terms of economic utility

UPE(t) " !(t) # EU(t) (10A)

EU(t % 1) " EU(t) % $ * UPE(t) (10B)

UTDPE(t) " $!(t) % )!EU(t)% # EU(t # 1)
(10C)

EU(t % 1) " EU(t) % $ * UTDPE(t) (10D)

U
til

ity

2 40
Objective value

2 640
Objective value

2 40
Objective value

2 640
Objective value

U
til

ity

A

DC

B

FIGURE 24. Utility functions. A: a “well behaved,” gradually flatten-
ing (“concave”), continuous, monotonically increasing, nonsaturating
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Note that ! refers to the utility u(m) of the actual single
reward received, whereas EU derives from the statistical
utility distribution. Thus the utility prediction errors UPE(t)
and UTDPE(t) constitute the key reinforcement terms for
decision variables defined by economic utility.

Economists distinguish three principal forms of utility.
First, scalar utility is subjective value as a mathematical
function of physical, objective value. Utility can be derived
from marginal utility under risk (to result in cardinal utility)
or from the marginal rate of substitution without risk
(amounting to ordinal utility). Cardinal utility functions
established by choices under risk (617) provide a quantita-
tive, numeric, mathematical characterization of the prefer-
ence structure (257). Cardinal utility is valid up to positive
affine transformations (y " ax ! b) and can be psychophys-
ically estimated from certainty equivalents at choice indif-
ference between certain and risky options, starting at the
distribution ends and advancing centrally by iteration (frac-
tile or chaining procedure) (87). Cardinal utility can be
expressed as u(m) (Equation 9) and is a requirement for
establishing neuronal utility functions as neuronal signals
have cardinal characteristics. In contrast, ordinal utility
provides only a rank order of utilities and indicates whether
a good is better or worse than another, without indicating
on a numeric scale how much better or worse it is. It is only
of limited value for establishing neuronal correlates of eco-
nomic utility (higher versus lower neuronal responses for
better or worse goods without numeric scaling). The mar-
ginal rate of substitution indicates the amount of good A a
consumer is willing to give up to obtain one unit of good B
while maintaining the same utility. The “distance” between
curves of constant utility (indifference curves) indicates at
least ordinal utility. Second, mean-variance utility is derived

from objective value and risk via Taylor series expansion
(see below, Equations 21 and 21A). Third, prospect theory
extends utility by incorporating probability distortion (FIG-
URE 25 AND Equation 10), different loss than gain slopes
(see below FIGURE 29E) and reference dependency (see be-
low FIGURE 32 and Equation 22A).

The term of utility derives from the original utilitarian
philosophers (39, 363). In economic decision theory, util-
ity is defined by formal axioms (504, 617) that postulate
how individuals behave in a meaningful manner “as if”
they were maximizing utility. The term of utility is often
used for convenience without requiring formal axiomatic
tests in every instance (150, 324). This article follows this
tradition, although that usage should not discourage ax-
iomatic testing when identifying neuronal utility signals.
Thus economic utility is a specific form of subjective
value, which is derived from objective behavioral mea-
sures in individuals (but not across individuals). Utility
has stricter requirements than subjective value by assum-
ing an underlying, usually nonlinear, mathematical func-
tion that derives utility from objective value [u(m), as
used in Equation 9]. If assessed from risky choices, utility
is unique up to a positive affine transformation, which
defines a cardinal function.

2. Neuronal value coding

The definition of cardinal, quantitative, numeric utility is
important for investigating neuronal utility signals. The
prime neuronal signal that is communicated to other neu-
rons is the action potential. With sensory information, the
signal arises from dedicated receptors whose stimulation
induces numeric neuronal signals. Its strength as a signal is
quantitatively expressed as firing rate (impulses/s) (3) and,
to some extent, as pattern of action potentials. Firing rate is
quasi-continuous between 0 and 1,000 impulses/s within
the usual periods of 10–60 min of data sampling and usu-
ally increases or decreases monotonically with the phenom-
enon it codes. The same neuronal processing principles
could be used for coding reward utility. For such neuronal
signals to approach a meaningful mathematical function of
utility, utility needs to be cardinal. It would be incorrect to
derive a cardinal neuronal function from ordinal utility.
This requirement would not apply if one would only look
for ordinal higher firing rate for a higher (or lower) ranked,
ordinal reward. With these characteristics, neuronal utility
signals are physical (hardware) manifestations of a hypo-
thetical variable that can only be inferred from behavioral
choices. Although choices are the key method for assessing
utility from behavior, utility neurons should also reflect
utility at the time of reward reception, as this is the most
important event for the survival of the organism.

Reward magnitude exerts a physical impact on sensory re-
ceptors. Reward magnitudes induce monotonically graded
responses in dopamine neurons and in neurons in the stria-
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tum, amygdala, and orbitofrontal, ventrolateral prefrontal,
dorsolateral prefrontal, cingulate and posterior parietal
cortex (12, 42, 107, 205, 262, 313, 354, 381, 405, 433,
598, 620). For rewards that do not vary in physical impact,
like money, magnitude coding needs to be explained by
other mechanisms including Pavlovian and cognitive pro-
cesses.

Stimuli predicting specific reward probabilities induce
graded responses in dopamine, striatum, and posterior pa-
rietal neurons and also in orbital, ventromedial, ventrolat-
eral, dorsolateral, and cingulate prefrontal neurons, along
with graded behavioral reactions and choices (12, 15, 17,
161, 261, 262, 354, 372, 376, 381, 402, 418, 433, 500).
The transfer of dopamine responses from rewards to re-
ward-predicting stimuli (FIGURES 7C AND 14, A AND D) may
constitute a suitable correlate for the transition from report-
ing experienced reward frequency to coding reward proba-
bility. There are no neurophysiological studies on probabil-
ity distortions. Human neuroimaging has shown probabil-
ity distortions of values analogous to Equation 10 (241,
595) but no behavioral distortions with valueless probabil-
ities (110). Thus reward neurons transform the theoretical
construct of probability into another theoretical construct
called value (both of which are measurable from behavioral
choices).

Increasing EVs induce graded neuronal responses in dopa-
mine, striatum, orbitofrontal, ventromedial prefrontal, ven-
trolateral prefrontal, dorsolateral prefrontal, cingulate, and
posterior parietal cortex neurons (FIGURE 26) (12, 261,
262, 354, 381, 402, 433, 418, 500, 598). In addition to
characterizing reward coding, these data suggest a general
biological basis for the mathematical constructs of EV, for
which there are no sensory receptors. However, it is un-
likely that these neurons code objective EV specifically
rather than the subjective value that is monotonically re-
lated to objective value. Nevertheless, neuroscience ap-
plauds to the genius of the earlier mathematicians postulat-
ing biologically implemented theoretical terms.

Appropriate behavioral tests reveal that reward neurons
typically code subjective value. Reward responses in orbito-
frontal cortex, ventromedial prefrontal cortex, parietal cor-
tex, striatum, globus pallidus, amygdala, lateral habenula
and dopamine neurons closely reflect subjective behavioral
choices (FIGURE 23) (301, 405, 433). Subjective value cod-
ing is also evident in specific situations, including satiation
or deprivation without physical reward changes (58, 105,
591), differently delayed conditioned reinforcers (66, 67),
temporal discounting of reward value (see below FIGURE
28D) (79, 158, 285, 477, 479), and adaptation to identical
reward magnitudes (see below FIGURE 33, A AND B) (42,
284, 332, 403, 601). Details will be presented in the follow-
ing sections.

Although subjective value coding confirms the close behav-
ioral-neuronal relationships of reward processing, it is ag-
nostic about the relationship to physical reward value. In
contrast, economic utility defines this relationship mathe-
matically. Neuronal correlates of utility are found in dopa-
mine neurons (560). Utility functions in monkeys may tran-
sition from convex via linear to concave with increasing
reward volumes (FIGURES 24D AND 27A), which reflects
nonmonotonic marginal utility (first derivative of utility)
and results in nonmonotonic utility prediction errors. This
utility profile is closely paralleled by nonmonotonically
changing dopamine prediction error responses with gam-
bles placed at different parts of the utility function (FIGURE
27B). With unpredicted rewards eliciting positive predic-
tion errors, dopamine responses increase monotonically
(FIGURE 27C) and thus follow the monotonic increase in
utility prediction error ('u) but not the nonmonotonic vari-
ation in marginal utility ('u/'x or du/dx). Thus the dopa-
mine reward prediction error response constitutes a utility
prediction error signal that reflects marginal utilty but does
not explicitly code marginal utility. Marginal utility relates
well to prediction error, as both terms conceptualize devia-
tions from a reference (prediction and current wealth, re-
spectively).

Given its coding of utility, the dopamine signal can be
stated as
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FIGURE 26. Neuronal value coding by monkey dopamine neurons.
Monotonically increasing responses to increasing expected value
(EV), irrespective of individual probability-magnitude combinations.
EVs (right) are from 5 binary probability distributions with different
probabilities and magnitudes of juice reward indicated at left. Popu-
lation average from 55 dopamine neurons. Note that these re-
sponses do not suggest specific coding of EV as opposed to ex-
pected utility (EU), as at the time this distinction was not made
experimentally. [From Tobler et al. (598).]
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DaResp(t) " UPE(t) (10E)

and formulated for temporal difference (TD) utility error

DaResp(t) " UTDPE(t) (10F)

and can be fully expressed by using Equations 6 and 7,
replacing V by EU and applying Equations 10A and 10E

DaResp(t) " !(t) # EU(t) (10G)

DaResp(t) " $!(t) % )!EU(t)% # EU(t # 1)
(10H)

As some neurons in other reward structures code also
reward prediction errors, DaResp in Equations 10E
through 10H may be replaced by error signals from such
neurons if their utility coding were established in future
experiments.

As utility is not simply a measure of subjective value but
derives mathematically from objective reward measures,
utility coding extends the dopamine response well be-
yond subjective reward value coding seen with multiple
rewards, effort cost, and risk (116, 156, 301, 570). Util-
ity as higher specification of the dopamine response likely

applies also to multiple rewards, effort cost, and risk
whose neuronal coding is so far characterized only as
subjective value (risk is already incorporated into the
utility response in FIGURE 27B).

3. Motivational state

Based on the intuition that the primary function of nu-
trient rewards derives from the need to acquire necessary
substances for survival, reward value is closely related to
the state of the animal. Deprivation on a particular sub-
stance enhances its subjective value, whereas satiation
reduces its value. These states can be general or specific
for a substance (e.g., “general” versus “sensory specific”
satiety).

Satiation is captured by decreasing marginal utility in grad-
ually flattening (concave) utility functions (FIGURE 24A).
Higher satiation leads to complete saturation and subse-
quent repulsion characterized by zero and then negative
marginal utility (FIGURE 24B), although such satiety does
not typically occur with money. In contrast, reward depri-
vation is captured by the steeper part of the utility function
with higher marginal utility.
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FIGURE 27. Utility prediction error signal in monkey dopamine neurons. A, top: gambles used for testing
(0.1–0.4; 0.5–0.8; 0.9–1.2 ml juice; P " 0.5 each outcome). Height of each bar indicates juice volume.
Bottom: behavioral utility function in monkey. Delivery of higher reward in each gamble generates identical
positive physical prediction errors across gambles (0.15 ml, red, black, and blue dots). Due to different
positions on the convex-concave utility function, the same physical prediction errors vary nonmonotonically in
utility. Shaded areas indicate physical volumes (horizontal) and utilities (vertical) of tested gambles. B: positive
neuronal utility prediction error responses (averaged from 52 dopamine neurons) to higher gamble outcomes
in same animal (colored dots on utility function in A). The nonmonotonically varying dopamine responses reflect
the nonmonotonically varying first derivative of the utility function (marginal utility). C: positive utility prediction
error responses to unpredicted juice rewards. Red: utility function. Black: corresponding, nonlinear increase
of population response (n " 14 dopamine neurons) in same animal. [A–C from Stauffer et al. (560).]
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Rather than directly affecting marginal utility and EU, an
alternative account may conceptualize motivational states
as likely nonlinear and nonmonotonic utility (EUstate)
which adds to EU and results in overall EUnet, similar to
other influences described below

EUnet " EU % EUstate (11)

With deprivation, EUstate is positive and increases EUnet,
whereas satiation turns EUstate negative and decreases EU-
net. We can distinguish general from sensory specific effects
on EUnet by using separate state utilities

EUnet " EU % $ * EUgenstate
% , * EUspecstate (11A)

with weighting coefficients $ and ,. General deprivation
and satiety affect all rewards to some extent (EUgenstate),
whereas sensory specific satiety affects primarily the partic-
ular reward (EUspecstate). The effects of deprivation and
satiety on EUnet can be accommodated by the reinforce-
ment framework by substituting EU in Equations 10A
through 10D by EUnet.

Satiety on individual rewards reduces behavioral reactions
and neuronal responses in monkey orbitofrontal cortex to
the smell, taste, and sight of rewards (105) and in ventro-
medial prefrontal cortex to water (58). The response de-
crease is specific for the satiating reward, including black-
currant, cream, vanilline, limonène, or monosodium gluta-
mate liquids (105). Some responses to the nonsatiating
rewards remain uninfluenced, suggesting sensory specific
rather than general satiety. General satiety over the daily
course of the experiment reduced most responses of dopa-
mine neurons to auditory cues for food pellets in mice
(496). Opposite to satiation, salt depletion makes salt re-
warding. Rats show behavioral approach to NaCl solutions
after, but not before, salt depletion by furosemide while
reward neurons in the ventral pallidum begin to respond to
salt (472, 591). These results provide neuronal correlates
for the influence of motivational states on subjective value
compatible with Equation 11.

4. Context

Rewards occur always in an environmental context, and
these contexts exert considerable influence on subjective
reward value. Imagine yourself in a gourmet restaurant and
hearing a loud “wow.” Then imagine watching a tennis
match and hearing the same “wow.” Obviously the behav-
ioral reaction to the “wow” differs depending on the con-
text, suggesting that information from the context (restau-
rant versus tennis) affects the interpretation of the explicit
event (“wow”). Adding a nonlinear subjective value func-
tion EUcxt captures the value gained by rewarded contexts

EUnet " EU % EUcxt (12)

Animal learning theory conceptualizes the influences of
context on behavioral reactions in several forms. In general,
Pavlovian-instrumental transfer, instrumental (operant)
learning is enhanced in the presence of a previously Pavlov-
ian conditioned stimulus compared with an unconditioned
stimulus (145). In renewal, previously extinguished condi-
tioned responding may return depending on the contextual
environment (59). In pseudoconditioning, a primary rein-
forcer endows the context and all its cues with reward value
through conditioning. Pavlov noted “a conditioned reflex
to the environment” (423) and Konorski mentioned “con-
ditioned to situational cues” (289). Pseudoconditioning
elicits approach behavior to unpaired events in rewarded
contexts (367, 536, 537), as if reward properties “spill
over” from the context to the explicit event. For example, in
an experiment on rabbit jaw movement, the value of the
unpaired stimulus was close to 0 (analogous to EU " 0), but
amounted to 70% of the value of the rewarded stimulus
after that stimulus had been conditioned in the same con-
text (EUcxt " 70% of rewarded stimulus EU) (537). In all
these forms, otherwise ineffective stimuli occurring in the
same context gain motivational value and induce behav-
ioral responses (191, 335), even though they have never
been explicitly paired with the primary reinforcer.

Influences of contextual information are well known from
everyday experiences. Labeling an odor as cheese rather
than body odor, or describing flavors as rich and delicious
rather than vegetable water, increases pleasantness ratings
and responses in human orbitofrontal cortex (118, 189).
Stating the brand name of soft drinks, like Coke and Pepsi,
strongly increases preference ratings for the drink indicated
and enhances prefrontal reward responses (352). In wine
tasting, stated prices influence pleasantness ratings and
value responses in orbitofrontal cortex (432). In risky deci-
sions with only partly known outcomes, additional infor-
mation of outcomes after the decision may reduce or en-
hance the value of a received outcome (329). Thus contexts
add EUcxt to the EU of odors, flavors, soft drinks, and wine
and gambles to modify EUnet.

5. Economic cost

Natural rewards do not only provide nutrients and calories,
their acquisition usually requires calorie expenditure that
reduces the gains provided by them. We need to work for
them, approach them, collect them, and consume them.
This intuition applies to all rewards and is conceptualized
as economic cost. Every good has its cost, and we usually
calculate the net benefit before handing over the money. We
need to ensure that the cost does not wipe out the benefit.
The value of Eve’s apple is reduced by the loss of paradise.

Net benefit utility can be calculated generically as a subtrac-
tion

EUnet " EU # EUcost (13)
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Equation 13 is based on physical net benefit, physical in-
come, and physical cost (such as calories)

Net benefit " income # cost (14)

and becomes net utility by applying different utility func-
tions u(income) and d(cost)

Unet " u(income) # d(cost) (15)

Income utility u(income) is often concave (gradually flatten-
ing due to decreasing marginal utility) (FIGURE 28A, top).
Physical effort, as the energy expenditure required to ob-
taining a reward, is an economic cost, as long as it is asso-
ciated with the pursuit and acquisition of that reward. As
higher efforts become increasingly harder, cost is often as-
sumed to be convex (FIGURE 28A, middle). With convex
cost, the disutility of high effort may outweigh the increase
of income utility, resulting in decreasing Unet and thus loss
of monotonicity (FIGURE 28A, bottom). The effort cost in
Equations 13–15 needs to be distinguished from temporal
discounting, which may be partly due to another form of
cost, opportunity cost, and reduces reward value through a
separate mechanism (see Equations 16-18A).

A gross simplification may neglect the different curvatures
possible with Equation 15 and apply a common logarithmic
utility and disutility function

Unet " log(income) # log(cost) (15A)

which is equivalent to the benefit-cost ratio

Unet " log (income/cost) (15B)

Appropriate behavioral tests would involve separate assess-
ment of income-utility and cost-disutility functions in a
common reward value currency, using choices between re-
ward alone [to obtain u (reward)] and reward combined
with cost [to obtain d(cost)], similar to composite outcomes
involving punishers (FIGURE 11A).

In analogy to temporal discounting (see Equations 17 and
18 below), alternative effort models used in some neurobi-
ological studies (419, 439) incorporate effort cost into net
benefit by exponential discounting

Net benefit " income * e#k*cost (15C)
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to result in a utility measure

Unet " u(income) * e#k*cost (15D)

or by hyperbolic discounting

Net benefit " income/(1 % k * cost) (15E)

Unet " u(income)/(1 % k * cost)
(15F)

where k is discounting factor, reflecting subjective cost sen-
sitivity.

The pursuit of any reward reduces the chance of obtaining
another reward. This opportunity cost arises with mutually
exclusive rewards and is defined as the value of the highest
foregone alternative reward. Thus, in principle, Equations
13-15D apply to every reward obtained in the presence of a
viable, mutually exclusive alternative. Opportunity cost ap-
plies also when rewards are delayed and other beneficial
options cannot be pursued, which is conceptualized as tem-
poral discounting (see below).

Movements and effort may not only constitute a cost but
also have intrinsic reward value (31, 358, 546, 547). A
behavior may be undertaken for the pure pleasure of it and
without resulting in any other reward. A kid is having fun
building an airplane without getting monetary or social
benefits. The intrinsic reward value can be considered as
income, the required effort (and missed opportunity for
homework) is the cost, and Equation 15 becomes

Unet " u’(intrinsic income) # d(cost) (15G)

with u’ as utility function distinct from u. Intrinsically re-
warding behavior may also lead to extrinsic reward. A me-
chanic loves to rebuild historic car engines and also sells
them well, a typical scenario for people that love their jobs.
Here, income utility derives from both intrinsic and extrin-
sic reward value, and Equation 15 becomes

Unet " u(extrinsic income) % u’(intrinsic income)
# d(cost) (15H)

Importantly, the added value from intrinsic rewards may
outweigh high effort costs. Even if u(extrinsic income) in
Equation 15H is below d(cost), Unet remains positive, and
the behavior viable, if the utility gained from intrinsic re-
ward [u’(intrinsic income)] is sufficiently high. People that
love their jobs may be content with unspectacular pay. Al-
ternative formulations may consider intrinsically rewarding
behavior as reward in its own right and apply Equation 25
for multiple rewards (see below). Taken together, effortful
behavior may both enhance and reduce net benefit. As the
intrinsic gains and costs of behavior are subjective and not
deducible from physical movement measures alone, it is
particularly important to assess the involved utilities in
choices against a reference utility using quantitative psycho-

physical methods. Simply assuming that movements repre-
sent only an economic cost, and estimating its utility from
physical rather than behavioral measures, may be mislead-
ing.

Behavioral studies on cost follow primarily Equation 14.
Experiments involve rats crossing barriers in T mazes (499)
or working for intracranial self-stimulation (62) and mon-
keys performing sequential movements (60) or exchanging
tokens for reward (69). Tests on humans sampling different
numbers of targets comply with Equation 15B (108). Bi-
nary choices increase with reward value and decrease with
effort cost measured as number of lever presses in monkeys
(263) and rats (115, 116, 621) and lever movement against
resistance in monkeys (233, 419) (FIGURE 28B). These
choice procedures allow comparison of subjective net ben-
efit between the options analogous to Unet, but without
explicitly assessing u(income) and d(cost). Behavioral
choices are fit better by the physical cost subtraction model
of Equation 14 than by exponential or hyperbolic cost dis-
counting of Equations 15C and 15E (233). Reaction times
increase with increasing effort, well fit by exponential or
hyperbolic cost discounting of Equations 15C and 15E
(419).

Neurons in anterior cingulate cortex show activity increases
with income and decreases with effort cost (233, 263), thus
following the components of Equation 14. In contrast, or-
bitofrontal and dorsolateral prefrontal cortex neurons code
either income or cost but not both (233). Neurophysiolog-
ical responses and dopamine release evoked by reward-pre-
dicting cues in nucleus accumbens decrease with higher
fixed ratio effort (115, 116) (FIGURE 28C). Exponential or
hyperbolic cost discounting (Equations 15C and 15E) af-
fects some dopamine neurons in substantia nigra (419).
Thus neuronal responses in reward structures typically re-
flect the influence of effort cost on reward value.

The dopamine sensitivity to effort is at odds with the failure
of finding reductions in voltammetric dopamine reward re-
sponses in nucleus accumbens with effort (224, 621). How-
ever, the effort in these studies was intercorrelated with
temporal discounting, which is well established to reduce
reward value and corresponding electrophysiological and
voltammetric dopamine responses (116, 158, 285) (FIGURE
28D). Thus it is unclear why not at least temporal discount-
ing reduced the dopamine responses. The effort-insensitive
voltammetric dopamine changes were slow (lasting &8 s)
and one order of magnitude lower than the typical phasic
voltammetric dopamine changes [0.5–15 nM (224, 621)
versus 30–70 nM (116)], which raises additional, method-
ological issues. The slower responses resemble dopamine
changes of similar durations and magnitudes that have no
correlate in dopamine impulse activity (237). Thus the
slower, lower, effort insensitive dopamine changes likely do
not reflect subjective value (224) but unlikley bear on the
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role of phasic dopamine signals in economic value coding.
Thus the slower, lower, effort insensitive dopamine changes
may not reflect subjective value (224) which, however, does
not bear on the phasic dopamine coding of all subjective
value components tested so far, including reward amount
(598), reward type (301), risk (156, 301, 560, 570), delay
(116, 158, 285), and effort cost (116) all the way to formal
economic utility (560).

6. Temporal discounting

Typical primary nutrient rewards, like fruits or meat, ma-
ture and decay over time. Once consumable, they risk de-
struction from many causes including competition by other
reward seekers. Rewards often need to be consumed at
particular times due of specific energy demands, and later
rewards are less tangible in general. Thus specific rewards in
specific situations should be harvested at specific moments.
This is why we cannot wait for the pay slip, use refrigera-
tors, drink wine at its best age, and mate only after matu-
ration. These temporal constraints favor temporal sensitiv-
ity in the evolution of the brain’s reward system and lead to
personal, potentially beneficial traits of impatience, impul-
sivity, and risk taking. The characteristics extend to all re-
wards and explain the variation of subjective reward value
over time. Although temporal discounting likely originates
in the perishable nature of goods, it occurs even when the
reward remains physically unchanged and overall reward
rate is held constant, thus dissociating subjective from ob-
jective reward value.

Temporal discounting studies focus mostly on monotonic,
forward decreases of value (4, 462, 473). However, value
may evolve nonmonotonically in time as birds store food
(443), often increasing initially and then decreasing, al-
though the inverse is also possible. The change of reward
value over time occurs between a reward-predicting stimu-
lus and reward delivery when no operant action is required
(Pavlovian conditioning) or between an action and the re-
sulting reward. In animal learning theory, increasing tem-
poral delays decrease the proximity (contiguity) between
stimulus or action and reinforcer. Delays position the re-
ward away from the stimulus or action and more into the
background, thus reducing the subjectively perceived re-
ward contingency (dependency of reward on stimulus or
action) (175, 220). Thus both subjective devaluation and
subjective contingency reduction reduce the power of rein-
forcers for learning.

Temporal discounting constitutes an opportunity cost
when waiting prevents individuals from other activity lead-
ing to reward or from using the reward for beneficial invest-
ments. Thus temporal discounting can be stated generically
as an economic cost, in analogy to Equation 13

EUnet " EU # EUtemp (16)

Obtaining net benefit Unet requires two steps, assessment of
u(m) from objective reward magnitudes and then its tem-
poral discounting (296). Temporal discounting can be im-
plemented by exponential functions, resulting in constant
discount rate

Unet " u(m) * e#k*D (17)

where k is discount factor. D is subjective delay, as assessed
from maximal responses at the subjectively perceived delay
(peak interval procedure, Ref. 469). Alternatively, hyper-
bolic functions show initially higher and then gradually
decreasing discounting (5, 218)

Unet " u(m)/(1 % k * D) (18)

Hyperbolic discounting is particularly prominent against
immediate rewards. When all rewards have longer delays,
exponential discounting may describe the process better.
The generalized hyperbola combines the two models by
adding a free parameter a (325)

Unet " u(m)/(1 % k * D)a⁄k (18A)

Unet can be assessed psychophysically with intertemporal
choices between a variable early and a constant delayed re-
ward (adjusting-amount procedure). Unet of the late reward is
inferred from the utility of the early reward that produces
choice indifference. Unet in monkeys decreases monotonically
across delays of 2, 4, 8, and 16 s by #25, 50, and 75%,
respectively (FIGURE 28D, blue) (285), with slightly better fits
by hyperbolic than exponential discount functions. Temporal
discounting decreases from rodents to monkeys to humans.

Some theories of temporal discounting distinguish between
a prefrontal system controlling immediate, impulsive con-
sumption and a separate valuation system (352, 538),
whereas more straightforward accounts assume that a sin-
gle reward value system directly discounts value according
to Equations 16-18A, although the truth might lie in be-
tween. Some reward value coding neurons in all reward
systems show decreased responses with increasing delays.
Responses of monkey dopamine neurons to reward-pre-
dicting stimuli decrease monotonically across reward de-
lays of 2–16 s (FIGURE 28D, red), despite constant physical
reward magnitude, thus matching closely the behavioral
discounting (compare blue and red) (158, 285). Corre-
sponding to human behavior (277), lower reward magni-
tudes are associated with steeper neuronal discounting
(285). The same dopamine neurons code reward magni-
tude. Temporal discounting may reflect reduced value at the
time of the predictive stimulus (input stage) or during the
decision process (output stage). The reduced dopamine re-
sponse occurs in imperative tasks without choices, suggest-
ing value alterations in the input stage. The reduced neuro-
nal response leads to reduced dopamine release in nucleus
accumbens (116). Inversely, dopamine prediction error re-
sponses to reward delivery increase with longer delays. Both
responses are fit better by hyperbolic than exponential func-
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tions. The almost perfect overlap between behavioral and
neuronal discounting (FIGURE 28D) suggests that temporal
delays affect dopamine responses via changes in subjective
reward value. Dopamine neurons process delayed rewards
as having less value.

Many reward value coding neurons in other reward struc-
tures show temporal discounting, including orbitofrontal
cortex (478), prefrontal cortex (272, 475), anterior cingu-
late (233), premotor cortex (475), parietal cortex (477),
and dorsal and ventral striatum (79, 115). Reversal of cue-
delay associations leads to reversed neuronal responses,
suggesting an influence of delay rather than visual proper-
ties (475). Often the same neurons code also reward mag-
nitude (476), suggesting common subjective value coding
across different rewards. Taken together, neuronal popula-
tion in all major reward structures code subjective reward
value during temporal discounting.

7. Risk

Rewards are, as all environmental events, inherently uncer-
tain. The uncertainty can be formally approached via the
description of rewards as probability distributions of val-
ues. In contrast to the first statistical moment of probability
distributions that defines value (EV, Equation 8), the higher
moments reflect risk, including variance, skewness, and
kurtosis (FIGURE 29A). Risk refers to the degree of uncer-
tainty in known probability distributions, whereas ambigu-
ity denotes uncertainty when probability distributions are
incompletely known. Risk, and also ambiguity, has at least
three functions in reward processing. First, individuals
should perceive risk appropriately, irrespective of making a
decision at a given moment. Second, as the terms of risk
avoidance and risk seeking indicate, risk affects the subjec-
tive value of rewards. These two functions, and their pro-
cessing by reward neurons, will be described in this section.
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Third, risk informs about the spread of reward probability
distributions which neurons may take into account when
processing reward value within an existing distribution.
This function will be described subsequently as adaptive
processing.

Popular risk measures are variance

var " !i$pi(mi) * (mi # EV)2% ; over all i (19)

where P is probability and m is magnitude. Standard devi-
ation (SD), the square root of variance, is also a good and
frequently used risk measure. EV and SD fully define Gauss-
ian and equiprobable binary probability distributions.
However, the coefficient of variation, CV " SD/EV, is often
a better measure for risk in economic choices (633). Other
risk measures are Shannon informational entropy (analo-
gous to thermodynamic entropy) that seems appropriate for
neuronal information processing systems (477).

Although probabilistic rewards are intrinsically risky, prob-
ability is not a monotonic measure for risk but for value
(Equation 8). Whereas reward value increases monotoni-
cally with probability, variance as a measure for risk fol-
lows probability as an inverted U function (FIGURE 29B). It
peaks at P " 0.5 where the chance to gain or miss a reward
is equal and maximal. Variance risk is lower at all other
probabilities with more certain gains and misses.

Risk is perceived subjectively through genuine risk avoid-
ing/seeking tendencies (“I hate/love the risk”), risk distor-
tions (“I have no idea/am confident about the outcome”),
the value at which loss/win occurs (“no gambling at high
values/peanuts”), the domain, situation, and familiarity of
the risky event, and hormones (86, 87, 630, 632). Some of
these factors may play a role when defining subjective risk
in analogy to Equation 19 as variance of utility

varU " !i&+$pi(mi)% * $u(mi) # EU%2' ; over all i
(20)

A fuller account would include more of the mentioned sub-
jective factors.

It is important for the understanding of risk attitude to
distinguish between objective and subjective value. The fa-
mous example is the hungry bird with challenged energy
balance (87). The bird requires 100 calories to survive the
night and has the choice between a certain option of 90
calories and an equiprobable gamble of 0 and 110 calories
(P " 0.5 each). The bird would hopefully choose the gam-
ble, as this provides it at least with a 50% chance of sur-
vival. However, from the perspective of objective value, the
usually risk-avoiding bird seems to be surprisingly risk seek-
ing, as it prefers a risky option with an EV of 55 calories
over a certain 90 calories. However, the bird’s behavior
follows first-order stochastic dominance when we consider

survival values (0 vs. 0/1 survival), which tests for meaning-
ful and rational choices (341).

Risk avoidance and risk seeking suggest that risk affects
economic choices, which can be visualized via the curvature
of the utility function (Equation 9). With concave utility
(FIGURE 29C), the initially steeper slope indicates higher
marginal utility in lower ranges. Losses move utility into the
lower, steeper range and thus appear subjectively more im-
portant than gains which move utility into the upper, flatter
range, resulting in risk avoidance. In contrast, with a con-
vex utility function (FIGURE 29D), the steeper slope in higher
ranges makes gains appear subjectively more important
than losses, thus encouraging risk seeking. In some cases,
the curvature of utility functions can change, often from
risk seeking with low values to risk avoidance with high
values. Risk seeking at low values may suggest that the
attraction of gambling outweighs potential losses (“peanuts
effect”) (152, 436, 630).

The subjective value of risk combines with riskless utility to
result in the utility of risky choices, as expressed generically

EUnet " EUrl # EUrisk (21)

with EUrl as riskless utility, and EUrisk as disutility due to
risk. This approach recognizes the difference between risk-
less and risky utility functions (631). Positive EUrisk re-
duces EUnet and characterizes risk avoidance, whereas neg-
ative EUrisk enhances utility and characterizes risk seeking.
This approach follows in kind the construction of utility
from objective measures of risky outcomes (EV and vari-
ance) by the mean-variance approach in financial econom-
ics based on Taylor series expansion (238, 315)

EU " EV # b * variance (21A)

with b as subjective risk weighting coefficient. Equation
21A applies, strictly spoken, only to quadratic utility func-
tions.

In addition to subjective risk perceptions, the subjective
effect of risk is determined by the curvature of utility func-
tions that are typically concave (FIGURE 29C) and asymmet-
ric for gains and losses (steeper gain functions, or steeper
loss functions inducing “loss aversion”) (258). Subjective
pessimistic/optimistic probability distortions are further
subjective influences (“today is my bad/lucky day”). These
subjective factors transform symmetric variance risk into
the common asymmetric notion of risk as the danger to lose
(higher loss than gain utility) (FIGURE 29E).

The most simple and controlled risky outcome is provided
by a binary, equiprobable gamble (P " 0.5 each outcome)
in which risk can be varied without changing the EV (mean-
preserving spread) and which has negligible, constant prob-
ability distortion and is not skewed (497) (FIGURE 30A).
Risk attitude can be estimated by eliciting the certainty
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equivalent (CE) in behavioral choices between an adjust-
able certain (riskless) outcome and a risky gamble. The CE
is defined as the value of the certain option at choice indif-
ference against the risky option. It is lower than EV in risk
avoiders and higher in risk seekers. The risk premium re-
flects the value reduced or added by risk (CE $ EV or CE &
EV, respectively). The risk premium is usually defined as
EV % CE (&0 for risk avoidance, $0 for risk seeking, 0 for
risk neutrality), or sometimes as EV/CE (&1 for risk avoid-
ance, $1 for risk seeking, 1 for risk neutrality) (558). Rhe-
sus monkeys are often risk seeking with standard small
liquid volumes (CE & EV) and risk avoiding with volumes
above 0.5–0.8 ml (CE $ EV) (FIGURE 30B) (355, 560, 644).
Their utility function is initially convex, then linear and
ultimately concave (FIGURES 24D AND 27A), thus showing
an inflection as conceptualized and found in human utility
functions (152, 339, 436, 630).

Formal tests of stochastic dominance (341) confirm that
monkeys understand the risky stimuli (560). First-order sto-
chastic dominance helps to define meaningful choices with-
out requiring assessment of a utility function. However,
higher EV does not necessarily satisfy first-order stochastic
dominance, due to nonlinear utility, nonlinear probability
weighting, and risk attitude. In statewise dominance, a case
of first-order stochastic dominance, a gamble dominates
another gamble if all its outcomes are equal except at least
one outcome that is better. Monkeys’ behavior satisfies this

criterion in choices between a certain reward and an
equiprobable, binary gamble whose low or high outcome
equals the certain reward. They avoid the low certain re-
ward (FIGURE 30C, left) and prefer the high certain reward
to the gamble (right). Second-order stochastic dominance
tests whether risk is incorporated into subjective reward
value in a consistent fashion. Monkeys’ choices satisfy also
this test. With mean preserving spreads, they prefer more
risky over less risky gambles in the lower, risk-seeking range
of reward volumes (FIGURE 30D) and show stronger risk
preference against certain outcomes (391). Also, monkeys
prefer risky over ambiguous options (207). Thus monkeys
make meaningful choices under risk consistent with ex-
pected utility theory.

The orbitofrontal cortex plays a key role in risky choices
(317). Human patients and animals with lesions in orbito-
frontal cortex or nucleus accumbens show altered risk and
ambiguity sensitivity distinct from value (35, 88, 174, 240,
268, 364, 370, 445). Correspondingly, specific orbitofron-
tal neurons in monkeys show responses to stimuli predict-
ing binary, equiprobable gambles (FIGURE 31A) (391).
These risk responses occur irrespective of visual stimulus
properties and only very rarely reflect reward value, which
is coded in separate orbitofrontal neurons. The absence of
value coding argues also against the coding of salience,
which is associated with both risk and value. Some monkey
orbitofrontal neurons are activated by unsigned (absolute)
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ml), corresponding to the animal’s risk seeking attitude (higher subjective value for risky compared with certain
rewards, inset). [From Lak et al. (301).] F: dopamine responses satisfy first-order stochastic dominance,
demonstrating meaningful processing of stimuli and reward value under risk (averages from 52 neurons). In
the two gambles (blue, red), the higher outcomes are equal, but the lower red outcome is higher than the lower
blue outcome, defining gamble dominance. G: dopamine responses satisfy second-order stochastic domi-
nance, demonstrating meaningful incorporation of risk into neuronal utility signal (averages from 52 neurons).
The red gamble has greater mean-preserving spread than the blue gamble, defining dominance with risk
seeking. [F and G from Stauffer et al. (560).]
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risk prediction errors, defined as unsigned difference be-
tween current and predicted risk, which may serve for up-
dating risk information (FIGURE 31B) (392). In a categorical
discrimination task, responses in orbitofrontal neurons re-
flect the riskiness of olfactory stimuli but in addition differ-
entiate between correct and erroneous choices in correla-
tion with decision confidence (264). The orbitofrontal risk
signal is distinct from movement-related activity (153),
some of which correlates with particular, asymmetric forms
of salience (393). In human prefrontal cortex, BOLD sig-
nals show direct risk coding, distinct from value (599),
which reflects risk perception irrespective of choice. Out-
side of orbitofrontal cortex, supplementary eye field neu-
rons differentiate categorically between certain and risky
trials and code certain and risky reward value differentially
(551), and septum neurons show slow risk responses closely
resembling the risk ramp of dopamine neurons (373).

Dopamine neurons code reward risk during the stimulus-
reward interval after the value prediction error response
(FIGURE 31C) (161). The activation ramps up to the reward
and varies with probability in an inverted U function, anal-
ogous to risk measures such as variance, standard devia-
tion, and entropy. It increases with variance and standard
deviation, even when entropy is kept constant. Thus the
signal reflects risk rather than value (FIGURE 29B). An anal-
ogous signal is also seen in the human ventral striatum,
which is distinct from value and most likely reflects synaptic
activity induced by the electrophysiologically measured do-
pamine risk signal (437). Although its latency is too long for
immediate decision processes, the dopamine risk signal
might affect the subsequent prediction error signal at the
time of the reward. In coding risk, the signal varies with
surprise salience and thus may affect the learning constant
of attentional (associability) learning theories (425, 336).
Also, the slower risk signal might contribute to the risk
sensitivity of the faster, phasic dopamine signal (see below)
(156, 301, 560, 570).

Straightforward implementations of TD models may pro-
duce similar ramps by backpropagation of prediction error
responses from reward to the preceding conditioned stimu-
lus in small steps via imaginary stimuli (374, 524), thus
resembling the dopamine risk response (388). As the back-
propagating activation would be small and dispersed, it
would appear as ramp only when averaging across multiple
trials (183, 388). However, the dopamine risk signal occurs
in single trials without averaging and does not backpropa-
gate via imaginary stimuli, as suggested by its absence after
prediction errors (FIGURE 31D) (161, 162), but jump in
single steps from reward back to the preceding actual stim-
ulus (FIGURE 14A) (117, 410, 598). The ramp is not a nec-
essary feature of TD models but occurs only in specific
implementations (374, 388, 524). Biologically more plausi-
ble TD implementations and spectral timing models use
stimulus eligibility traces, as originally suggested (FIGURE

14B) (574), and model well the single step backward tran-
sition of dopamine prediction error responses from reward
to the next preceding conditioned stimulus without error
backpropagation and thus without a ramp during the stim-
ulus-reward interval (FIGURE 14, C AND D) (71, 410, 573).
In particular, models using a biologically consistent striatal
and midbrain circuit replicate well the dopamine risk ramp
(581). Thus the dopamine ramp represents a genuine risk
response and not the necessary byproduct of TD models.

In addition to the late and slow dopamine risk signal, risk
affects the phasic dopamine value response. The subjective
reward value signal of dopamine neurons is enhanced when
monkeys prefer risky over certain outcomes of low or inter-
mediate reward magnitudes (FIGURE 31E) (156, 301), sug-
gesting incorporation of risk into the final construction of
utility in possible compliance with Equation 21A. Corre-
spondingly, dopamine concentration changes following
risky cues are reduced in risk avoiding rats and enhanced in
risk seekers (570). In formal tests informed by economic
theory (341, 497), dopamine responses follow first- and
second-order stochastic dominance (FIGURE 31, F AND G),
suggesting meaningful coding of economic value and risk
and incorporation of risk into neuronal substrates of sub-
jective value. Thus three types of experiment demonstrate
that dopamine neurons incorporate risk appropriately into
neuronal substrates of subjective value and formal utility,
namely, value responses modified by risk in correspondence
with risk attitude (FIGURE 31E), second-order stochastic
dominance between different risky outcomes (FIGURE 31G),
and processing of utility assessed via CEs across risk seeking
and risk avoiding domains (FIGURE 27B) (560).

Risk influences also subjective value coding in orbitofrontal
cortex (444, 482) and modifies saccadic activity in posterior
cingulate cortex (355). In human prefrontal cortex, risk
affects value responses in close correspondence to individ-
ual risk attitudes in analogy to Equation 21A (596). Direct
risk coding for risk perception and incorporation of risk
into subjective value constitute two different processes that
allow multiple uses of risk information for behavior.

Taken together, the distinct neuronal coding of value and
risk suggest that Pavlovian reward predictions concern
probability distributions defined by value and risk. In con-
trast to reward magnitudes that impact directly on sensory
receptors, the coding of EV, probability, and risk of reward
is not explained by peripheral sensory stimulation but re-
quires central neuronal mechanisms including memory. Ir-
respective of these implementation details, the separation of
reward signals according to the statistical moments of prob-
ability distributions, and the possible correspondence to
Taylor series expansion, provides a biological basis for the
mathematical treatment of rewards as probability distribu-
tions, demonstrates the biological plausibility and imple-
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mentation of these mathematical concepts, and incorpo-
rates them into the neuronal basis of learning theory.

8. Adaptive processing

Whereas the number of neurons and their maximal firing
rate limits the processing capacity of the brain, the number
of possible rewards is huge. Dedicating equal processing
capacity to all possible rewards would lead to low slopes of
reward-response functions and thus poor reward discrimi-
nation. However, reward availability varies considerably
between situations. An efficient discrimination mechanism
would restrict neuronal processing to the rewards that are
currently available in a given environment, similar to sen-
sory adaptation to probability distributions of ambient vi-
sual intensities (148, 235, 307).

For optimal response slopes and thus best use of the limited
neuronal coding range, reward processing may adapt to all
statistical moments of reward distributions, including EV
and variance (FIGURE 29A). When schematically separating
these two moments, changes in EV lead to processing shifts
with maintained response slopes (FIGURE 32A), whereas
variance affects response slopes, which become steeper with
narrower distributions and flatter with wider distributions
(FIGURE 32B). These adaptations lead to optimal reward
discrimination with steepest possible response slopes while
maintaining as wide reward coverage as possible.

The consequences of adaptive processing are changes in net
utility, which may be expressed generically by adding a term
(EUadapt) that summarily covers adaption to all statistical
moments of the current probability distribution of objective
values

EUnet " EU # EUadapt (22)

This approach includes reference-dependent valuation in
prospect theory derived from Equation 10

EU " !i&u(mi # r) * +$pi(mi)%' ; over all i
(22A)

with r as reference value (258). The term r is replaced by
EVr if reference r derives from a probability distribution
rather than being a single value

EU " !i&u(mi # EVr) * +$pi(mi)%' ; over all i
(22B)

Equation 22B describes adaptation to the first moment of
the probability distribution of objective values. The adap-
tation to EV can lead to vastly different utilities for identical
objective values (FIGURE 32A).

A milder approach to reference-dependent valuation com-
bines nonadapted and adapted utility (290). This approach
would refine the generic Equation 22 to

EUnet " $EU % ,(EU # EUadapt) ; $ % , " 1
(22C)

$ and , are additional weighting coefficients. In the termi-
nology of Köszegi and Rabin (290), EU represents con-
sumption utility, and (EU-EUadapt) is reference dependent
gain-loss utility. Thus EUnet consists of weighted absolute
and relative utilities. Considering nonadapted value recog-
nizes the fact that we know cognitively the absolute reward
value, even though we value it relative to references or dis-
count it over time. We know that $100 is still the same $100
irrespective of having received $50 or $500 the last time
around, even though we may feel more elated receiving
them as a positive than negative surprise.

Adaptive processing may not be limited to a single refer-
ence value and should be extended to full distributions.
Inclusion of other statistical moments such as variance
adds slope changes. We extend Equations 10 and 22B by
introducing - for slope adaptation to variance (or stan-
dard deviation)

EU " !i&u[. * (mi # EVr)] * +[pi(mi)]' ; over all i
(22D)

A convenient term for - is 1/standard deviation (384, 438).
The adaptation to variance can lead to larger utilities for
identical or even lower objective values (FIGURE 32B).

Adaptations to reward probability distributions underlie
several interesting behavioral phenomena. The negative
contrast effect derives from a downshift of reward and re-
duces behavioral reactions and preferences compared with
the same low reward occurring without preceding higher
values (51, 104, 593), even when the lower outcome adds
value (513). A positive but less prominent contrast effect
exists also. The opponent process theory of motivation ac-
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FIGURE 32. Scheme of adaptive reward processing. A: adapta-
tion to expected value (r1, r2): shift of reference point changes utility
gain to loss for identical objective values. B: adaptation to variance
(v1, v2): slope adaptation to variance results in larger utility for lower
objective value. [Value function from Kahneman and Tversky (258),
copyright Econometric Society.]
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counts for observations indicating that cessation of reward
is aversive, whereas end of punishment is rewarding (552).
This effect may well derive from short-term adaptation to
the initial reward or punishment, respectively. Adaptations
to distributions may also explain the dichotomy in humans
between “experienced utility” reflecting utilitarian, hedonic
value (39) and “decision utility” measured in overt choices,
although overweighting of recent and maximal value is also
important (259). This effect is also seen in monkeys (52).
The distinction may explain irrational, suboptimal, domi-
nated choices. Monkeys favor [one food morsel plus a 50%
chance of a second morsel] over [two food morsels with
50% chance of losing one], although EVs are both 1.5 mor-
sels, although endowment effect and loss aversion may also
play a role (91).

Reward responses in dopamine neurons, striatum,
amygdala, parietal cortex and orbital, dorsolateral, and cin-
gulate prefrontal cortex adapt to reward magnitude and
reward probability distributions as suggested by Equation

22 (137, 628). More formally, the adaptations may occur to
changes in EV (FIGURE 33A) (42, 106, 232, 601), variance
(FIGURE 33B) (284, 420, 598), or both combined (80, 403).
In subtracting reward value from the mean (prediction er-
ror) and dividing it by standard deviation, dopamine neu-
rons code a z-score of reward value (598). Divisive normal-
ization from sensory physiology describes well the adapta-
tions to changes in individual values of choice options in
reward neurons of parietal cortex (332). The ventral stria-
tum is importantly involved, as lesions here reduce reward
contrast in rats (326). Taken together, the adaptations
would be driven by neuronal EV and risk signals and result
in a match between the probability distribution of neuronal
responses and the probability distribution of current re-
ward values. The result would be dynamically varying, op-
timal reward response slopes and thus efficient reward pro-
cessing for choices. The loss of the actual values would be
immaterial in choices comparing the options relative to
each other. Thus, in adapting to the two key moments of
reward probability distributions, reward neurons make ef-
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FIGURE 33. Adaptive neuronal reward processing in mon-
key orbitofrontal cortex. A: response adaptation to approxi-
mate expected subjective value in single neuron. Trial block 1
offers pieces of cereal or apple, separate block 2 offers
same apple (indicated by same stimulus) or raisin. Behavioral
choices ranked cereal $ apple $ raisin. Visual instructions
predict type of reward, trigger stimuli elicit arm movement
leading to reward. [From Tremblay and Schultz (601).] B:
response adaptation to variance of reward amount (ml) in
single neuron. Inset shows change of reward-response re-
gression slope in same neuron. [From Kobayashi et al.
(284).]
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ficient use of processing resources for optimal reward dis-
crimination and choice.

The EU shift between environments and the slope adapta-
tion may result in lower utility of higher absolute reward
values (FIGURE 32B). Thus adaptation may lead to violation
of rank order, menu invariance, independence from irrele-
vant alternatives, and transitivity, which are crucial for
meaningful economic choices. However, at least two pro-
cesses may serve to maintain transitivity in the presence of
adaptive valuation. First, the mentioned predictive EU and
risk signals in dopamine neurons (598) and orbitofrontal
cortex (391) convey information about the two key mo-
ments of the reward probability distribution of each envi-
ronment. These signals may combine with the adapted
value signal to generate an accurate, absolute, nonadapted
value signal and thus maintain transitivity at the neuronal
level. Second, adaptations require time and may only con-
cern subpopulations of reward neurons. Indeed, only a frac-
tion of orbitofrontal reward neurons show adaptation,
whereas the remainder codes reward magnitude irrespec-
tive of other rewards (403, 406, 284). Although longer
test periods might have increased the number of adapting
neurons, some orbitofrontal reward neurons seem to
code nonadapted, absolute value necessary for maintain-
ing transitivity. Adaptation and absolute value coding by
different neuronal populations would combine efficacy
with transitivity.

9. Social rewards

Observation of social partners and comparison of rewards
between them is crucial for competition and cooperation
that improve performance and give individuals access to
otherwise unobtainable resources and ultimately enhance
fitness. Social factors and contexts have at least two distinct
reward functions.

First, viewing and encountering others is a reward on its
own. Rhesus monkeys sacrifice quantities of liquid reward
for viewing body parts of conspecifics, demonstrating that
social images have reward value (124). Neurons in monkey
parietal cortex code the reward value of conspecific’s faces
and hindquarters (279), although orbitofrontal and striatal
neurons code these social stimuli often separately from liq-
uid rewards (629).

Second, reward to others affects own reward processing.
With benevolent exceptions (“Mother Teresa” and many
other mothers), individuals hate to receive less reward than
others when all other factors are equal. Disadvantageous
inequity aversion typically induces a sharp, gradually de-
clining, drop in the utility of own reward (FIGURE 34A)
(324). Emotional correlates are envy and distaste for un-
equal or unfair outcomes. Individuals often also dislike,
usually to a lesser extent, receiving more reward than oth-
ers. This advantageous inequity aversion may elicit a similar
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FIGURE 34. Social reward processing. A: social reward inequity aversion. Difference between own and
other’s reward reduces my utility. Usually, disadvantageous inequity (getting less than others, negative
difference, left) has stronger and more consistent effects than advantageous inequity (getting more than
others, right). [From Loewenstein et al. (324).] B: action-dependent coding of social reward in single striatal
neurons. In the imperative reward giving task (modified dictator game), two monkeys sit opposite each other
across a touch-sensitive computer monitor and give reward to itself and the conspecific. Left: neuronal
activation when receiving own reward, either only to itself (red) or together with conspecific (green), but no
activation with reward only to conspecific (violet) or to nobody (blue). Right: activation with own reward occurs
only with own action (top, continuous lines) or only with conspecific’s action (bottom, dotted lines, different
neurons between top and bottom). [From Báez-Mendoza et al. (25).]
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but weaker utility drop. Associated emotions are compas-
sion, sense of fairness, guilt, dislike of inequity, positive
reciprocity, group welfare, “warm glow,” and maintaining
personal social image (83, 149). The aversion may turn into
advantageous inequity seeking (getting more than others)
with competition and other advantage seeking situations
associated with pride, sense of achievement, superiority
feelings, and retaliation. Good behavioral tools for assess-
ing inequity are the ultimatum game in which rejection of
unfair offers assesses disadvantageous inequity aversion,
and the dictator game in which the reward fraction handed
to the opponent reflects advantageous inequity aversion
(83, 149).

Final own expected utility in social settings EUnet can be
stated generically as

EUnet " EU # EUsocial (23)

EU stands not only for income utility (Equation 10) but also
for any utility EUnet derived from reward components
(Equations 11, 12, 13, 18, 21, and 22). EUsocial is derived
from the difference between own value x and value xo re-
ceived by the opponent(s), weighted by disadvantageous ($)
and advantageous (,) inequity coefficients in analogy to a
popular model (150), resulting in

EUnet " EU # $ * max$(x0 # x), 0%
# , * max$(x # x0), 0% (23A)

where $ and , are disadvantageous and advantageous in-
equity coefficients, respectively. Alternative accounts focus
on reciprocal “fairness weights” which enhance own re-
ward value when being nice to a nice opponent and reduce
own value when being mean to a mean opponent, thus
stabilizing cooperation and disfavoring unsocial behavior
(442). Both models suggest that reward to others has appre-
ciable value for the observer. Although condensing social
reward value into a common value variable is tempting and
would help to conceptualize decisions, nonvalue factors
such as strategy may importantly influence decisions (50,
150, 151).

Chimpanzees and rhesus, cebus, and marmoset monkeys
show prosocial tendencies and actively observe rewards in
conspecifics (77, 123, 359). Cebus show disadvantageous
but no advantageous inequity aversion (69). Rhesus prefer
receiving own reward alone over both animals receiving the
same reward, suggesting advantageous inequity seeking
(negative , of Equation 23), and they prefer seeing conspe-
cifics receive reward over nobody receiving reward, suggest-
ing disadvantageous inequity seeking (negative $) in this
setting (23, 89). Disadvantageous inequity reduces the ef-
fort cebus are willing to spend (612). Many of these social
effects may depend on the relative social positions of the
monkeys within their group and would merit further inves-
tigation. These social tendencies seem simplistic compared

with those of humans but may constitute basic building
blocks for social encounters and exchanges.

Reward neurons in monkey orbitofrontal cortex and stria-
tum process primarily own rewards in social settings,
whereas neurons in anterior cingulate cortex distinguish
between own and other’s reward or sense primarily conspe-
cific’s reward (FIGURE 34B, left) (23, 25, 89). Striatal re-
ward neurons distinguish between the social agents whose
action leads to own reward (FIGURE 34B, right) (25). These
neurons are only active when either own action or the oth-
er’s action results in own reward, and many of them do not
show this activity with a computer instead of a monkey
opponent. Neurons in medial frontal cortex show activa-
tions during observation of behavioral errors of conspecif-
ics, sometimes together with observation of reward omis-
sion (647). Some premotor mirror neurons distinguish be-
tween reward and no reward irrespective of who is receiving
it (78). These neuronal signals mediate the distinction be-
tween own and others’ rewards and actions and thus con-
vey basic components of social reward function. When test-
ing social competition, reward neurons in prefrontal cortex
differentiate between competitive and noncompetitive
video game performance (234). In humans, disadvanta-
geous inequity reduces, and advantageous inequity acti-
vates, ventral striatal reward responses (165), reflecting $
and , of Equation 23A (the coding direction may reflect
different signs of the two coefficients or different neuronal
coding slopes). Taken together, social reward neurons code
fundamental components of competition and cooperation.

10. Multiple reward attributes

Single rewards come seldom with a single attribute. Attri-
butes include income utility, cost, delay, risk, and social
interaction quantified by Equations 9-23A. Their aggregate
subjective reward value can be condensed into a single vari-
able called total utility. This has advantages. First, extract-
ing the variable once from the multiple reward attributes
and then using it for choices would save the decision maker
computing time in crucial moments and thus enhance evo-
lutionary fitness, even if occasional attribute changes re-
quire partial recalculations. Second, the brain could trans-
form the condensed neuronal value responses into signals
for specific decision variables for competitive decision
mechanisms such as winner-take-all (see below).

Total utility EUtotal of a single reward with multiple attri-
butes can be derived from a combination of attributes, each
with their own expected utility derived from likely nonlin-
ear and possibly nonmonotonic utility functions

EUtotal " EU % fi * EUstate
% f2 * EUcxt # f3 * EUcost # f4 * EUdiscount

# f5 * EUrisk # f6 * EUref # f7 * EUsocial
% INTER (24)
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where f1 to f7 are weighting coefficients reflecting the differ-
ent contributions of each reward attribute. In some cases,
the attributes can be so closely linked to individual rewards
that the total utility u(total) of a reward can be directly
derived from adding or subtracting their utility u(att) to the
income utility u(m)

u(total) " u(m) # u(att) (24A)

Establishing a full probability distribution from u(total) of
all rewards would allow computation of EU with Equations
9 or 10 that amounts to the same EUtotal as stated in
Equation 24.

Take the example of a hamburger in a pub and apply Equa-
tions 10, 11, 12, 13, 18, 21, 22, and 23. Its expected utility
EU is defined by the probability distribution of the utilities
of the slightly varying hamburger sizes u(burger). My hun-
ger enhances EU by EUstate, and the familiar pub context
associated with food and drink adds to the burger’s attrac-
tion with EUcxt. However, the burger does not come for
free (EUcost) and takes a moment to cook because of a busy
kitchen, subjecting it to temporal discounting (EUdis-
count). Burger quality varies, to which I am averse, thus
reducing its EU by EUrisk, although it is still the best food in
the pub, which puts its EU above a mean reference and adds
EUref (in a gourmet restaurant it would have lower rank
and thus lose EUref). When the burger finally arrives, it is
smaller than my neighbor’s and thus elicits disadvantageous
inequity aversion, but better than my dieting other neigh-
bor’s salad, inducing mild advantageous inequity aversion,
which both reduce the burger’s EU by EUsocial. Some of
these attributes are known to interact which is captured
summarily by INTER. For example, smaller rewards are
discounted steeper (lower EUdiscount with smaller EU)
(277) and larger stakes increase risk aversion (lower EUrisk
with larger EU) (152, 630).

11. Multiple rewards

Most rewards are composed of several individual reward ob-
jects whose values add up and may interact. Our hamburger
meal is composed of the burger with its calories and taste, a
tomato salad with taste and appealing visual aspects, and a
pint of ale with water, calories, taste, and alcohol, thus totaling
eight individual rewards. However, ale is sometimes poorly
pulled (not in my pub), which would constitute an aversive
component that would need to be subtracted from the positive
components to obtain a summed final reward. If utilities of
several rewards are assessed separately on a common scale,
they can be weighted and added up to a summed utility, with
possible interaction (INTER)

EUsum " !i(fi * EUtotali) % INTER;
i " 1, n rewards (25)

with fi as weighting coefficients. Each of the rewards is
likely to have its own saturation dynamics. INTER models

multisensory integration as interaction that can make aver-
sive taste or odor in some, usually small quantities add to
reward value, rather than subtract from it, like pepper on
meat, spicy mustard on sausage, or quinine in sugary fizzy
drinks.

Equation 25 can be used for assessing the value of an oth-
erwise unquantifiable reward on a scale defined by a com-
mon reference reward. For example, in choices between
[juice plus picture] versus [juice alone], the value of the
picture is reflected by the sacrificed amount of its associated
juice to obtain choice indifference (124). Punishers can be
included into Equation 25 where they reduce EUsum. They
constitute negative value but not economic cost, as they do
not reflect energetic, temporal, or monetary expenditures.
Behavioral choices of monkeys reveal the value summed
from rewards and punishers compatible with Equation 25
(FIGURE 11A) (160).

With the specification of final utility EUsum, the reinforce-
ment Equations 10A–D can be restated as

UPEsum(t) " !(t) # EUsum(t) (26)

EUsum(t % 1) " EUsum(t) % $ * UPEsum(t)
(26A)

UTDPEsum(t) " $!(t) % )!EUsum(t)%
# EU(t # 1) (26B)

EUsum(t % 1) " EUsum(t) % $ * UTDPEsum(t)
(26C)

Analogous definitions can be made for utility prediction
errors of multiple attributes of single rewards by replacing
EUsum by EUtotal of Equation 24. With multiple rewards
and reward attributes, summed, single prediction errors of
Equations 26 and 26B would not require separate compu-
tations of utility prediction error for every reward and at-
tribute. Such prediction errors can be used by economic
decision mechanisms for straightforward EU updating by
standard reinforcement rules.

Alternatively, prediction errors may be computed from sep-
arate, possibly multi-attribute, rewards that are added up in
a weighted manner, in analogy to Equation 25

UPEsum(t) " !i$fi * UPEtotali(t)%
% INTER; i " 1, n rewards (26D)

UTDPEsum(t) " !i$fi * UTDPEtotali(t)%
% INTER; i " 1, n rewards (26E)

A similar calculation is used for incorporating fictive out-
comes into gamble values (329). This computation takes the
prediction error of each reward into account. An analogous
breakdown of prediction error computation, and hence up-
dating, can be made for individual reward components
listed in Equation 24.
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Given that the dopamine prediction error signal codes util-
ity (560), the dopamine responses (Equations 10E and
10H) can be restated for multiple rewards by replacing EU
by EUsum

DaResp(t) " !(t) # EUsum(t) (26F)

and for the temporal difference error

DaResp(t) " $!(t) % )!EUsum(t)% #

EUsum(t # 1) (26G)

DaResp in Equations 26F and 26G would apply also to
utility error signals in other brain structures.

Common scale value coding is a prerequisite for applying
Equation 25 to neuronal signals and is seen in orbitofrontal
cortex with different liquid rewards (405) and images of
body parts (629), in parietal cortex with body part images
(279), and in dopamine neurons with different liquid and
food rewards (301) (FIGURE 23, B AND D). Neuronal signals
reflect the sum of positive and negative values from liquid or
food rewards and aversive liquids or air puff punisher in
monkey dopamine neurons (FIGURE 11D) (157, 160) and
anterior cingulate cortex (10), and from odor rewards in
human orbitofrontal cortex (190). Compatible with coding

negative value as component for Equation 25, some frontal
cortical neurons are depressed by losses of gained rewards
(532). Ideally, neuronal investigations would test EUsum
with all constituent components, although this is impracti-
cal and experimenters usually investigate only a few of them
at a time.

D. Economic Decision Mechanisms

1. Component processes of decisions

In a highly simplified scheme, economic decisions may in-
volve five component processes (FIGURE 35). The initial
intentional component comprises the desire of obtaining a
reward (left). This emotion is based on the knowledge, or at
least a hunch, that there is a reward that is worthwhile to
pursue. With a belief that an action can be attributed to the
reward, an intention can be formed to perform an action to
get the reward. Thus the reward becomes the goal of the
intentional action. In the practicalities of laboratory exper-
iments, these processes can be driven by explicit, temporally
specific stimuli indicating the availability of rewards or arise
spontaneously by processes internal to the decision maker
based on environmental information. The desire to get a
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sequence, and to some extent in parallel depending on the characteristics of the decision. Decision variables
are indicated in central box below their respective mediating processes (object value, action value, chosen
value, chosen object, chosen action).
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beer may be driven externally by the sight of a pub or
internally by the heat of a summer day.

Once the intentional stage has been completed, the inputs to
the decision mechanism are processed (FIGURE 35, top).
Perceptual decisions require stimulus detection and then
evidence accumulation for identifying the sensory reward
component, tracking the object and assessing its associated
salience components (FIGURE 1, left and middle). Correct
identification of each reward option is the basis for choos-
ing the best one. For example, perceptual decisions identify
motion direction from the degree of dot motion coherence;
the percentage of correct identification translates into re-
ward probability (134, 389).

The perceptual stage is followed by valuation of the indi-
vidual reward objects (FIGURE 1, right) or, depending on the
characteristics of the decision, by valuation of the actions
required to obtain each reward object. Valuation comprises
the immediate identification or gradual accumulation of
value evidence, similar to the accumulation of sensory evi-
dence in perceptual decisions. The process may either par-
allel the gradual identification of the object or action or
start only after they have been completely identified. The
decision stage (FIGURE 35, middle) begins with object and
action valuation and comprises the selection of the best
reward by comparing instantaneously or gradually the val-
ues of the available objects or actions. Valuation and value
comparison may evolve partly in parallel (double pink ar-
rows). Purely sensory and motor aspects no longer play a
role, unless they affect value, such as effort cost (Equation
13). Following valuation and value comparison, the ab-
stract decision specifies the result of the process. It concerns
only the decision itself and leads to three selections: the
winning object, the winning action, and the prediction of
the reward value extracted from the winning object values
and action values. If the decision primarily specifies the
winning object, subsequent object-action mapping deter-
mines the action required to obtain the reward object.

Obtaining the selected object and performing the selected
action requires motor decisions for preparing and executing
the necessary action (FIGURE 35, bottom), as every decision
will ultimately lead to an action for acquiring the chosen
reward. The quality of motor decisions determines the effi-
cacy of the economic decision process. Decision makers
want to get the action right to get the best reward. In cases
in which different possible actions have the same cost and
lead to the same reward, motor decisions may become in-
dependent of economic decisions. In these cases, the choice
of the particular action may depend on noise or on motor
exploration. Apart from equivaluable actions, it is unclear
how much motor decisions can be independent of economic
consequences. If actions are chosen for their own sake, they
have intrinsic reward value and thus are economic deci-
sions. After experiencing the selected reward object, its

value is compared with the value predicted during the deci-
sion process (FIGURE 35, right). The resulting prediction
error is conveyed to the valuation process in the input stage
where it serves to update object values and action values.

The scheme of FIGURE 35 should not suggest strictly se-
quential processing of decision variables that transitions
from sensory identification via value assessment to deci-
sion-making. Real life situations are often characterized by
noisy evidence, unstable values, moving objects, and chang-
ing actions and thus are likely to engage several of these
processes in parallel. Furthermore, dopamine, striatum,
amygdala, frontal, and parietal neurons show not only
hugely different but also considerably overlapping reward
valuation and decision activity. Several arguments suggest
nonsequential processing of evidence, value, and decisions.
First, dorsolateral frontal and posterior parietal neurons are
involved in spatial movement processes but also show con-
siderable reward value coding (FIGURES 20E AND 21) (313,
381, 433, 627). Second, ramping activity for evidence ac-
cumulation is the hallmark of cortical perceptual decisions
but occurs also in subcortical structures during reward ex-
pectation and valuation (18, 40, 215, 221, 260, 523).
Third, abstract decision coding and chosen action coding
overlaps with reward valuation in subcortical structures,
including amygdala (188) and striatum (79, 275, 306). Al-
though the different processes may involve different neuro-
nal pools within the same brain structures, the data never-
theless question a strictly sequential processing scheme and
suggest more interactive and overlapping processing of ev-
idence, value, and decision-making within the different
structures and through subcortical loops.

In addition to many nonvalue factors that determine eco-
nomic choices (see above), even purely value-based deci-
sions may not involve the complete or correct consider-
ation, computation, or comparison of values. A first impor-
tant deviation from proper value processing is due to noise.
Noise can be derived from uncertain sensory evidence (ex-
perimentally modeled, for example, by partly coherent ran-
dom dot motion), varying salience attribution, imprecise
estimation of economic value (economic noise, for example,
when estimating probabilities from changing frequencies,
or when deriving value from these probabilities), and noisy
learning constants inducing unstable value predictions. Ex-
cept for sensory evidence, which is external to the brain, the
noise results from neuronal noise in sensory receptors and
subsequently engaged neurons. Ways to deal with noisy
information are averaging out the noise and accumulating
the evidence over time. A second deviation from proper
value processing occurs with exploration. Options that
were previously suboptimal might have improved in the
meantime and should better be recognized to prevent miss-
ing the best options and ensure utility maximization in the
long run. Exploration is captured by /-greedy and softmax
functions (575). A single parameter models the proportion
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of exploration and dominated choices (higher / and soft-
max “temperature” for more exploration). Thus utility
maximization involves a healthy mix of exploitation
(choosing known best options) and exploration (choice of
dominated but potentially better options). The proportion
of exploration should be fine tuned to the dynamics of the
environment to result in maximal reward. It should be
higher in volatile (higher / or temperature) compared with
more stable situations (lower / or temperature). A third
deviation from proper value processing occurs with satisfy-
ing when individuals fail to consider all available options
and choose only from a subset of many options that seem to
satisfy their immediate desires (85, 545). Individuals may
stop searching for higher value and thus make suboptimal
choices. However, in some cases, the cost of considering all
options may be high and reduce substantially the net benefit
(Equations 13–15), in which cases satisfying may constitute
the optimal behavior. A fourth deviation from proper value
processing may be due to adaptive value processing that
includes inaccessible and thus irrelevant options. In these
cases, irrelevant alternatives do affect option values and
may make less valuable options appear more valuable and
direct choices towards them. The common result of the
various forms of incomplete value consideration may be
selection of suboptimal, dominated options whose values
are lower than those of the best option, a behavior that
compromises utility maximization.

2. Decision variables

A decision variable is what the decision maker tries to con-
trol and use to achieve the goal. It is the crucial independent
variable driving the decision process. The basic decision
variable in economic choices is subjective value and, more
specifically, formal economic utility. The basic assumption
in all economic decision theories is that decision makers aim
to maximize utility. Utility is derived from several attributes
including reward magnitude, probability, motivational
state, context, cost, delay, risk, reference, and social inter-
action, as stated in Equations 9–25 above. This notion of
decision variable differs from the more technical definition
that includes all sources of inputs to decision rules and
mechanisms (185).

An additional definition of decision variables derives from
the specific decision mechanism that serves to control them.
Decision variables should be appropriate for this mecha-
nism. Economic decision variables constitute the inputs to
the decision mechanism and reflect the value of each option
irrespective of the actual choice (FIGURE 35, top). The value
is expressed as formal economic utility. It concerns specifi-
cally the value of a reward object (object value) and the
value obtained by an action (action value). Although the
decision process cannot change what is on offer, it maxi-
mizes the value by selecting the best object or action from
the existing inputs (FIGURE 35, middle). This process re-
quires sensory evidence for identification of each option as

prerequisite for subsequent valuation of the options. Sen-
sory evidence itself is not a decision variable in economic
decisions, as it is imposed by the environment, and control-
ling it would not necessarily lead to the best reward. Fur-
thermore, decision variables are closely related to the out-
puts of the decision process. The outputs controlled by the
decision maker concern the reward value predicted from the
decision (chosen value), the object that conveys that value
(chosen object), and the selection of the valuable action
(chosen action). Preparation, initiation, and execution of
the action for obtaining that value are downstream pro-
cesses (FIGURE 35, middle and bottom).

The value in the decision variables is rarely innate but ac-
quired and updated using various forms of learning, in par-
ticular Pavlovian processes, operant habit learning, and op-
erant goal-directed behavior, as described above. Through
these three forms, objects and actions acquire formal eco-
nomic utility, using model-free reinforcement learning as
most basic mechanism, as stated in Equations 10B, 10E,
26A, and 26C. More complex learning and updating of
utility may use various forms of model-based reinforcement
learning.

Perceptual decision models, which are crucial for the sen-
sory identification of reward objects (FIGURES 1, left, and
35, top), assume the gradual accumulation of evidence that
needs to be extracted from noisy stimuli. Two main types of
perceptual decision models vary in the way the inputs are
compared with each other. Random walk, drift, or diffu-
sion models have a single integrator with separate decision
thresholds specific for each option (FIGURE 36A). Evidences
are continuously compared between options through mu-
tual inhibition at the input level (254, 302, 447, 454, 549,
565). The resulting difference signal grows and diverges
over time towards one of the decision thresholds. The deci-
sion is executed for the option whose threshold is reached
first. In contrast, race models have distinct accumulators for
each option, each one with its own decision threshold. The
evidences grow separately until the first option reaches a
specific threshold, which then generates the corresponding
behavioral choice (FIGURE 36B) (327, 614, 622). Race mod-
els are appropriate for choices involving several options
that are tracked separately until a final comparison can be
made. Intermediate forms between diffusion and race mod-
els differ in architecture and parameter setting (55). The
valuation of each option (FIGURES 1, right, and 35, top)
may occur as soon as the perceptual decisions have been
made and each reward object has been identified. In other
cases, the value may not be immediately apparent and re-
quires some time to evolve into a stable representation.
Only then can an economic decision variable arise. Thus a
general formulation of economic decision mechanisms
should include accumulation processes for sensory and
value evidence.
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The basic mechanism of the decision process is competition
between independent options and underlies a large variety
of decision models (55, 56, 441, 585, 623). It would medi-
ate the on-going comparison and divergence of evidence in
the diffusion models (FIGURE 36A), achieve the final com-
parison between options in the race models (FIGURE 36B),
or constitute a decision mechanism on its own when evi-
dence is immediate and accumulation negligible. The mini-
mal model comprises two inputs that map onto two outputs
while inhibiting each other’s influence (FIGURE 36C).
Through forward excitation coupled with mutual lateral
inhibition, the stronger neuronal signal becomes even more
dominant by not only inhibiting more the weaker signal but
also by being less inhibited by the weaker input. The mech-
anism amplifies the graded differences between the inputs,
analogous to lateral inhibition of sensory systems, and, with
various alterations, forms the basis for competition in a
wide variety of diffusion and race models for perceptual and
motor decisions (55, 56, 441, 585, 622, 623) and may also
apply to economic decisions. Recurrent excitation would
generate gradually increasing evidence accumulation in
components of the network (622, 623). An additional
threshold produces a winner-take-all (WTA) mechanism by
removing the weaker signal and turning the graded differ-
ence into an all-or-none output signal that reflects only the
value of the strongest option or consists of an all-or-none
decision signal for the winning option. This comparative
mechanism provides definitions for the major decision vari-
ables.

Neuronal decision signals should reflect the decision vari-
ables defined by the decision mechanisms. The art is to
identify formal, biologically plausible decision models that
employ the mechanisms defining the decision variables and
are implemented with identifiable neuronal activities during
various trial epochs (FIGURE 20, A AND D). The activities
concern the initial accumulation of evidence, implemented
by gradually increasing ramping activity in perceptual deci-
sions (FIGURES 35, top, and 36, A AND B), and the subse-
quent valuation of the options. The central competitive pro-
cess and its outputs (FIGURES 35, middle and bottom, and
36C) are reflected in distinct neuronal activities coding the
input decision variables of object value (405) and action
value (500), the abstract decision output (188), and the
chosen value (405), chosen object (38), and chosen action
(543). Updating of decision variables via prediction errors
occurs globally via dopamine neurons and locally through
specific groups of non-dopamine reward neurons (FIGURE
35, right). Neuronal decision signals are typically investi-
gated in choice tasks, although basic processing aspects may
be studied in imperative, forced-choice trials, which allow
to assign neuronal coding to individual choice options and
to predictions from a single stimulus. The following sec-
tions are devoted to these descriptions.

3. Evidence and valuation

The initial stage of the decision process concerns the rapid
or gradual acquisition of evidence and the valuation of the
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FIGURE 36. Schematics of decision mechanisms. A: diffusion model of perceptual decisions. Difference
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opposite choice option (red, blue). Later threshold acquisition results in later decision (green). Time basis
varies according to the nature of the decision and the difficulty in acquiring sensory evidence and valuing the
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identified options (FIGURE 35, top). Acquisition of evidence
takes time, in particular when the evidence itself is noisy.
Neurons in many brain structures have the capability to
bridge time gaps and accumulate information through per-
sistent activity that may ramp up to future events. Ramp-
ing activity is one of the major neuronal mechanisms
underlying decisions. This form of neuronal activity con-
cerns sensory information in perceptual decisions, motor
processes in action decisions, and economic utility with
all its components in economic decisions (Equations
9 –13, 16, and 21–25).

Ramping activity reflects a general propensity for persis-
tent, gradually increasing activity in many cortical and sub-
cortical neurons. It occurs without choice during several
processes. During the expectation of sensory events, activity
increases gradually toward predictable visual stimuli in pre-
motor cortex (FIGURE 37A) (350), prefrontal cortex (65),
parietal cortex (248), and striatum (6, 18, 215, 526, 528).
During the instructed preparation of eye and arm move-

ments, activity ramps up and differentiates between move-
ments in primary motor cortex (467), premotor cortex (FIG-
URE 37B) (298, 491, 493, 636), frontal eye field (74, 506)
[and its projection neurons to superior colliculus (147)],
supplementary eye field (101, 506), supplementary motor
area (491, 493), parietal cortex (109, 184), superior collicu-
lus (379), and striatum (FIGURE 20F) (526, 528). Ramping
activity to a threshold occurs also several seconds in ad-
vance of internally chosen, self-initiated movements in neu-
rons of premotor cortex, supplementary motor area, pari-
etal cortex, and striatum; these neurons are typically not
activated with externally triggered movements (FIGURE
37C) (299, 311, 337, 380, 397, 491, 493, 526, 528). Similar
human encephalographic ramping activity resembling the
readiness potential is the basis for an accumulator decision
model for movement initiation (515). During reward expec-
tation, ramping activity occurs in orbitofrontal cortex (216,
544, 602), dorsal and ventral striatum (FIGURES 32C AND
37D) (18, 205, 215, 523), and amygdala (FIGURE 37E) (40).
The anticipatory ramping activity seen with sensory events,
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FIGURE 37. Neuronal ramping activity preceding stimuli, action, and reward. A: gradual activity increase
during the expectation of an initial visual instruction stimulus in premotor cortex neuron. Open arrow points to
movement triggering stimulus. [From Mauritz and Wise (350), with kind permission from Springer Science and
Business Media.] B: gradual increase of left-right differential activity during movement preparation in premotor
cortex neuron. Activity terminates just after the movement triggering stimulus and before the movement. Left
(black) and right (gray) refer to target positions. [From Kurata and Wise (298).] C: ramping activity preceding
self-initiated movements in striatum neuron. Activity begins gradually without external imperative stimuli and
terminates with movement onset. [From Schultz and Romo (528), with kind permission from Springer Science
and Business Media.] D: differential reward expectation activity in striatum neuron. Activity is lower in
anticipation of raspberry juice (black) than blackcurrant juice (gray). [From Hassani et al. (205).] E: reward
expectation activity in amygdala neuron reflecting instantaneous reward probability. Activity ramps up steeply
before singular reward occurring at predictable time after stimulus onset (increasing reward expectation), but
shows lesser increase before reward occurring pseudorandomly during stimulus (flat reward expectation with
flat occurrence rate). [From Bermudez et al. (40).]
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actions, and reward may constitute a basic neuronal mech-
anism for perceptual decisions, economic decisions, and
internal movement generation.

During perceptual decisions, primary sensory systems code
evidence about physical stimulus parameters irrespective of
the subject’s perception and decision (120), whereas activ-
ity in secondary sensory cortex and premotor cortex reflects
the animal’s subjective perception (120, 121). Ramping ac-
tivity occurs over several seconds in neurons in parietal
cortex, frontal cortex, and superior colliculus during the
gradual accumulation of noisy evidence and reaches a cri-
terion threshold at the moment of choice. Ramping activity
is absent when sensory evidence is immediate and thus may
not simply reflect neuronal processing (334). Ramping ac-
tivity occurs during dot motion discrimination in prefrontal
cortex, lateral intraparietal cortex (LIP), and superior col-
liculus (FIGURE 38A) (230, 274, 483, 535); length and
brightness discrimination in superior colliculus (448, 450);
and visual search and visual stimulus identification in fron-
tal eye field neurons (FIGURE 38B) (49, 587, 588). Although
typically tested with two choice options, ramping activity in
LIP occurs also with four options (97). The slope of the
ramp buildup to criterion threshold varies in LIP and supe-
rior colliculus with the speed and difficulty of the decision
derived from the coherence of moving dots (FIGURE 38A)
(483), differences in reaction time (97, 270, 448, 483), and
differently rewarded options (494). The height of activity at
choice threshold is the same irrespective of sensory coher-
ence and motor response time in LIP (FIGURE 38A) (483).
The statistical variance of neuronal activity in LIP increases

gradually and declines earlier for one option compared with
the other option immediately before the action (96). The
probability of accurately predicting the animal’s behavioral
choice from neuronal activity in LIP increases during the
ramp (535), suggesting that intraparietal activity is suitable
for affecting subsequent neurons involved in expressing the
decision through action. Accordingly, ramping activity in
prefrontal neurons changes its direction while monkeys
change their decision (269). Choice accuracy depends on
the starting point of the neuronal ramp but not its threshold
in LIP (199). The ramping activity in perceptual choice
tasks does not correlate with objective sensory stimulus
parameters but reflects the subjective perception expressed
by the animal’s choice, as shown with errors in direction
judgement in LIP neurons (FIGURE 38C) (270, 535). Ramp-
ing activity may not always reflect motor processes, as it
occurs in the frontal eye field even without action (587,
588) and in LIP correlates with motion strength evidence
but not action (535).

During action decisions, even when straightforward sen-
sory signals do not require lengthy accumulation of infor-
mation, ramping activity in frontal eye fields builds up to a
threshold for movement initiation before saccadic choices
(198) and before correctly countermanded saccades (FIG-
URE 39A) (507). The rate of neuronal build-up determines
saccadic reaction time (FIGURE 39B) (198, 508). Neuronal
activity in cingulate motor area, frontal eye fields, and LIP
ramps up before monkeys change movements to restore
declining reward (FIGURE 39, C AND D) (101, 543). During
delayed action instruction, neurons in premotor cortex
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show initial nondifferential activity that becomes stronger,
selective, and ramps up for the action once the target is
revealed (FIGURE 39E) (98). As these activities occur in mo-
tor areas, reaching the threshold may reflect the completed
decision process or the initiation of action.

With economic decisions between differently rewarded op-
tions, neurons in LIP show ramping activity with noisy
reward options (494). This activity likely reflects the accu-
mulation of sensory evidence before the reward valuation
rather than constituting the valuation process itself. How-
ever, LIP neurons show ramping activity also with immedi-
ately evident, non-noisy information about the reward op-
tions, such as differently colored lights at specific spatial
positions (FIGURE 40) (571). The neuronal activity scales
with the economic decision variable of fractional income
and predicts the chosen action. Neurons in anterior cingu-
late cortex show ramping build-up towards a single thresh-
old when animals leave a foraging patch with decaying

reward value (209). Steeper ramp slopes reflect shorter re-
action times for leaving the patch, as the overt choice is
initiated when the common threshold is reached. These
ramping activities cannot reflect noisy evidence but may
constitute components of the neuronal decision process in
the transition from sensory processing to reward valuation.
They might also reflect associated processes such as stimu-
lus or reward expectation or movement preparation. Nev-
ertheless, ramping activity is not a necessary feature for
economic decision activity in frontal cortex neurons (404),
although its absence in a studied neuronal pool would not
contradict ramping activity in other, unrecorded neurons,
as cortical neurons show vastly inhomogeneous task rela-
tionships. In a probabilistic choice task with unambiguous
visual symbols, parietal cortex activity reflects the economic
decision variable of log likelihood ratio of probabilistic re-
wards (643). A potential ramp is due to averaging of asyn-
chronous, nonramping activity. Without outright decisions,
responses of amygdala and dopamine neurons reflect the
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transition from initial sensory processing to reward valua-
tion (FIGURE 9) (159, 422), which is considerably prolonged
when the sensory evidence is noisy (389). Neurophysiolog-
ical dopamine responses show a ramp with reward risk
(FIGURE 31, C AND D) (161) but not with reward value.
Striatal dopamine release ramps up before reward (237)
which likely reflects presynaptic influences from reward ex-
pectation related cortical or amygdala inputs to striatum
(40, 216, 544, 602) or from striatal neurons (18, 205, 215,
523) (Figures 32C and 37, D and E), but not a dopamine
impulse ramp which does not occur with riskless rewards.

The morphology of ramping activity corresponds to the
number of thresholds per neuron in the different decision
models (56). The two-threshold drift-diffusion model as-
sumes neuronal activity that ramps up differentially to-
wards upper and lower thresholds for respective options
(FIGURE 36A) (254, 302, 447, 565). Such activity is seen
during perceptual decisions (FIGURE 38, A AND C) (97, 449,
483, 535) and economic decisions (FIGURE 40) (571). The
observed gradual divergence of ramping activity in the same
neuron may represent the output of an ongoing graded
comparison with mutual inhibition in competing presynap-
tic neurons (FIGURE 36C). The single-threshold type of de-
cision model conceptualizes a gradual divergence of ramp-
ing activity in the same neuron. The ramp either reaches the
threshold for a specific option or fades back to baseline for
the alternative option (FIGURES 36B). Such activity would
also form the basis for race models in which activities from
different pools of differentially active neurons race toward
their individual thresholds (609, 614). Differential ramping
activity is seen during the expectation of sensory events
(FIGURE 37A) (6, 18, 65, 215, 248, 350, 526, 528), motor
preparation (FIGURE 37B) (74, 98, 101, 109, 147, 184, 298,
299, 311, 337, 379, 380, 397, 467, 491, 493, 506, 526,
528, 636), reward expectation (FIGURE 37, D AND E) (18,
40, 205, 215, 216, 523, 544, 602), perceptual decisions
(FIGURE 38, A AND B) (274, 483, 588), motor decisions
(FIGURE 39A) (198, 507, 508, 587), and economic deci-
sions (FIGURE 40) (571). The final step to the choice in
these models may involve a graded or WTA competition
between different neurons (FIGURE 36C).

Taken together, neuronal ramping activities constitute key
mechanisms in the identification of choice options from

sensory evidence and may partly underlie their valuation.
They reflect both the evidence that the decision maker can-
not influence and the decision variables controlled by the
decision maker. Ramping activities resemble statistical de-
cision processes for accumulating stochastic information
about sensory evidence (185) and rewards and follow major
assumptions of decision models (FIGURE 36, A AND B). The
activities are widespread in the brain and reflect internal
processes related to expectation of events, decisions be-
tween options, and preparation of action. As they occur
also without choices, they may represent a general feature
of neuronal physiology that is used for decision-making.
Gradually increasing activity provides a focusing influence
on downstream neurons through greater signal strength
and higher signal-to-noise ratio, allowing better selection of
behavioral actions (FIGURE 36C).

4. Object value

Object value denotes the value of a specific reward object. It
derives intuitively from nutrient or other survival values of
rewards that are sought by humans and animals for sur-
vival. In human societies, object value is fundamental for
economic exchanges of goods in which a quantity of one
good with a specific value is traded against another good
with a specific value. Object value is the basis for the mar-
ginal rate of substitution in economics which is the amount
of good A a consumer is willing to give up to obtain one unit
of good B, utility remaining constant across the exchange
(341). To choose optimally, we assess the utility of each
object separately, compare between them, and then select
the best one. The value updating after each experienced
outcome involves reinforcement learning (Equations 10B,
10E, 26A, and 26C) with Pavlovian, habit, and goal-di-
rected processes. Thus object value is defined as an input
variable for competitive decision mechanisms (FIGURES 35,
top, and 36C), in analogy to action value conceptualized in
machine learning (575).

Object value has three crucial characteristics. First, it varies
with the values of a reward object and, in principle, should
be quantified as formal economic utility (Equations 9–12).
Second, the value refers to one specific choice object. When
choosing between several reward objects, such as a piece of
meat and a loaf of bread, each object has its own and inde-
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pendent value. “Objects” are solid or liquid rewards indi-
cated by their appearance (color of fruit or fluid) and spe-
cific, intrinsically arbitrary stimuli associated with rewards.
Different containers of the same kind of milk are examples
of stimulus objects. Without being outright physical ob-
jects, events, situations and activities endowed with value
have functions analogous to objects for economic decision
mechanisms. The objects gain value through the animal’s
actual experience with the reward or from inferences based
on non-Bayesian or Bayesian models of the world. Third,
object value is independent of the actual choice of the ob-
ject. It indicates the value of a good irrespective of whether
we will imminently receive or consume it, thus complying
with the notion of reward information, rather than explicit
reward prediction. Economic exchanges are based on value
comparisons irrespective of immediate consumption. A
pound of meat has an object value of $15 irrespective of
whether I buy it now or not. Without this property, object
values cannot serve as independent inputs to comparative
decision mechanisms. Thus minimal tests for object value
require two different reward objects, two values separately
for each object, and independence from object choice.

Object value neurons process the value of one particular
object irrespective of the animal’s action. There would be
grape juice neurons tracking the value of grape juice irre-
spective of the animal’s choice, or banana neurons indicat-
ing how much the monkey will get if it were to climb the
tree. The separate neurons tracking value for the specific
objects constitute inputs for competitive decision models. In
a binary decision, each input neuron, or pool of neurons,
coding the value of its specific object competes with the
input neurons coding the value of the other object. Hybrid
subforms may show more pronounced object value coding
if one particular object or action is chosen (combination
with chosen object or chosen action coding defined below).
To make meaningful comparisons, their signals need to
vary on a common scale, both between the rewards (“com-
mon currency”) and between the neurons. Neither sensory
differences between rewards nor different coding ranges or
slopes between neurons should affect object value signals.
The model can be easily extended to three and more options
as long as each neuron codes only the value of a single
object. Thus object value coding on a common scale ap-
pears to constitute a suitable neuronal decision signal for
competitive decision mechanisms.

Neurons tracking the value of specific reward objects irre-
spective of reward choice or reception are found in orbito-
frontal cortex. They code selectively the value of a specific
fruit juice irrespective of the monkey’s choice and the re-
quired action [named “offer” value (405)] (FIGURE 41, A
AND B) and thus do not predict the choice (404). These
activities comply with the competitive formalism that re-
quires independent coding of object value at the input (FIG-
URE 36C). Orbitofrontal object value coding remains selec-

tive with three rewards (406), conforming coding specificity
for a particular object. Impaired object-reward associations
during choices in orbitofrontal lesioned humans and mon-
keys underline an orbitofrontal role in object value coding
(84, 108).

In contrast, most conventional reward responses reflect ex-
plicit reward prediction or reception and thus do not have
the necessary property of coding object value irrespective of
the actual choice, without which they could not serve as
independent inputs to competitive decision mechanisms.
They reflect the actual, free or forced, behavioral choice and
probably code forms of chosen value and reward prediction
(see below).

5. Action value

All choices lead to movements. Whether they are ocular
saccades, licking, reaching, locomotion, or speech, they all
consist of muscle contractions performed to get the best
value for the effort. Even verbally expressed choices, and
speaking itself, involve muscle contractions (of the larynx,
mouth, and hands). Machine learning and reinforcement
learning, which are concerned with artificial agents moving
about the world, use action value to model the agent’s be-
havior for maximizing reward (575), like robots deciding
which car part to weld first. Animals deciding between for-
aging patches are likely more interested in the value the
action can bring them rather than considering each patch as
an object. Each action leads to a reward value if it were
chosen, thus the shorthand term of action value. Thus, for
maximizing utility, an agent selects the action by which they
achieve the highest estimated value. Pavlovian, habit, and
goal-directed processes provide mechanisms for setting up
and updating action value which, in principle, should be
quantified as formal economic utility (Equations 9–25).

Actions are not only means for obtaining reward but may
be themselves pleasurable and rewarding. The intrinsic re-
ward may be added to the action value that usually refers
only to the reward obtained from the action. The subjective
nature of intrinsic action value emphasizes the need for
quantitative behavioral assessments of often nonlinear and
even nonmonotonic subjective value functions rather than
inferring value from objective reward and action properties.

Like object value, action value is defined as input variable
for competitive decision mechanisms (FIGURES 35, top, and
36C). Similar to object value, it requires three conditions.
First, action value reflects reward value (amount, probabil-
ity, EV, EU; Equations 9–13, 16, and 21–25). Second, value
coding is specific for a particular action. The value is at-
tached to an action and varies only for that action, such as
an arm movement to the right or the left (spatial differen-
tial), an arm or an eye movement (effector differential), or
going to work or vacation. Action value may arise from
operant conditioning following the animal’s actual experi-
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ence with the reward or from inferences based on models of
the world, e.g., Bayesian. Third, action value is independent
of the actual action choice and the value obtained by that
choice. Without this property, action values cannot serve as
independent inputs to competitive decision mechanisms.
Thus minimal tests for action value require two different
actions, two different values for each action, and indepen-
dence from choice.

Action value neurons process the value for one particular
action irrespective of the animal’s action. There would be
left action value neurons tracking the value of a move-
ment to the left irrespective of the animal’s actual move-
ment on that trial, and there would be separate right
action value neurons. Or different neurons would respec-
tively track the value of arm and eye movements irrespec-
tive of the animal’s actual movement selection. Such
separate action value tracking neurons are suitable inputs
to competitive decision mechanisms that underlie utility
maximization (FIGURE 36C). Subforms may show prefer-
ential action value coding for particular chosen actions

or objects. Action value signals need to vary on a com-
mon scale, both between the actions and between the
neurons, to constitute comparable neuronal decision sig-
nals. Sensory and motor parameters of the action should
not affect action value signals.

Neurons coding action values according to these definitions
are found in monkey and rat dorsal and ventral striatum
(slowly and tonically firing neurons), globus pallidus, dor-
solateral prefrontal cortex, and anterior cingulate of mon-
keys and rats. These neurons code selectively the value of
the left or right arm or eye movement irrespective of the
animal’s choice (FIGURE 41, C AND D) (245, 267, 275, 306,
500, 530). Action value neurons are more frequent in mon-
key striatum than dorsolateral prefrontal cortex (530). Ac-
tion values in these studies are subjective and derived from
behavioral models fitted to the choices (245, 267, 306, 500,
530) and from logistic regressions on the animal’s choice
frequencies (275). However, the required common scale
coding is unknown. The anterior cingulate cortex is in-
volved in action-reward mapping during choices, as lesions
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there reduce preferences for more rewarded movements in
humans and monkeys (84, 108).

The substantial action value coding in the striatum may
reflect the pronounced motor function of this structure.
Indeed, optogenetic stimulation in mice of dopamine D1
receptor expressing striatal neurons (direct pathway) in-
duces within a few minutes behavioral preferences toward
an operant touch or nose poke target associated with the
stimulation, whereas stimulation of D2 receptor expressing
striatal neurons (indirect pathway) induce behavioral dis-
preference (293). These data are compatible with the notion
of striatal action value signals constituting inputs to a com-
petitive decision mechanism located in the striatum or
downstream structures.

In contrast, some reward signals reflect the explicitly pre-
dicted reward for specific actions while the actions are being
planned or executed. These signals do not comply with
action value coding, as they don’t show the required inde-
pendence from free or forced choice and action and thus are
unsuitable inputs to competitive decision mechanisms (see
below under “chosen value”). They code the chosen value
during choices and reward prediction in choices or impera-
tive trials. If the signals code in addition specifics of the
actions they may reflect goal-directed mechanisms (see
above and FIGURE 20, E AND F).

6. Object value versus action value

The two decision variables derive from the intuition of ob-
jects having reward value that can be traded and require
actions for obtaining them. The two variables may play
different roles depending on the choice situation. Object
value computations are likely to play a major role when
values of objects change frequently and need to be tracked
before choosing the required action. Once the object has
been selected, its value can be directly mapped onto the
action, without computing and comparing all action values.
When I like to select a fruit at a new lunch place, I check the
values of all available fruits (object value), and then I choose
the highest valued fruit. Then I will know the action that
gets me the chosen fruit (map the object to the action),
without need to value each action and choose between their
values. I can enjoy the feeling to soon get my beloved fruit,
but that comes after the decision has been made and thus
does not enter the competitive decision process. Indeed,
monkey orbitofrontal neurons code the chosen value and
map it onto action activity in dorsolateral prefrontal cortex
to initiate the action (“good-to-action transformation,”
Ref. 81).

In contrast, when object values are rather stable but actions
change frequently, action value would be the more appro-
priate decision variable. With frequent action changes, ef-
fort cost may change and should to be tracked continuously
and subtracted from income value (Equation 13). At the

time of choice, the different object values are mapped onto
action values while subtracting effort cost of the currently
required actions. In realistic choice situations, the progres-
sion from object value to action value may not be so stereo-
typed, nor would object value have primacy over action
value or vice versa. Rather, object values, action values,
object-action mapping, and motor plans would evolve with
partial overlap depending on the choice situation. Neuronal
processing of these variables and mechanisms, and the com-
petition mechanisms at each stage, may involve separate
neuronal populations in different brain structures. Indeed,
orbitofrontal and anterior cingulate lesions induce differen-
tial deficits in object-reward and action-reward associations
(84, 108).

7. Abstract decision

Once the comparison process has resulted in selection of the
best reward object, the output of the selection process may
be specified by an abstract decision signal that concerns
only the decision and as such may precede the specification
of the choice. Abstract decision signals code the choice in a
binary, categorical manner and irrespective of value, object,
or action.

Abstract decision signals are seen during perceptual deci-
sions. They become apparent when decoupling the decision
temporally or spatially from the subsequent reporting ac-
tion. The signals occur without, separately from, or stron-
ger than object or action signals in prefrontal, premotor,
secondary somatosensory, and anterior cingulate cortex
with vibrotactile stimulus comparisons (FIGURE 42A) (212,
312, 334, 340, 489, 490) and visual stimulus detection
(360, 361). They are also seen as buildup activity in supple-
mentary eye fields and superior colliculus during visual
search (587) and random dot motion discrimination (230).

Abstract decision signals occur also in specific neurons in
the amygdala that show graded reward value coding early
during the trial and transition to later binary abstract deci-
sion coding (FIGURE 42B) (188). The decision signal from
1–50 pooled neurons predicts the upcoming choice cor-
rectly in 75–90% of trials, respectively, and remained pre-
dictive even with identical reward between the two options.
These neurons are not activated during imperative forced-
choice trials, nor do they code visual stimuli indicating the
options or the subsequently chosen oculomotor actions.
Abstract decision signals during economic choices in the
amygdala extends its recently recognized reward function
(422) to economic decision-making and challenge the view
of a structure primarily known for fear responses.

8. Chosen value

Chosen value reflects the value of the specific object or
action that the decision maker obtains from the choice. Its

NEURONAL REWARD AND DECISION SIGNALS

922 Physiol Rev • VOL 95 • JULY 2015 • www.prv.org



function is defined by competitive decision mechanisms
(FIGURES 35, middle, and 36C). Whereas object value and
action value are attached to an object or action irrespective
of the choice, chosen value reflects the explicitly predicted
or received reward value following the choice of that object
or action. Thus chosen value reflects the output of the deci-
sion mechanism. For this important difference, chosen
value should not be called object value or action value,
even when it is attributed to a specific object or action.
Chosen value is a decision variable, as it is controlled by
the decision maker, who usually tries to maximize it
(with the exceptions mentioned above). Chosen value, in
principle, should be quantified as formal economic utility
(Equations 9–25). Reinforcement learning employing Pav-
lovian, habit, and goal-directed processes provide mecha-
nisms for setting up and updating chosen value.

Chosen value comes in two forms. Chosen object value
reflects the value of a chosen reward object, like apple or
orange, or the value of a specific stimulus predicting a par-
ticular reward. In contrast, chosen action value reflects the
value of a chosen action. This distinction can be exemplified
with particular reward magnitudes and probabilities. Re-
wards A and B are 1 ml and 2 ml of juice, respectively.

Reward A occurs at the left in 20% of trials and at the right
in 80%, whereas reward B occurs at the left in 60% and the
right in 40% of trials. Then chosen object values are 1 ml
and 2 ml for rewards A and B, respectively, whereas chosen
action values are 1.4 ml for left (1 ml ) 0.2 ! 2 ml ) 0.6)
and 1.6 ml for right action (1 ml ) 0.8 ! 2 ml ) 0.4). Most
experiments do not specifically address this distinction by
not using such discriminating values.

Neuronal chosen value signals reflect the value of an object
or action irrespective of nonvalue attributes. These signals
do not code the kind of reward (sensory aspects), sensory
properties of predictive stimuli, spatial reward occurrence,
stimulus positions, and required actions. In free choices
between objects, specific neurons in orbitofrontal cortex
code the chosen value of two or three different reward juices
(FIGURE 23, A AND B) (405, 406). These activities reflect the
estimated or experienced subjective economic value of the
chosen juice, as assessed psychophysically by behavioral
choices, and thus predict the choice (404). The signals scale in
the same way across different rewards, thus coding value in
common currency. Dopamine neurons code chosen value ir-
respective of action. Their value signal varies with the reward
probability associated with the chosen stimulus (377).
Stronger dopamine activations following conditioned stim-
uli predict the choice of the higher valued stimulus. Chosen
value signals in the striatum show temporal discounting in
choices between identical reward liquids delivered after dif-
ferent delays (79). Chosen value signals in anterior cingu-
late cortex code reward magnitude, probability, and effort,
often in the same neurons (261). Chosen value signals in the
supplementary eye field reflect the subjective value of ob-
jects, as estimated from certainty equivalents of behavioral
choices between certain and risky outcomes (551). In im-
perative forced-choice trials, neurons in striatum and sub-
stantia nigra pars reticulata distinguish between stimuli pre-
dicting different reward magnitudes irrespective of sensory
stimulus properties (107, 654).

In free choices between actions, some striatal neurons code
chosen value without coding the action itself. The value
signals vary with the reward probability associated with the
chosen action and predict choice of the better action with
higher activity during several task epochs (275, 306). Some
striatal reward magnitude coding neurons do not distin-
guish between actions in imperative trials but reflect the
reward value predicted from the choice (107). Chosen value
signals in the striatum often occur after the overt behavioral
choice, whereas action value signals typically appear before
the choice (275, 306), suggesting that these chosen value
signals represent the result of the decision process.

Unchosen value refers to the value of an unexperienced
outcome. Whereas chosen value reflects the actual reward
and is appropriate for experience-based decisions and rein-
forcement learning, unchosen value reflects some knowl-
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edge about the world and might be more appropriate for
model-based behavior. Animals benefit from the unchosen
value information to improve reward gains (1, 208). Some
neurons in dorsal and ventral striatum code unchosen value
during intertemporal choices in monkeys (79) and during
locomotor choices in rats (275). These neurons are distinct
from the more frequent chosen value coding neurons in
these structures. Some neurons code both chosen value and
unchosen value with similar response slopes in anterior cin-
gulate (208) and in orbitofrontal and dorsolateral prefron-
tal cortex (1). Thus some chosen value neurons code value
irrespective of actual outcome.

Even before choosing, subjects may inspect the different
options and process the anticipated value of each option.
Humans show such inspectional eye movements whose fre-
quencies and durations comply with evidence accumulation
in diffusion decision models (291). It would be interesting
to see whether neuronal value processing may initially re-
flect the value of the object or action being considered and
subsequently shift to coding the chosen value. During ac-
tion decisions, neurons in premotor cortex show initial ac-
tivity for both actions but become selective for the final
action after an imperative instruction (98, 99).

Hybrid forms of chosen value include chosen objects or
actions. Corresponding neuronal signals reflect the value of
the chosen reward together with sensory or motor informa-
tion about the chosen object or action. If these activities
occur well before the overt behavioral choice and increase
towards a decision threshold, they may reflect the evidence
accumulating in favor of the chosen option and thus play a
role in the decision process. If the activities occur after the
decision, they would constitute the outputs of the decision
process and not drive the decision itself. They are occasion-
ally referred to as object value or action value coding. How-
ever, according to the definition by competitive decision
mechanisms (FIGURE 36C), they constitute chosen value
coding, as they reflect the reward value derived from the
chosen objects or actions. Neuronal activity combining ex-
pected reward value conjointly with object information is
only reported from imperative trials in frontal and temporal
lobe neurons, as mentioned above (231, 319, 371, 394,
411), but cannot be labeled as “chosen” value due to the
nonchoice task nature. Neurons coding chosen value con-
jointly with action are found with free choices in dorsal and
ventral striatum (275, 306, 418, 479); globus pallidus
(418); premotor, prefrontal, and anterior cingulate cortex
(210, 532, 550, 620); and parietal cortex (433). The actions
are eye or hand movements towards different spatial targets
in monkeys (210, 306, 418, 433, 494, 550, 571, 620, 643)
and nose pokes and whole left versus right body movements
in rats (275, 479). In striatum, hybrid chosen value and
action coding neurons are distinct from neurons coding
only chosen value (306) or action value (306, 572). Con-
joint coding exists also between unchosen value and action

in orbitofrontal and dorsolateral prefrontal cortex (1).
Comparable conjoint coding of value and action occurs also
in nonchoice tasks (107, 135, 178, 205, 221, 243, 260, 282,
308, 313, 348, 354, 381, 427, 476, 502, 542, 606, 627),
without qualifying for chosen value coding.

9. Relative value

The competitive decision mechanism for maximizing utility
(FIGURE 36C) does not depend on actual values but involves
comparison of the options relative to each other and is thus
based on the difference or ratio of their values. Thus relative
value is an important decision variable which, in principle,
should be quantified as utility. Random walk-diffusion
models capture the importance of relative value by assum-
ing an early comparison with subsequent evidence growing
toward specific thresholds. The mechanism for coding rel-
ative value may involve mutual inhibition between inputs
that generates a graded difference between the inputs, am-
plified by the inhibition exerted by stronger inputs onto
weaker inputs.

For binary decisions between options 1 and 2, the relative
value can be stated using the final utility defined in Equation
25

REUsum " EUsum1 # EUsum2 (27)

Instead of EUsum, any of the constituent utility functions
defined by Equations 9–13, 16, and 21–24 can be used for
Equation 27. Most simply, REUsum may be derived from
objective magnitudes m1 and m2

Rm " m1 # m2 (27A)

to obtain relative utility

Ru " u1 # u2 (27B)

By applying a logarithmic utility function u " log (m), we
obtain

Ru " log(m1) # log(m2) (27C)

which is equivalent to

Ru " log(m1 ⁄ m2) (27D)

As Equations 8 and 9 show, reward value derives not only
from reward magnitudes but also from reward probabili-
ties. We replace m1 and m2 by probabilities p1 and p2

Ru " log(p1 ⁄ p2) (27E)

Ru is a log odds ratio, also called log likelihood ratio (643).
General simplifying formulations would replace objective
m and p by their summed product of EV.

Another good measure of relative value is the ratio of ob-
jective values (magnitudes or probabilities)
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Rv " v1 ⁄ v2 (27F)

The simple value ratio is often extended to include the
summed value of all options in the denominator, called
expected gain ratio (433) or fractional value (571)

RSv " v1 ⁄ !vi ; for i " 1, N ; n " number of options
(27G)

Reference value defined by Equations 27-27G applies to all
forms of economic value, including object value, action
value, and chosen value, and to all value functions defined
by Equations 8–13, 16, and 21–24. In monkeys, binary
behavioral choices follow relative subjective value defined
by the log odds ratio (Equation 27E) (643), reward magni-
tude ratio (Equation 27F) (306), or the ratio of objective
chosen reward magnitude or probability over all options
(Equation 27G) (433, 571). These measures are good pre-
dictors of choice preferences.

The difference value of Equation 27 is analogous to refer-
ence-dependent utility (Equation 22), as both terms indi-
cate relative value. Thus difference value and value adapta-
tion serve the same function. They allow comparisons be-
tween existing options rather than requiring separate
computations of the values of all options. Value ratios of
the chosen option over the alternative (Equation 27F) or all
options (Equation 27G) add adaptation to the spread of the
reward probability distribution and correspond to divisive
normalization in adaptive coding (332).

Some neurons in monkey and rat dorsal and ventral stria-
tum, globus pallidus, and anterior cingulate cortex code
difference subjective action value during free choices with
eye or body movements, conforming to Equation 27A (79,
245, 306, 531, 572). Subjective value is derived from rein-
forcement models fitted to the choices or logistic regressions
on choices. During temporal discounting, neurons code dif-

ferences in subjective action value in dorsal striatum, and to
some extent in ventral striatum (79). The discounted, sub-
jective value is assessed from logistic regressions on inter-
temporal choices. Due to the relative nature of difference
coding, neuronal activity varies positively with the value of
one action or negatively with the value of the alternative
action. True to the definition of action value, these relative
value signals do not depend on actual choice. Neuronal
difference signals exist also for chosen value in dorsal and
ventral striatum, which take both chosen and unchosen
values into account (79, 306). These activities increase with
the value of one option and decrease with the alternative’s
value and, different from action value, depend on the actual
choice. Neuronal activity in parietal association cortex re-
flects the reward ratio of the chosen option over all possible
options (Equation 27G) (FIGURE 43A) (137, 433) and
reaches a threshold at the time of choice (FIGURE 40) (494,
571). Similar parietal activity follows the increasing, loga-
rithmic reward probability ratio between two options
(Equation 27E) in the statistical sequential ratio test (FIG-
URE 43B) (643). Finally, difference signals for hybrid cho-
sen value and oculomotor action exist in dorsal and ventral
striatum (79, 306). Taken together, there are groups of
distinct reward neurons coding basically every form of
value decision variable in a relative way.

10. Chosen object and action

Although economic decision variables center around value,
once the decision has been specified internally, the process
may transfer to the overt behavioral choice without any
longer involving value. Some neuronal signals in principal
reward structures code the chosen object or the chosen ac-
tion (frontal cortex, parietal cortex, and striatum) (FIGURE
35, middle).

Chosen object signals code the specific reward selected dur-
ing the decision process or the specific visual stimulus pre-
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Shadlen (643). Reprinted with permission from Nature Publishing Group.]
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dicting a particular reward. They serve to identify the cho-
sen reward object while it is being acquired by an action.
The signal does not code value and is not a simple visual or
somatosensory response, as it may precede the appearance
of the object. With economic decisions, chosen object sig-
nals in orbitofrontal cortex reflect different juices (405).
With perceptual decisions, LIP neurons code the target
color chosen for reporting the earlier, temporally distinct
random dot motion direction (FIGURE 44A, orange) (38).
The signal is distinct from abstract decision and chosen
action coded by other parietal neurons.

Chosen action signals code the specific action for acquiring
the reward and may serve to prepare, initiate, and execute
the necessary motor processes. These signals reflect the fu-
ture action rather than reward value. They occur in cingu-
late motor area, anterior cingulate cortex, frontal and sup-
plementary eye fields, and parietal cortex when monkeys
change their actions after the reward for the current action
declined (543), even before contacting a switch-over key
(209) or before a chosen target occurs (FIGURE 39D) (101).
The signals are absent or less pronounced in imperative
forced-choice trials (101, 543). Neurons in LIP code the
chosen saccadic action during probabilistic reward choice
(433, 571), intertemporal choice (477), and dot motion
discrimination (494), both during free choices and impera-
tive forced-choice trials. In monkey and rat striatum, differ-
ent neurons code chosen action from action value or chosen
value during probability matching (306), locomotor choice
(275), and intertemporal choice (79). Neurons in ventral
striatum show much less chosen action signals than in dor-
sal caudate nucleus (79). Chosen action signals seem to
begin earlier in striatal compared with parietal neurons and
in both structures follow the subjective value signals by a
few hundred milliseconds (79, 306, 477, 494). Some chosen
action signals in parietal cortex are in addition modulated

by chosen value (571). Thus chosen action signals occur in
reward neurons close to behavioral output.

With perceptual decisions, parietal cortex neurons code
the saccadic action for reporting random dot motion di-
rection, distinct from abstract decision coding (FIGURE
44A, blue) (38). Neurons in superior colliculus show cho-
sen action signals superimposed on abstract decision sig-
nals (230).

With motor decisions, parietal cortex neurons show differ-
ential activity preceding freely chosen eye or arm move-
ments (FIGURE 44B) (109, 509). During instructed action
selection, separate neurons in premotor cortex initially code
all options, but their activity differentiates and ramps up
specifically for the arm movement imposed by a cue (FIGURE
39E) (98, 99). Although not reflecting free choice, the activ-
ity shows a nice transition from separate option coding to
specific option coding as a general template for the progres-
sion of neuronal coding of economic decision variables.

11. Updating economic decision variables

Whereas perceptual decisions are based on sensory evi-
dence, economic decisions require additional information
about the value obtained by the choice. For meaningful
decisions, this information needs to be predictive of the
outcome. Choices without predictions amount to guessing.
The value prediction does not derive from sensory organs
but is learned and updated by error driven reinforcement
learning. Its crucial error term is computed as the difference
between the experienced reward and its prediction (Equa-
tions 1, 2, 4, 5, 8A–D, and 26-26C).

The prediction entering the error computation derives from
different sources (575). In model free reinforcement learn-
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ing (460), the prediction derives only from direct experience
with the values of the chosen objects or chosen actions in
the past several trials. Other decision variables providing
predictions, such as object value and action value, are only
partly suitable for computing prediction errors because they
are independent of the object or action being chosen and
thus independent of the actually experienced reward. Their
predictions are only useful for computing prediction errors
when the objects or actions are chosen and their outcomes
experienced, whereas unchosen rewards cannot enter the
error computation. Thus the prediction in standard, model-
free reinforcement learning derives from chosen value,
which is a decision variable. In model-based reinforcement
learning, the prediction incorporates information from
models of the world and does not only reflect the recent
experience with the outcome. The value prediction can be
accurate even for objects and actions that have not recently
been chosen and experienced. For example, given a model
that assumes a constant sum of left and right action values,
the left action value prediction can be accurate after only
experiencing a right action and its outcome. Model-based
reinforcement learning incorporates information beyond
the experienced chosen value into the prediction and thus
affects the error computation, whereas the reward is expe-
rienced as a matter of fact irrespective of model or not.

The type of prediction entering the error computation af-
fects the form of the reward prediction error and thus the
efficacy of value updating in specific learning scenarios
(575). Three models are noteworthy in this respect. First,
the Sarsa model applies to a range of laboratory tests in
which the agent can experience all options during learning.
Its prediction error incorporates the prediction derived
from chosen value, which reflects the choice, but prediction
from object value and action value is only valid when it
derives from the actual choice. Thus chosen value neurons
in striatum, orbitofrontal cortex, supplementary eye field,
and anterior cingulate cortex (79, 208, 245, 261, 275, 306,
377, 405, 551) may serve as prediction inputs for the Sarsa
model, and dopamine neurons code prediction errors in
chosen value according to the Sarsa model (377). Second, Q
learning directly approximates the optimal reward value
within a given choice set. Its prediction error incorporates
the prediction of the maximal attainable reward value,
without taking the choice into account. Neurons in monkey
anterior cingulate cortex code the prediction for the maxi-
mal probabilistic reward value that the animal usually but
not always chooses (called task value) (12). Outright pre-
diction error signals coding maximal value have not been
described. Third, actor-critic models incorporate the sum of
reward predictions from all options. Neurons in striatum,
globus pallidus, and anterior cingulate cortex code the pre-
dicted sum (or mean with steeper slope) of reward values
(79, 208, 245, 531). Taken together, the Sarsa reinforce-
ment model has a correlate in the prediction error signals of
dopamine neurons and other reward neurons that reflect

predictions derived from chosen value. Future experiments
might search for prediction error signals of the other rein-
forcement models in a wider range of learning situations.

Error signals suitable for updating decision variables are
found in several reward structures. The bidirectional dopa-
mine reward prediction error response (517) occurs with
visual, auditory, and somatosensory stimuli (221, 365, 492)
irrespective of action (521, 597, 618); integrates reward
delay, reward risk, and different liquid and food rewards
into a common subjective value signal (285, 301); incorpo-
rates model-based predictions (68, 382, 598); and reflects
chosen value (377). Subgroups of non-dopamine neurons
show bidirectional prediction error signals in lateral habe-
nula, striatum, globus pallidus, amygdala, anterior cingu-
late cortex, and supplementary eye field (15, 36, 134, 227,
261, 275, 344, 531, 551). Some error signals in striatum
code additional sensory and motor parameters (556). Neu-
rons in cingulate cortex and supplementary eye field code
bidirectional prediction errors from object value and action
value to the extent of the object or action being chosen and
leading to actual reward experience (chosen object value
and chosen action value) (531, 550). Possible prediction
error signals are also the separate, unidirectional positive
and negative prediction error activations in anterior cingu-
late and supplementary eye field (246, 261, 551).

The updating function of the dopamine prediction error
signal can be considered within the generic competitive
model of decision-making (FIGURE 45). Irrespective of the
differences between formal decision models (55, 56, 441,
585, 623), the dopamine response would primarily update
the inputs to the comparison process, namely, object value
and action value that are coded during various trial epochs
(FIGURE 20, A AND D). The experienced and the predicted
reward for the dopamine error computation likely derive
from chosen value. The dopamine signal is rather similar
among individual neurons and has heterogeneous effects on
heterogeneous postsynaptic neurons. However, object
value and action value are processed irrespective of the
decision. They do not provide the necessary postsynaptic
specificity to make the dopamine influence selective, which
would indiscriminately update all object values and action
values, including those not even experienced. However, as
primary and higher order rewards occur only after an event,
neuronal updating involves stimulus traces that maintain a
label of the engaged synapses beyond the event and make
them eligible for modification (574). Thus each object value
and action value signal may leave a distinct eligibility trace
that decays rapidly unless being stabilized by neuronal in-
puts (FIGURE 14, B AND C). Neuronal activity from the
specific chosen object/chosen action signal may provide se-
lective inputs to object value/action value neurons for the
same object/action for stabilizing their eligibility traces (FIG-
URE 45, right), whereas the lack of activity from the uncho-
sen option would not prevent the decay (left). Thus the
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maintained eligibility trace reflects the output of the deci-
sion process and provides the necessary specific label for
dopamine influences to act upon. As a result, the indiscrim-
inate dopamine signal would selectively update the object
value and/or action value of the chosen option, whereas
object value and/or action value of the unchosen option
remain unaltered and need to wait for their next selection
before being updated (except in model-based reinforcement
learning, see above). Thus the influences of chosen object
and chosen action on the eligibility trace provide the neces-
sary selectivity for dopamine action. As an example (FIGURE
45), choice of a movement to the right and experience of the
corresponding reward would lead to updating of right ac-
tion value by a prediction error signal. If the right choice
resulted in a higher than predicted value and thus a positive
prediction error, right action value would be increased;
however, if the value is lower than predicted and elicits a
negative prediction error, right action value would be de-
creased. If the right action is not chosen, its value cannot be
experienced and thus will not be updated (or might decay
depending on the algorithm implemented). Taken together,
within a simple comparator model of decision-making, the
global influence of the dopamine error signal derived from
chosen value may serve to update input decision variables
for specific options via eligibility traces selectively stabilized
by activity from the chosen option.

Neuronal correlates for this hypothetized dopamine influ-
ence consist of the global projection of this reward signal to
most or all neurons in striatum and frontal cortex and to
many neurons in amygdala, thalamus, and other structures
(FIGURE 17A). The released dopamine influences the plas-
ticity between conjointly active presynaptic and postsynap-
tic neurons in a three factor Hebbian learning scheme (FIG-
URE 17, B AND C) involving striatum, frontal cortex, and
other structures in which appropriate dopamine depen-
dent plasticity is found (82, 194, 265, 294, 400, 401,
424, 461, 495, 540, 583, 642, 648). In this way, the
dopamine signal could affect synaptic transmission onto
striatal and cortical neurons coding object value and ac-
tion value. These effects may be differential within stria-
tal regions, as action value neurons are more abundant in
dorsal compared with ventral striatum (245), whereas
ventral striatum neurons are more involved in reward
monitoring unrelated to action coding (245, 523). The
dopamine plasticity effects may also be differential for
striatal neuron types, as optogenetic stimulation of neu-
rons expressing D1 or D2 dopamine receptors induces
learning of behavioral preferences and dispreferences,
respectively, possibly by updating action values (FIGURE
19F) (293). These neuronal data support the scheme of
dopamine updating of decision variables (FIGURE 45).
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FIGURE 45. Hypothetical mechanism of dopamine updating of decision variables. Within a competitive
decision mechanism, the global dopamine reward prediction error signal would act indiscriminately on post-
synaptic neurons and changes their synaptic input efficacy by influencing stimulus eligibility traces. It affects
only neurons coding object value or action value of the option chosen, as only their eligibility traces are being
stabilized and maintained by input from neurons activated by the chosen object or chosen action (right), but not
affect neurons whose initial eligibility traces are lost due to lack of stabilizing input from neurons not being
activated by the unchosen object or unchosen action (left). This selective effect requires specific connections
from chosen object/chosen action neurons to object value/action value neurons for the same object/action.
The prediction error conveyed by the dopamine neurons derives from chosen value (experienced minus
predicted reward). Gray zones at top right indicate common activations. The weight of dots and lines in the
circuit model indicates level of neuronal activity. Dotted lines indicate inputs from unchanged neuronal activi-
ties. Crossed green connections are inhibitory; WTA, winner-take-all selection. Scheme developed together
with Fabian Grabenhorst.
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Updating with non-dopamine error signals may be less
global and more selective. These neurons likely exert fo-
cused influences on specific postsynaptic neurons through
selective anatomical projections. Their error signals are
more specific for the type of information they provide and
for the type of postsynaptic neuron they influence. Thus
they are likely to be more specific for the objects and actions
and the type of neuronal value signals they update.

12. Immediate dopamine influences

In addition to affecting synaptic plasticity and learning,
phasic dopamine signals exert immediate influences on
postsynaptic processing and behavioral performance and
choices. The anatomical basis may be the triad arrangement
of dopamine synapses on glutamatergic inputs to dendritic
spines of striatal and cortical neurons (FIGURE 17B) (171,
186) and convergence in striatum and globus pallidus (416,
430). The long debated focusing effect assumes that dopa-
mine signals suppress the effects of weaker inputs to the
striatum while allowing stronger ones to pass through to the
basal ganglia outputs (70, 368, 594). Thus phasic dopamine
signals may affect the function of existing anatomical con-
vergence and modulate the use of neuronal connections. At
the cellular level, the phasic dopamine signal has excitatory
action on D1 receptor expressing striatal neurons of the
direct pathway by prolonging transitions to membrane up
states (depolarization) (213). In contrast, dopamine action

on D2 receptor expressing striatal neurons of the indirect
pathway reduces membrane up states and prolongs mem-
brane down states (hyperpolarization) (214). In a hypothet-
ical model of such action, the dopamine enhancement of
cortical input efficacy may induce reward related activity in
striatal neurons (FIGURE 46A). This influence may affect
reward processing in all forms of striatal task related activ-
ity (FIGURE 20, A AND D). Impairments of dopamine trans-
mission reveal the immediate dopamine influences. Striatal
dopamine depletion reduces learned neuronal responses in
striatum (13), alterations of D1 receptor stimulation affect
mnemonic behavior and neuronal activity in frontal cortex
(505, 616), and reduction of dopamine bursting activity via
NMDA receptor knockout prolongs reaction time (650).
These deficits relate well to the immediate behavioral effects
of phasic dopamine stimulation. Optogenetic activation of
mouse dopamine neurons, in addition to providing rein-
forcement, elicits immediate behavioral actions, including
contralateral rotation and locomotion (271). Pairing elec-
trical stimulation of the medial forebrain bundle containing
dopamine axons with lateralized stimulation of somatosen-
sory cortex induces forward locomotion in rats and directs
the animals in sophisticated and even unnatural spatial nav-
igational tasks (FIGURE 46B) (580). The forebrain bundle
stimulation likely serves as immediate reward, whereas the
cortical stimulation provides the necessary spatial informa-
tion. Corresponding to the action-inducing effects of dopa-
mine stimulation, indirect inhibition of VTA dopamine
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containing dopamine axons induces forward locomotion. The combined stimulation is able to guide a rat
through a three-dimensional obstacle course, including an unnatural open field ramp. Colored dots indicate
stimulation of forebrain bundle and somatosensory cortex. [From Talwar et al. (580). Reprinted with permis-
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neurons via optogenetic activation of local, presynaptic
GABA neurons reduces reward consumption (613). At the
postsynaptic level, optogenetic stimulation of dopamine D1
receptor expressing striatal neurons increases behavioral
choices toward contralateral nose poke targets, whereas
stimulation of D2 receptor expressing striatal neurons in-
creases ipsilateral choices (or contralateral dispreferences)
(FIGURE 46C) (576), suggesting an immediate, differential
effect on reward value for the two actions.

Whereas these effects are straightforward, stimulating a
couple synapses upstream of dopamine neurons induces
surprisingly complex effects. Optogenetic activation of teg-
mental inputs to dopamine neurons projecting to nucleus
accumbens elicits place preference, whereas stimulation of
habenula inputs to dopamine neurons projecting to frontal
cortex induces place dispreference (303). Whereas place
preference signals reward, dispreference reflects either aver-
sion or reduced reward. The dispreference might be due to
monosynaptic excitation of aversive coding dopamine neu-
rons, as suggested by FOS gene expression and excitatory
currents (EPSCs) in dopamine neurons and by blunting of
the dispreference with prefrontal D1 antagonists (303).
However, dopamine neurons are not activated by aversive
stimulus components (157, 160), FOS activation is slow
and may derive from rebound activation following dopa-
mine depression (158, 566), EPSCs do not necessarily in-
duce action potentials required for dopamine release in tar-
get areas, and the optogenetic stimulation of presumed do-
pamine neurons might have included non-dopamine GABA
neurons in used TH:Cre mice (304). Alternatively, dispref-

erence might reflect disynaptic inhibition of dopamine neu-
rons via the inhibitory rostromedial reticular nucleus (613).
The monosynaptic habenula-dopamine projection is weak
(625), and electrophysiology reports depression-activation
sequence of VTA and nigral dopamine impulse activity fol-
lowing habenula stimulation (95, 250, 344, 566) that likely
involves the inhibitory rostromedial reticular nucleus (226,
249). Furthermore, habenula glutamate receptor blockade
increases striatal and prefrontal dopamine concentrations,
probably reflecting blockade of the inhibitory habenula-
dopamine projection (310). The prefrontal D1 antagonists
likely blunt all prefrontal dopamine effects irrespective of
excitation or inhibition. Thus the place dispreference with
habenula stimulation unlikely reflects monosynaptic activa-
tion of aversive coding dopamine neurons and rather results
from inhibiting dopamine neurons via the reticular nucleus.
Indeed, a recent study reports inhibition of dopamine neu-
rons and behavioral dispreference by electrical habenula
stimulation. Similar place dispreference is elicited by acti-
vating midbrain GABA neurons that inhibit dopamine neu-
rons (613) or by directly inhibiting dopamine neurons (244,
582). Thus the approach and dispreference elicited by dif-
ferential input stimulation are likely the results of transsyn-
aptically induced increased and reduced dopamine reward
signals, respectively.

The immediate behavioral dopamine effects may be cap-
tured by a simplifying account that incorporates the essen-
tials of immediate dopamine influences on behavioral
choices into a generic competitive decision model (FIGURE
47). To have an immediate effect, the dopamine signal
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should reflect the prediction error at the time of the decision
preceding the final reward. This error is the TD reward
prediction error between the current prediction reflecting
the chosen value minus the preceding reward prediction.
The signal may influence neuronal activity for two kinds of
decision variables. A dopamine-focusing effect (70, 368,
594) on predecisional object value or action value signals
would enhance the value difference between the two op-
tions in a graded manner. The indiscriminate dopamine
signal would affect all active synapses on neurons coding by
definition object value and action value irrespective of the
decision. Such dopamine influences on action value coding
were assumed to explain the differential effects of optoge-
netic stimulation of D1 and D2 containing striatal neurons
on behavioral choices (576). A more divisive dopamine in-
fluence would be achieved by affecting neurons that code
the postdecisional variables of chosen object or chosen ac-
tion before the overt behavioral choice (FIGURE 47, right).
Activity in these neurons is differential due to selection by
the WTA decision mechanism. The nonexisting activity
from the unchosen option would not be enhanced by the
dopamine signal (left). Thus the WTA mechanism would
provide selectivity for the indiscriminate dopamine influ-
ence. Taken together, the basic comparator model of deci-
sion-making provides an architecture possibly underlying
the immediate influence of the phasic dopamine signal on
decision processes. This hypothesis is intentionally crude
and provides only a general account, without addressing
details of implementation by different types of dopamine
innervated neurons in striatum, frontal cortex, and
amygdala.

13. Formal neuronal decision models

The remarkable correspondence of neuronal signals to the
key features of decision models encourages the develop-
ment of biologically inspired neuronal models of decision-
making. In many of such models, the economic decision
variables of individual choice options are processed in sep-
arate pools of spiking neurons. The ramping activity is gen-
erated from transient inputs by recurrent synaptic excita-
tion involving AMPA or NMDA receptors to induce self-
sustained attractor states and integrate sensory or value
information. The competition between choice options is
mediated by GABA neurons exerting mutual, lateral, feed-
forward, or feedback inhibition between the neuronal pools
for the choice options. The WTA mechanism combines the
inhibition with a thresholding mechanism that leads to ac-
celeration of ramping activity or to all-or-nothing selection
between signals. The winning suprathreshold activity then
propagates to pools of output neurons that mediate the
behavioral action.

For neuronal decision models involving the cerebral cortex,
key features are the discovery of explicit neuronal decision
signals and the local synaptic connectivity. A generic model
for perceptual discrimination of random dot motion direc-

tion in LIP neurons uses a difference signal derived from
pools of specific direction-sensitive input neurons from
middle temporal (MT) cortex (535). For example, larger
activity in rightward compared with leftward motion cod-
ing MT neurons results in an LIP difference signal for right-
ward motion. The activity begins with appearance of the
moving dots and accumulates over time with the continuing
incoming noisy evidence about dot motion direction until it
reaches one of the two decision thresholds. This model con-
forms to a diffusion model with continuous comparison
between options and activity diverging towards one of sev-
eral thresholds (55) and fits well the experimental data
(535). Through its generality, such a model would also fit
economic decision processes during which LIP neurons
code the log likelihood ratio decision variable in a sequen-
tial probability ratio test (643), which constitutes an effi-
cient decision mechanism (619).

A cortex model of two-stage somatosensory frequency dis-
crimination uses two mutually inhibitory pools of 250 noisy
spiking neurons that represent the two choice options
(334). The model neurons show sustained activity that
scales with the frequency of the first, transient vibratory
stimulus until the comparison stimulus occurs. The subse-
quent activity conforms to an abstract decision signal that
does not vary with individual stimulus frequencies. The
sustained activity and its transition from mnemonic coding
to decision signal resemble closely the activity of prefrontal
and premotor cortex neurons of monkeys in this task (65,
212, 488, 489). The model achieves categorical decisions by
discriminating between vibratory stimuli irrespective of
their actual frequencies and thus supports the function of
the experimentally observed neuronal signals in perceptual
decisions.

More elaborate cortical neuronal decision models employ
architectures comprising frontal and parietal cortex, basal
ganglia, and superior colliculus (FIGURE 48A) (323, 622,
623). Transient inputs induce persistent activity with slow
temporal integration via recurrent cortical NMDA and
AMPA mediated excitation. Mutual lateral inhibition be-
tween pools of 240 irregularly spiking neurons mediates the
competition between the stochastic choice options. By excit-
atory attractor dynamics and WTA competition throughout
decision formation, the ramping activities in the neuronal
pools representing the choice options become increasingly
more separated in their race toward specific decision thresh-
olds. The ramping activities reflect evidence accumulation or
decision variables such as event likelihood ratio for percep-
tual decisions or object value, action value, and derivatives
for economic choices. The cortical activity exceeding the
competition threshold is detected by the superior colliculus
via direct or double inhibitory influences through caudate
nucleus and pars reticulata of substantia nigra and then
propagated to the oculomotor system. The modeled neuro-
nal activities replicate well the experimentally observed
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ramping in frontal and parietal neurons described above.
Dopamine-mediated three-factor Hebbian reinforcement
learning may set the decision threshold in caudate nucleus
or cortex (554). Thus cortical WTA determines the ramp-
ing, superior colliculus detects threshold crossing, and do-
pamine neurons set the threshold.

For neuronal decision models involving the basal ganglia,
key features are the well-organized corticostriatal projec-
tions, internal connections, and parallel loops with cor-
tex (7, 141, 164, 196, 197, 252); the synaptic conver-
gence through the component structures (FIGURE 48B)
(416, 430); the separate striatal outputs with sequential
inhibitory neurons (93, 127); and the dopamine-medi-
ated plasticity of corticostriatal connections (424, 517,
540). The basal ganglia may be involved in two distin-
guishable aspects of decision-making, namely, the direct
selection of options and the updating of option values
through reinforcement learning (57).

Option selection in the basal ganglia employs the dopa-
mine focusing effect (70, 368, 594) and anatomical con-
vergence in striatum and globus pallidus (416, 430)

(FIGURE 47). The models employ physiological activities
and known input-output relationships of basal ganglia
nuclei to demonstrate the feasibility of movement selec-
tion (72). By implementing the efficient sequential prob-
ability ratio test, the scaled race model shows that the
subthalamic nucleus modulates the decision process pro-
portionally to the conflict between alternatives (57). It
outperforms unscaled race models. Particularly good fits
are obtained with a diffusion model of movement selec-
tion (449). The basal ganglia decision models are sup-
ported by experimental data not used for their construc-
tion and also elucidate economic decision mechanisms,
including the differential effects of optogenetic stimula-
tion of dopamine D1 and D2 receptor expressing striatal
neurons (FIGURE 46C) (576). The opposing functions of
the direct and indirect striatal output pathways are mod-
eled by a race between movement and countermanding
signals that reflect the relative timing of the two signals as
they race towards a threshold (511). The signals fit ex-
perimentally observed activities in rat substantia nigra
neurons. These studies provide key support for impor-
tant basal ganglia contributions to motor selection and
economic decisions.
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output (superior colliculus). [From Wang (623), with permission from Elsevier.] B: anatomical convergence of
neurons from striatum (caudate and putamen) onto dendritic disks of neurons in globus pallidus (internal and
external segments) in monkey. The dendritic disks represent an abstraction of the wide dendritic arborizations
that are oriented orthogonally to axons traversing the globus pallidus from the striatum. Inset shows several
axons from striatal neurons traversing and contacting the pallidal dendritic disks. These parallel striatal axons
induce substantial anatomical striatal-pallidal convergence by contacting the dendrites in the disks. [From
Percheron et al. (430). Copyright 1984 John Wiley and Sons.]
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Updating of object value, action value, and their deriva-
tives by the basal ganglia employs dopamine prediction
error signals (517) (FIGURE 45). Data analyses routinely
employ the modeled subjective values of choice options
as regressors for neuronal value coding and action value
updating in the striatum (245, 267, 275, 306, 500, 530).
Reinforcement models distinguishing between direct and
indirect striatal pathways are based on in vitro work
(424, 540) and assume that dopamine prediction error
signals have differential plasticity effects on D1 versus
D2 receptor expressing striatal neurons (72) and induce
the learning of respective choice preferences and dispref-
erences (169). These results from formal models closely
reflecting physiological data confirm the capacity of do-
pamine reinforcement signals for learning and updating
of economic decision variables.

E. Reward and Free Will

Current notions about free will range from extreme deter-
minism, in which every event of every individual at every
moment is predetermined in advance by the mechanics of
the world, to the capricious, unrestrained free will that puts
intention and responsibility at each individuals’ complete
disposition and initiative. The truth lies probably some-
where in between. There are likely neuronal mechanisms
involving stochasticity that are constrained by external in-
fluences and generate choice options within a limited range.
Deliberate actions might originate from these neuronal
mechanisms and operate within these constraints. Con-
straints are provided by reward value and all factors influ-
encing it, including effort cost, delay, risk, and references,
that affect brain processes underlying decision-making.
Without trying to provide a coherent view, I will sketch a
few thoughts along these lines.

1. Origin of free will (the impossible question)

Assuming that free will exists at all, we simply do not know
how it may originate, and we have only faint ideas how
brain processes might generate it. We argue even whether
free will originates in the brain. For Kant, free will lies
above all activity, irrespective of physical, biological, psy-
chological, and social constraints. For him, only God has
free will, as s/he has created everything. But admitting that
we do not know anything is the easy answer. We can try to
reduce this impossible question to tractable issues by trying
to understand the mechanisms determining free will.

Free will has several necessary components. First, free will
depends on the ability to make choices, to do what we want
to do (219). Second, free will implies a voluntary action that
is self-directed and arises on self-command. Free will does
not apply to vegetative reactions that I cannot control, like
heartbeat, intestinal contractions, or hormone release, nor
to probably most Pavlovian reactions and many habits.

Third, the word will indicates a goal that we want to
achieve. Thus free will would be instrumental in generating
voluntary, goal-directed behavior. Fourth, free will involves
conscious awareness about the goal directedness. We think
we have free will because we know explicitly that we are
working towards something we want. And we know that
we want this something, however diffuse this may be in
exploratory behavior. We feel the freedom to choose when
to act and which of several options to select. This feeling is
subjective, private, and unobservable by others. It is diffi-
cult to measure objectively, and it may not even be real but
an illusion (634), nobody knows for sure.

The fact that free will has emerged in evolution suggests a
beneficial function for the competitive survival and repro-
duction of individuals in their function as gene carriers. As
much as the idea of a conscious illusion of free will may be
disappointing, evolutionary biology teaches us that a struc-
ture or function may enhance the chance for survival with-
out necessarily evolving to perfection. Thus it may not mat-
ter whether conscious free will is an illusion or real, as long
as it is helpful for keeping the genes in the pool. Thus free
will is a psychological tool for gene propagation.

What we do know is that we need rewards for survival
(essential substances contained in food and drinks) and re-
production (sexual rewards). It would be advantageous to
seek these hidden rewards actively rather than waiting for
them to appear out of the blue. That is why we can move.
Intentions and free will would be a great help to seek and
explore rewards actively and deliberately, rather than run-
ning after them using deterministic programs. Without the
true or false belief of free will, we may have only limited
initiative to find hidden rewards. The main advantage of
free will is the subjective experience of free will, which
makes the search for hidden rewards more deliberate and
focused, and thus saves time and is more efficient in many
situations. Dennett (128) argues that consciously sensing
free will is a crucial characteristic of free will. The evolu-
tionary benefits driving the appearance of free will would be
the boost in initiative, resulting from the conscious belief
that we can deliberately decide our own behavior. This
belief is also the basis for moral responsibility and thus
helps social coherence. And adding theory of mind would
make me understand others’ free will and voluntary behav-
ior and further facilitate social processes.

One view on conscious free will assumes that it is gener-
ated from scratch and makes us completely free to do
what we want. There are only two possibilities to gener-
ate this sort of free will. First, brain activity generates the
conscious awareness as necessary hallmark of free will.
This brain activity necessarily precedes the conscious
awareness and thus cannot be directed by free will. In this
case, free will would not be free but an illusion of free-
dom that follows the uncontrolled generation of free will
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by the brain. Alternatively, it is not brain activity but
something nonmaterial that leads to conscious awareness
of free will, and then brain activity carries out what the
nonmaterial event has directed it to do and signals free
will. Both scenarios seem unresolvable and therefore de-
pressing and ultimately unconstructive. However, the
problem may be overcome by taking a step back to con-
sider the neuronal mechanisms by which free will might
arise in more realistic situations in which it is seriously
constrained by a number of factors. Even in this re-
stricted form, free will would still provide an evolution-
ary beneficial, conscious control over our actions.

Everyday neurophysiological experiments tell us that
many, maybe most, neurons in the brain are spontane-
ously active without any observable stimuli or actions.
Thus brains generate their own activity. We also know
that we have many mental experiences that seem to arise
spontaneously out of nowhere, even in fully awake and
nonpathological states, like thoughts, imagination, and
old memories. How could I write this text if I could not
sit back (with the proverbial cup of tea) and listen to the
ideas that are popping up in my head (most of them
rubbish, but occasionally a useful one), and then find the
words and put them into grammatically correct order?
Neuronal activity in cortex and striatum ramps up over
several seconds before self-initiated movements but not
before externally instructed actions (299, 311, 337, 380,
397, 491, 493, 526, 528). The key to explaining such
brain activity may be the tendency to stochastic activity
in many neurons and networks (129, 167, 180, 195).
Once initiated by random molecular fluctuations (94,
287, 561, 567), the noise may result at some point in
organized activity (168, 200, 297, 330, 465, 564, 611)
and influence or settle in attractor states (63, 125, 510)
that result in mental events. The hardware of the individ-
ual’s brain and the individual’s experience would con-
strain the range of attractor states producing mental
events. A person who has never done or watched or heard
about underwater diving may never experience a sponta-
neous imagination of the color of corals, nor the free will
to go diving to see this. Thus the stochastic brain activity
would arise spontaneously, relate to past experiences,
and not be initiated from scratch by free will (nor do we
need to assume nonmaterial origins).

The spontaneously occurring attractor states arising
from initially stochastic neuronal activity would not need
to be conscious. Several such elementary unconscious
attractor states may develop at the same time, each of
them representing a different future option for intention.
The possibility of developing attractor states from sto-
chastic activity would not be infinite but depend on brain
activity restricted by hardware, current environment,
and memory from earlier experience. Thus the attractor
states would be restricted to viable options within

boundaries. Impulses that never come up cannot be se-
lected. Attractor states related to the intention of explor-
ing the color of corals may only occur if my brain can
process color and if I have ever heard about colorful
corals. Then a selection mechanism would be set in mo-
tion in which viable options emerge with a certain degree
of variation within bounds defined by hardware and per-
sonal experience. The process may resemble the selection
of a reasonable option from a rotating initiator of op-
tions. There would be no deliberate, free initiative in-
volved in this selection, as not only the attractor states
but also the selection process and its boundaries would
be unconsciously mechanical. Only the result of the se-
lection would pop up into consciousness and be inter-
preted as free will. This conscious free will is not an
illusion but the result of unconscious processing. From
this point on, it would be possible to decide consciously
whether to follow the selected impulse for action or to
resist, to select consciously between the emerging mental
images and intentions (e.g., separating rubbish from non-
rubbish in writing), or to listen further to solutions from
those popping up. Thus the unconscious processes pro-
duce a scratchpad that pops into consciousness and from
which conscious free will can choose freely or veto an
intention. This might be what is usually associated with
the term of free will and the individual’s responsibility
for their own intentional actions.

Of course, there may be completely different, currently un-
known processes besides stochasticity that may generate
brain states underlying free will. The idea would require the
discovery of new phenomena in physics (429). However,
some of the described steps in the emergence of free will
may still hold, in particular the dilemma in the initiation of
free will between the brain’s hardware and the mind.

2. Constraints on free will

Although free will is associated with being able to make
choices (219), I can only choose between the options that
are available. We are just not free to choose between any-
thing imaginable, but our options are restricted by the phys-
ical state of the world (we cannot fly to Mars), our body’s
hardware (we cannot fly like birds), and our personal expe-
riences and education (most language scholars do not do
partial differential equations). Even among the available
options, our choices are influenced by factors not consid-
ered as economic value such as emotions driven by external
events, social pressure and conventions, altruism, moral
rules, and irrational beliefs such as nationalism, chauvin-
ism, prejudices, and superstitions. These external and inter-
nal constraints reduce free will in a graded manner, and up
to its complete loss when constraints become too serious.
Of course, survival is the strongest and most natural con-
straint on free will. Only within these bounds is free will
free.
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Free will can be constrained and focused. A good example is
intention in action (529). I choose deliberately a course of
action that allows me to form short-lived intentions on the
fly while I am moving. I choose to do a walk through town
and find a shop window that attracts my intention and
makes me buy a pair of boots for the winter. My free will is
partly restricted by the decision to take the walk, and the
shoe purchase reflects that constraint. My purchase may
simply be triggered by the view of the shoes, their price, and
their relationship to my purchasing habits and personal
preferences. The intention to enter the shop comes instan-
taneously, almost as a reaction to the sensory input. Very
little free will is involved in the final purchasing action after
I have initiated the walk.

In a similar situation of very restricted free will, humans
indicate the moment at which they consciously perceive
the awareness to initiate a simple finger movement (FIG-
URE 49A) (316). Indeed, the participants become aware
of the urge to move only several hundred milliseconds
after the onset of electroencephalographic brain activity
for the movement (readiness potential, FIGURE 49B). Sen-

sory and motor confounds are excluded. The only con-
scious component consists of the possibility to veto the
arising urge to move before the actual movement starts.
Action-specific preparatory increases of BOLD signals in
frontopolar and parieto-cingulate cortex precede the
conscious awareness to move by 7–10 s (555). The activ-
ity of single neurons in humans preceding self-initiated
movements predicts the awareness to move by 500 ms
with 70 –90% precision (FIGURE 49C). These potentials
may originate in nonintentional, spontaneous fluctua-
tions reflecting a state of neuronal propensity toward
action initiation, true to the meaning of the word “read-
iness potential” (515). At the neuronal level, such spon-
taneous fluctuations might occur below action potential
threshold but are not conspicuous when recording action
potentials during self-initiated movements in the supple-
mentary motor area and associated cortical and subcor-
tical structures in monkeys not expressing awareness to
move (299, 311, 337, 380, 397, 491, 493, 526, 528)
(FIGURE 37C) and in the supplementary motor area and
anterior cingulate cortex in humans 1–2 s before the
awareness to move (FIGURE 49D) (172). Thus it appears
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FIGURE 49. Unconscious onset of con-
scious awareness to act. A: design of Libet’s
classic experiment. A dot moves clockwise
around a circle. Subjects remember the dot
position at which they became consciously
aware of the urge to do a self-initiated finger
or wrist movement and report the dot posi-
tion after being prompted. B: electroenceph-
alographic readiness potential recorded at
the vertex (top of skull) of one human partic-
ipant (average of 40 trials). Onset of aware
urge to move is indicated in red (bar shows
range from eight averages of 40 trials
each). Muscle onset denotes onset of elec-
tromyographic activity in involved forearm
muscle. [From Libet et al. (316), by permis-
sion of Oxford University Press.] C: detection
of time and occurrence of deviation from
baseline activity in 37 single and multiple
neurons before awareness to act, as deter-
mined by a support vector machine classi-
fier. The neurons or multineuron clusters
are located in human supplementary motor
area (n " 22), anterior cingulate cortex (n "
8), and medial temporal lobe (n " 7). D:
ramping activity preceding the conscious
awareness to act in activity averaged from
59 neurons in human supplementary motor
area. [C and D from Fried et al. (172), with
permission from Elsevier.]
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as if the brain’s hardware initiated the movement without
the participant’s own initiative, suggesting that con-
scious free will does not exist in these experiments. It is
tempting to deny the general existence of free will on the
basis of these results. However, the voluntary submission
to the experiment may put so many constraints on the
liberty of the participant that indeed there is no free will
left and the brain is able to initiate the movement without
conscious free will, just like the shoe buying example.
Thus the experiments employ the role of constraints on free
will in an extreme manner and test intention in action rather
than true free will. In doing so they may reveal the existence of
the elementary process outlined above by which stochastic
brain activity settles spontaneously into an attractor state
without conscious awareness and only afterwards leads to a
conscious mental state. The consciously aware urge to move is
then simply a retrograde interpretation of an unconsciously
initiated action following the conscious selection to undergo
the experiment.

3. Rewards exert constraints on free will

Rewards are necessary for survival. Without rewards we
would die of thirst within days and of hunger within weeks,
depending on our adipose reserves. With that function, re-
wards influence and thus constrain behavior and restrict
free will in several ways. The passive experience of rewards
attracts behavioral reactions away from other objects and
focuses behavior onto the available rewards. Entering ac-
tive decisions between rewards is not very free either be-
cause we need rewards at some point for survival. Once we
are able to decide, we choose the best option, called utility
maximization in economics, to ensure the highest chance
for survival and gene propagation. Choices in such re-
stricted situations may often reflect intentions in action,
similar to the Libet experiments on movements, and involve
serious constraints on free will. The choices are easy to do
when the options are limited and have clearly different val-
ues, in which case there is little scope for free will, but the
choices are more difficult when more, and more similar,
options remove some constraints on free will. Habits for
acquiring rewards impose particularly strong constraints
on free will, and addictions to natural and artificial rewards
eliminate free will even more. The initial administration of
an addictive substance, like nicotine, is done with free will,
often constrained by peer pressure, but following the habit
once serious addiction has set in is almost deterministic.

All additional factors affecting reward value add to the con-
straints on free will. Motivational states like hunger and thirst
make rewards more valuable and prioritize our behavior, as
easily seen before lunch and dinner. Rewarding contexts make
us long for rewards. Who would work during an office party
when colleagues drink wine and tell interesting stories? Work
required to obtain rewards seriously focuses our actions.
Many animals spend most of their day searching for food.
Temporal discounting of future rewards hinders our planning

and favors myopic actions. Reference-dependent valuation
makes us slaves of our environment. Nobody wants to lose
what they have achieved, and keeping up with the Joneses is
hard work, both of which require good focus and constitute
constraints.

Risk exerts huge constrains on our behavior. Risk avoid-
ance makes us shy away from risky situations even if they
might be beneficial in the long run. The inability to com-
pletely eliminate risk induces anxiety, prejudice, and super-
stition which further direct behavior in serious ways, up to
generating wars without reason. Risk management and the
desire for risk reduction are prevalent in all cultures. Many
activities of daily life are aimed at reducing risk, from pay-
ing car and health insurance to ritual sacrifices. The first
reaction of the Minoan people to the devastating Santorini
volcano eruption was human sacrifices to appease the angry
gods. Risk reduction becomes a part of the culture, influ-
ences the whole life history of individuals, and thus takes
some free will away.

The constraints exerted by rewards on free will extend also
to the learning about rewards. Pavlovian reward predic-
tions arise automatically following repeated exposure with-
out the subject’s own doing, which constrains free will sub-
stantially. Operant conditioning involves own action and
allows goal-directed behavior, which constrains free will a
bit less than Pavlovian predictions. Conditioning and
higher forms of learning are evolutionary beneficial, as they
increase reward acquisition for survival and gene propaga-
tion, but in doing so they constrain free will considerably.

Genetic dispositions, education, and long-term reward ex-
perience are instrumental for establishing personal reward
preferences that influence the whole life of individuals. Dif-
ferent individuals prefer different rewards and choose their
profession accordingly (among many other factors). They
become mechanics because they appreciate precision, bank-
ers for the money, musicians for the beautiful sounds, doc-
tors because of altruism, and scientists because they value
curiosity and knowledge highly. The impact of these pref-
erences accumulates over the whole life span and shapes the
personality. All of these influences constrain free will. Even
seemingly free changes in personal reward preferences due
to physiological factors and personal experience do not
much enhance free will.

Punishers constitute the second major class of motivators of
behavior besides rewards. Punishers derive from external
sources over which we have little control, and they need to
be avoided to escape their damaging impact. Thus avoid-
ance is a reaction to events that occurs without one’s own
doing. There may be different options for escape, and thus
limited scope for free will, but overall avoidance involves
little free will, allows little deliberation, and produces pri-
marily reactive rather than proactive behavior. The choices
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between punishers seem to allow some degree of liberty that
is intrinsically low when being forced into the choice. Ac-
cording to the New York Times of April 23, 2010, prisoners
sentenced to capital punishment in Utah may choose be-
tween hanging and a firing squad. “I would like the firing
squad, please” reportedly said Ronnie Lee Gardner. Over-
all, some liberty exists when being able to proactively search
for best solutions for efficient avoidance. We can think of
known dangers and generate preventive measures, but it is
hard to imagine totally unknown dangers and be creative in
planning their avoidance. Thus punishers may exert even
more constraints on free will than rewards.

4. Neuronal reward processing constrains free will

Electrical and optogenetic stimulation of dopamine neu-
rons are very efficient for eliciting immediate behavioral
reactions and behavioral learning (FIGURE 19, A–D) (2, 103,
155, 562, 605, 641). The strength of dopamine stimulation
affects choices, reaction times, and reward acquisition in a
graded manner. The animals are simply driven towards
goals associated with the dopamine activation, both during
the stimulation (immediate effect) and in the next test ses-
sions (reinforcement learning). Thus, in focusing individu-
als on rewards at the expense of other pursuits, dopamine
stimulation takes parts of free will away from the individ-
ual’s behavior.

Dopamine stimulations are not experimental artifacts but
mimic the natural phasic dopamine responses to reward
prediction errors. The dopamine responses are likely to
have similar behavioral effects as the stimulation. Even
though stimulation parameters differ somewhat from the
natural responses, the important feature is the brief, phasic
dopamine activation, whereas slow, tonic dopamine stimu-
lation is ineffective (e.g., for place preference learning; Ref.
605). The dopamine effects likely involve synaptic plasticity
and focusing in striatum and frontal cortex (70, 368, 424,
540, 594). Indeed, optogenetic stimulation of striatal neu-
rons postsynaptic to dopamine neurons induces differential
approach and avoidance learning and behavioral bias de-
pending on the dopamine receptor subtype the stimulated
neurons carry (FIGURES 19F AND 46C) (293, 576). Thus the
combined evidence from dopamine stimulation and dopa-
mine reward responses indicates that eliciting a strong re-
ward signal in dopamine neurons directs the organism to-
wards reward and thus constrains its free will. This is the
mechanism through which primary (unpredicted) rewards
and (Pavlovian) reward predictors influence the behavior
and constrain free will.

A similar argument may hold for neuronal risk processing.
Dopamine and orbitofrontal reward neurons code risk sep-
arately from value (FIGURE 31C) (161, 162, 391, 392). Fur-
thermore, neuronal risk signals, and the influence of risk on
neuronal value signals, vary with individual risk attitudes
(301). If these risk signals could affect risk components in

behavior analogous to value signals, they would provide
mechanistic explanations for the constraining influence of
risk on free will. To demonstrate such an effect, one would
need to demonstrate that selective stimulation of risk neu-
rons, such as those found in orbitofrontal cortex, affects
risk attitudes during choices.

The strength of the dopamine response seems to convey the
influence of rewards on behavior. Rewards with stronger
effects on dopamine neurons are likely to have more impact
on learning and choices. Thus the propensity of individual
rewards to activate dopamine neurons would determine the
influence of reward on behavioral choices. This function
may hold also for other reward centers in the brain, al-
though their less compact organization may not be condu-
cive to such dramatic stimulation effects. However, it is
unlikely that a response of dopamine neurons or other re-
ward neurons to an automatically conditioned, reward-pre-
dicting stimulus induces approach behavior entirely with-
out the subject’s own doing. There are other brain mecha-
nisms that would limit the automaticity of such effects, but
any neuronal reward signal is nevertheless likely to have a
biasing effect towards rewarded stimuli and actions. The
neuronal responsiveness to different rewards is likely to
vary between individuals. Interindividual differences in re-
ward processing may affect daily preferences but also deter-
mine long-term behavior, including professional choices
and other important decisions in life. Thus the activity of
reward neurons shapes behavior, constrains voluntary de-
cisions, and thus restricts free will.
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