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Reward Functions

Behavioral Functions

The colloquial view regards reward as a bonus for exceptional

performance, like chocolate for good school marks, or as some-

thing thatmakes us happy. However, the scientific investigation

into reward functions requires a more complete definition,

which animal learning theory and economic decision theory

can provide. These theories distinguish three reward functions.

Learning
Rewards make us come back for more. This positive reinforcing

function is captured by Pavlovian conditioning in which an

intrinsically neutral stimulus becomes a reward predictor and

elicits behavioral reactions through repeated association with

reward, without requiring the subject to engage in particular

behavior. The dog comes to salivate upon the ringing of a bell

that had been repeatedly followed by a piece of sausage. Pavl-

ovian conditioning establishes the essential reward predictions

for making informed movements and choices. After having

encountered a reward, we like to have more of it. This function

is the essence of Thorndike’s law of effect, which is implemen-

ted as operant conditioning in which rewards strengthen the

behavior that led to the reward. Operant learning requires an

active movement, like pressing a lever to obtain a food pellet.

Pavlovian and operant conditioning constitute the two para-

digmatic, elementary forms of associative learning about

rewards.

The crucial requirement for conditioning is contingency.

Pavlovian stimuli or operant actions are learned by pairing

them with a reward, but only when the reward differs between

the presence and absence of the event (Rescorla, 1967). The

reward needs to be contingent, or dependent, on the event for

learning to occur. Intuitively, we learn only events that inform

us (e.g., about reward). Reward learning is driven by prediction

errors, defined as the difference between experienced reward

and predicted reward. Positive prediction errors lead to better

reward prediction, negative prediction errors lead to less

reward prediction, and no prediction errors (when nothing

differs) result in no learning.

Approach and decision making
Rewards are attractive. They induce approach behavior, which

brings us closer to them so that we can inspect and consume

them. Rewards usually do not come alone and require choices.

We choose the best reward, as if we are maximizing its value.

Rewards are usually not fixed but vary a bit and are therefore

formally described by probability distributions of reward

values. Reward values are subjective, as they reflect our prefer-

ences that are not necessarily equal to the physical values.

Subjective values are called utilities in economics. Choices

described by utility theory can sometimes be inconsistent

and better understood by prospect theory, which comprises
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different gain and loss slopes (loss aversion), subjective prob-

ability distortions, and dependency on reference points. Eco-

nomic decisions involve comparisons between competing

options and are captured by the winner-take-all (WTA) mech-

anism in which the option (object or action) with the highest

subjective value wins.

Emotions
Rewards elicit positive emotions. Pleasure constitutes a tran-

sient response to a predicted or received reward and may lead

to a longer-lasting state of happiness. The experience of

rewards generates desire, the emotional underpinning of

approach behavior. When I am thirsty and know that a glass

of water helps, I desire it. Desire makes behavior purposeful

and goal-directed. Thus, pleasure is the passive emotion

derived from a reward, whereas desire helps to direct behavior

toward a known reward. These emotions are also called liking

(for pleasure) and wanting (for desire).

What makes an event rewarding?
The most basic rewards contain or predict necessary nutrients

for survival, maintain our homeostatic balance, and elicit plea-

sure. Reproductive rewards may depend to some extent on

hormones but are foremost pleasurable. Nonnutrient, non-

reproductive rewards enhance our chance to obtain nutrients

and to reproduce. Thus, events are rewarding because they

fulfill objective homeostatic and reproductive needs and pro-

duce subjective pleasure. A few rewards, like maternal care, are

neither homeostatic nor pleasurable but seem to be innate.

Waking up the fifth time a night at 5 am when the baby cries

neither resolves a homeostatic challenge nor is pleasurable.
Ultimate Evolutionary Function

The existing biological organisms result from evolutionary

competition. The ultimate function of rewards is to increase

evolutionary fitness by directing behavior toward the necessary

nutrients for survival and toward successful reproduction. Only

the best reward collectors will see their genes survive and prop-

agate. Thus, the ultimate reward function is evolutionary fitness

and gene propagation, which requires the behavioral reward

functions of everyday life. That is why organisms have evolved

that find foods, drinks, shelter, and the required economic

exchanges attractive, as well as novelty, mates, and offspring.
Neuronal Reward Signals

Information processing systems use time-specific signals. In

brains, the signals that propagate through the circuits are the

action potentials generated by each neuron. The output of the

system is the observable behavior. In between lie neurons and

synapses with messenger molecules and membrane channels
7025-1.00059-2 643
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that transmit and process the signals. Sensory and motor

research shows that neurophysiological action potentials con-

stitute crucial signals underlying behavioral processes. The

postsynaptic responses to action potentials lead to blood oxy-

gen level-dependent (BOLD) signals that are measured in

humans by functional magnetic resonance imaging (fMRI).

Lesions in humans and animals demonstrate the necessary

involvement of specific brain structures in reward processing,

and electrical and optogenetic stimulations help to dissect the

behavioral role of reward signals. Thus, neurophysiological

and BOLD signals transmit reward information compatible

with the speed of behavior.

Rewards have several components. Their sensory compo-

nent derives from stimulation of specific sensory receptors and

reflects physical appearance, like color and form of an apple. It

helps to differentiate between reward objects and distinguish

them from all other environmental events. The attentional

component enhances processing of rewards and helps to

focus our behavior onto them. However, only the third, moti-

vational component reflects the value of rewards for our

well-being and survival and influences our daily economic

decisions. Reward neurons process primarily the motivational

component and distinguish it from the sensory and attentional

components.

Theories about behavioral reward function and economic

decisions are based on theoretical constructs rather than hard-

ware receptors that would detect rewards in the environment

and mediate choices. There are no reward receptors, and the

brain constructs reward signals itself based on behavioral

requirements. Thus, the lack of hardware at the input of the

brain is overcome by identifiable neuronal reward signals.

Then, characteristics of such signals can be compared with the

theoretical constructs and, if successfully matched, considered

as expression of implementation of the constructs. Once this

occurs, the premises of the theories are basically validated, and

the implementation of the theoretical construct constitutes

guidance and constraint for applications of the theory. If we

find stronger reward signals for more likely rather than less

likely food, then reward probability seems to be converted

into value, just as probability theory claims. If we identify a

risk signal in the brain, risk seems to be a valid construct for

explaining behavior that we cannot negate and should take into

account when recommending risk avoidance strategies. Or

finding that addictive drugs change the reward system via neu-

ronal plasticity means that will power may be insufficient to

deal with drug addiction and that prevention is more

important.

 

Reward Neurons

Neurons in specific brain structures process rewards and eco-

nomic decisions in various forms. The following sections pre-

sent significant examples of neuronal reward signals, without

trying to be exhaustive and systematic.

 
 
 
 
 

Dopamine Neurons

Most midbrain dopamine neurons show phasic reward predic-

tion error responses (latency <100 ms, duration <200 ms).
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A better reward than predicted (positive prediction error)

elicits an increase in the rate of action potentials (activation),

a worse reward than predicted (negative error) induces a

depression, and a fully predicted reward draws no response

(Figure 1(a)) (Cohen, Haesler, Vong, Lowell, & Uchida, 2012;

Enomoto et al., 2011; Fiorillo, Tobler, & Schultz, 2003;

Schultz, 1998; Schultz, Apicella, & Ljungberg, 1993). The

dopamine response transfers to the earliest reward predictive

stimulus (Figure 1(b)). Dopamine neurons code prediction

errors also in cognitive tasks with proper distinction of reward

components (Matsumoto & Takada, 2013; Schultz et al.,

1993). In coding the crucial prediction error term for associa-

tive learning, the phasic dopamine signal is a potential teach-

ing signal.

The dopamine prediction error response is preceded by a

brief activation that codes the physical impact of the stimulus

and signals its detection before having identified its reward

value (Figure 1(c)) (Nomoto, Schultz, Watanabe, & Sakagami,

2010). This response component increases with generalization

to rewarded stimuli, rewarded contexts, and novelty

(Kobayashi & Schultz, 2014; Schultz, 1998). It reflects the

reward nature of the main prediction error response compo-

nent and is likely to boost its efficacy as teaching signal by

attentional enhancement and early detection of potential

reward information. Despite assumptions of limited aversive

activations (Brischoux, Chakraborty, Brierley, & Ungless, 2009;

Matsumoto & Hikosaka, 2009; Mirenowicz & Schultz, 1996),

choice tests dissociating physical impact from aversive value

reveal that dopamine activations do not reflect aversiveness

(Figure 1(d)) (Fiorillo, 2013). Indeed, electrical and optoge-

netic dopamine excitations induce learning, approach, and

positive choice preferences, whereas dopamine inhibitions

elicit dispreferences (Corbett & Wise, 1980; Steinberg et al.,

2013; Tan et al., 2012; Tsai et al., 2009).

The dopamine error response integrates reward value from

reward magnitude and probability (Tobler, Fiorillo, & Schultz,

2005) and reflects the subjective reward value integrated from

different reward types, risks, and delays, as assessed by the

animal’s choices (Figure 1(e) and 1(f)) (Kobayashi & Schultz,

2008; Lak, Stauffer, & Schultz, 2014). A separate slower dopa-

mine activation reflects the degree of variance risk in reward

(Figure 1(g)) (Fiorillo et al., 2003). Thus, dopamine neurons

code separately the first two statistical moments of reward

probability distributions, expected value and variance (risk),

thus providing a biological correlate for these mathematical

constructs.

The dopamine error signal occurs in anatomically,

physiologically, and neurochemically heterogeneous neurons.

However, the dopamine reward signal itself shows graded,

noncategorical differences in latency, duration, and sensitivity

and thus is rather homogeneous compared with other main

reward neurons of the brain. Besides this phasic function, tonic

extracellular dopamine plays a separate, permissive role in a

wide range of motor and cognitive processes (Robbins &

Arnsten, 2009). Thus, dopamine is a pluripotent neurochemi-

cal with rather homogeneous phasic reward function and

separate heterogeneous tonic functions.

The dopamine teaching function for reinforcement

learning involves widespread anatomical projections and

postsynaptic plasticity. Distinct populations of striatal and
ce, (2015), vol. 2, pp. 643-651 
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Figure 1 Neurophysiological dopamine responses to reward. (a) Reward prediction error responses at time of reward (right) and reward-predicting
stimuli (left). Reproduced from Schultz, W. (1998). Predictive reward signal of dopamine neurons. Journal of Neurophysiology 80, 1–27; Schultz et al.
(1997). Science, 275, 1593–1599. (b) Transfer of dopamine response from reward to first reward-predicting stimulus. Reproduced from Schultz, W.,
Apicella, P., & Ljungberg, T. (1993). Responses of monkey dopamine neurons to reward and conditioned stimuli during successive steps of learning a
delayed response task. The Journal of Neuroscience 13, 900–913; Schultz, W. (1998). Predictive reward signal of dopamine neurons. Journal of
Neurophysiology, 80, 1–27. (c) Two components of dopamine activations to stimuli. The initial component (blue) codes sensory stimulus impact and
reflects stimulus detection. It increases generalization to rewarded stimuli, rewarded contexts, and novelty (double arrow). The second
component (red) codes reward value prediction error as detailed in (a). Reproduced from Kobayashi, S., & Schultz, W. (2014). Reward contexts extend
dopamine signals to unrewarded stimuli. Current Biology 24, 56–62. (d) Dopamine activations induced by punishers do not reflect aversiveness but
stimulus impact and may decrease with increasing aversive value (higher concentrated bitter solution). Reproduced from Fiorillo, C. D., Song, M. R.,
& Yun, S. R. (2013). Multiphasic temporal dynamics in responses of midbrain dopamine neurons to appetitive and aversive stimuli. The Journal of
Neuroscience 33, 4710–4725. (e) Dopamine activations (red) follow subjective value integrated from different reward types and risk, as assessed by
behavioral choices (black). Reward A¼blackcurrant juice, B¼strawberry juice, safe¼0.45 ml juice, risky¼equiprobable gamble (p¼0.5 for 0.3 and
0.6 ml, and/or type). Reproduced from Lak, A., Stauffer, W. R., & Schultz, W. (2014). Dopamine prediction error responses integrate subjective value
from different reward dimensions. Proceedings of the National Academy of Sciences of the United States of America 111, 2343–2348. (f) Dopamine
activations (red) follow subjective value derived from temporal discounting, as assessed by intertemporal choices (blue), despite constant physical
amount. Reproduced from Kobayashi, S., & Schultz, W. (2008). Influence of reward delays on responses of dopamine neurons. The Journal of
Neuroscience 28, 7837–7846. (g) Slower dopamine risk activation. Lines in the raster display below the histogram show activity in single trials.
Reproduced from Fiorillo, C. D., Tobler, P. N., & Schultz, W. (2003). Discrete coding of reward probability and uncertainty by dopamine neurons. Science
299, 1898–1902. (h) Learning deficit in T-maze with NMDA receptor knockout in midbrain dopamine neurons, impairing dopamine burst firing in mice.
Reproduced from Zweifel, L. S., Parker, J. G., Lobb, C. J., Rainwater, A., Wall, V. Z., Fadok, J. P., Darvas, M., Kim, M. J., Mizumori, S. J., Paladini, C. A.,
Philipps, P. E. M., & Palmiter, R. (2009). Disruption of NMDAR-dependent burst firing by dopamine neurons provides selective assessment of phasic
dopamine-dependent behavior. Proceedings of the National Academy of Sciences of the United States of America 106, 7281–7288.
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cortical neurons show dopamine-dependent long-term potentia-

tion and depression compatible with three-factor Hebbian

learning (Gurden, Takita, & Jay, 2000; Pawlak & Kerr, 2008;

Reynolds, Hyland, & Wickens, 2001; Shen, Flajolet, Greengard,

& Surmeier, 2008). Given the rather homogeneous dopamine

teaching signal, specificity for learning arises from differentially

activated postsynaptic neurons. Phasic dopamine affects also

immediate postsynaptic processing in the striatum, prolonging

excitatory postsynaptic potentials via striatal D1 receptors and

reducing striatal excitability via D2 receptors (Hernandez-Lopez,

Bargas, Surmeier, Reyes, & Galarraga, 1997; Hernandez-Lopez

et al., 2000).

Lesioning and psychopharmacological dopamine interven-

tions induce learning deficits. Knockout of NMDA receptors

reduces phasic dopamine activity and induces many learning

deficits (Figure 1(h)) (Zweifel et al., 2009). Dopamine D1 recep-

tor blockade in striatum impairs simple reward learning of stimuli

that are capable of driving dopamine neurons, without affecting

learning in tasks not eliciting dopamine responses (Flagel et al.,

2011). LocalD1 antagonist application impairs neuronal learning

in monkey prefrontal cortex (Puig & Miller, 2012). The learning

deficits are not explained by performance deficits (Flagel et al.,

2011; Puig & Miller, 2012; Zweifel et al., 2009).

 

Frontal Cortex

Economic reward value is the crucial motivational component

that makes rewards attractive. After detecting an event and

identifying its sensory properties, coding its value constitutes

the basis for reward processing. The first cortical reward neurons

were discovered in the dorsolateral prefrontal cortex

(Figure 2(a)) (Watanabe, 1996). Similar to dopamine neurons

(Lak et al., 2014), some neurons in the orbitofrontal cortex code

the value of the chosen reward while abstracting from its type

and sensory properties, thus reporting the value from different

rewards on a unified scale (Padoa-Schioppa & Assad, 2006).

The limited processing capacity of the brain contrasts with

the huge number of possible rewards. Efficient reward discrim-

ination would restrict neuronal processing to the currently

available rewards. Indeed, some neuronal signals in orbito-

frontal cortex reflect current reward selections. They code

rewards relative to other available rewards (Figure 2(b))

(Tremblay & Schultz, 1999), adapt to the spread of reward

distributions (Kobayashi, Pinto de Carvalho, & Schultz,

2010), or combine both mechanisms (Padoa-Schioppa,

2009). Less adaptive orbitofrontal neurons would maintain

absolute value ranking to assure crucial transitivity for eco-

nomic choices. Thus, efficacy combines with monotonic

value coding for optimal reward processing.

The choice of goods is central to economic exchanges. The

object value of a specific good is independent of the actual

choice and thus does not reflect immediate reward expectation.

Object value is coded by separate neurons for each good. In

binary decisions about goods, two object value neurons repre-

senting the options compete against each other, and the highest

valued object wins through a WTA mechanism (Figure 2(c)).

Some orbitofrontal neurons code object value, irrespective of

the animal’s choice (Figure 2(d)) (Padoa-Schioppa & Assad,

2006). These activities suggest a neuronal implementation of

a simple WTA mechanism for economic decisions and
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correspond to the function of orbitofrontal cortex in object

rather than action processing.

Lesions of orbitofrontal cortex demonstrate its important

involvement in risk processing. Indeed, some orbitofrontal neu-

rons code the risk inherent in difficult odor choices (Kepecs,

Uchida, Zariwala, &Mainen, 2008) and code variance risk, rather

than value, in binary gambles between small and large rewards

(Figure 2(e)) (O’Neill & Schultz, 2010). Due to their short

latency, these responses process the risk in rewards well before

a choice is being made. Thus, different from dopamine neurons,

distinct orbitofrontal neurons implement the first two statistical

moments of reward probability distributions.

Neurons in the anterior cingulate cortex are involved in

social processes by distinguishing between own and other’s

reward or sensing a conspecific’s reward (Chang, Gariépy, &

Platt, 2013). Medial frontal cortex neurons respond to errors of

conspecifics and the resulting reward omission (Yoshida, Saito,

Iriki, & Isoda, 2012). Some movement mirror neurons in the

premotor cortex distinguish between reward and no reward

(Caggiano et al., 2012). These neurons mediate the distinction

between own and others’ rewards and thus code fundamental

components of competition and cooperation. Indeed, prefron-

tal neurons differentiate between competitive and non-

competitive video games (Hosokawa & Watanabe, 2012).
Striatum

Neurons in the striatum (caudate nucleus, putamen, and ven-

tral striatum) respond to reward-predicting stimuli and

rewards (Apicella, Scarnati, Ljungberg, & Schultz, 1992;

Hikosaka, Sakamoto, & Usui, 1989). They are also activated

during reward expectation, often conjointly with activity

related to the preparation of movements. Indeed, most task-

related striatal neurons are affected by future reward

(Hollerman, Tremblay, & Schultz, 1998).

Every economic choice ultimately requires an action. Action

value refers to the reward obtained by the particular action and

is independent of the actual choice, without reflecting immi-

nent reward reception. In analogy to object value, neurons

coding action value serve as inputs for competitive WTA mech-

anisms (Figure 2(c)). Action values are subjective and derived

from reinforcement models or logistic regressions fitted to

behavioral choices (Kim, Sul, Huh, Lee, & Jung, 2009; Same-

jima, Ueda, Doya, & Kimura, 2005). Striatal neurons code

action values irrespective of chosen arm and eye movements

(Figure 2(f)) (Kim et al., 2009; Samejima et al., 2005). The

presence of action value neurons in a major motor structure

such as the striatum suggests the implementation of a WTA

decision mechanism closely to motor outputs.

Observation of social partners and comparison of their

rewards mediate competition and cooperation, which improve

performance and give individuals access to otherwise unob-

tainable resources. Social factors have reward functions. Rhe-

sus monkeys find viewing body parts of conspecifics rewarding

(Deaner, Khera, & Platt, 2005). Striatal reward neurons process

primarily own rewards while distinguishing between own and

conspecific’s reward and between the social agents whose

action leads to own reward (Figure 2(g)) (Báez-Mendoza,

Harris, & Schultz, 2013). These neurons identify the social

agent whose action leads to own reward.
ce, (2015), vol. 2, pp. 643-651 
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(2013). Activity of striatal neurons reflects social action and own reward. Proceedings of the National Academy of Sciences of the United States of
America 110, 16634–16639.
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Amygdala

The motivational function of the amygdala was long investi-

gated with punishment and fear responses. Its neuronal reward

function became recently appreciated through the identifica-

tion of responses to rewards, reward-predicting stimuli, and

reward prediction errors (Belova, Paton, Morrison, & Salzman,

2007; Bermudez & Schultz, 2010; Paton, Belova, Morrison, &

Salzman, 2006). Amygdala reward responses are distinct from

visual responses.

Many amygdala neurons are sensitive to the basic require-

ment of reward contingency. They respond when rewards occur

more frequently during a stimulus compared to its absence.

However, they fail to respond despite the same stimulus–reward

pairing when the reward occurs also without the stimulus

(background), in which case the stimulus is uninformative

(Figure 3(a)) (Bermudez & Schultz, 2010). Reward reduction

during stimulus absence, without changing stimulus–reward,

resurrects the response. Thus, amygdala responses demonstrate

the biological implementation of the theoretical construct of

contingency, that is, crucial for learning.

The amygdala function in reward processing extends well

beyond simple reward prediction. In economic choices, amyg-

dala neurons process the future reward value early in the trial

and switch within a few seconds to coding the abstract choice

irrespective of the specific reward value chosen (Figure 3(b))

(Grabenhorst, Hernadi, & Schultz, 2012). These activities

mediate the transition from value coding to choice and dem-

onstrate an involvement in economic decisions.
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Figure 3 Reward and decision signals in primate amygdala neurons.
(a) Sensitivity to reward contingency. Only stimuli associated with
more reward compared to background are informative and elicit a
neuronal response (top), whereas equal reward between stimulus and
Human Neuroimaging

Action potentials of individual neurons induce postsynaptic

membrane potentials that affect metabolism and alter blood

flow, which are measurable as BOLD signals from thousands

of neurons. This method offers the possibility to translate the

investigation of reward signals from animals to humans. Due

to the postsynaptic nature of the BOLD signal, activations of

dopamine neurons induce BOLD signals in the striatum and

frontal cortex, whereas activations of cortical and striatal neu-

rons lead to BOLD signals in the same structures via interneu-

rons generating local postsynaptic potentials.
background renders the stimulus uninformative and the neuron
unresponsive (bottom). Reproduced from Bermudez, M. A., &
Schultz, W. (2010). Responses of amygdala neurons to positive reward-
predicting stimuli depend on background reward (contingency) rather
than stimulus–reward pairing (contiguity). Journal of Neurophysiology
103, 1158–1170. (b) Value to choice transition in averaged neuronal
responses (n¼12). Ordinate shows coefficients (partial r2) of running
multiple linear regression. Reproduced from Grabenhorst, F., Hernadi, I.,
& Schultz, W. (2012). Prediction of economic choice by primate
amygdala neurons. Proceedings of the National Academy of Sciences of
the United States of America 109, 18950–18955.
Reward Detection and Discrimination

Monetary rewards activate the human orbital and dorsolateral

prefrontal cortex and themidbrain (Figure 4(a)) (Martin-Soelch

et al., 2001; Thut et al., 1997). Monetary gains activate medial

orbitofrontal cortex, whereas losses activate its lateral parts

(O’Doherty, Kringelbach, Rolls, Hornak, & Andrews, 2001).

Striatal BOLD responses distinguish reward predicting fromneu-

tral stimuli (Figure 4(b)) (Tobler, O’Doherty, Dolan, & Schultz,

2006) and code reward prediction errors reflecting dopamine

input (Pessiglione, Seymour, Flandin, Dolan, & Frith, 2006).

 
 
 
 

 

Reward Value

Striatal BOLD signals increase with the magnitude and

probability of monetary rewards (Tobler, O’Doherty, Dolan,
Brain Mapping: An Encyclopedic Referen

 

& Schultz, 2007). Without distinguishing between these two

variables, these signals code the expected value of probability

distributions. BOLD signals in the striatum and ventromedial

frontal cortex code the subjective value of monetary and food

rewards (Levy & Glimcher, 2011) and reflect the subjective
ce, (2015), vol. 2, pp. 643-651 
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Figure 4 Human reward signals. (a) Activation of human ventral striatum by monetary reward (red cross, Positron Emission Tomography, PET).
Reproduced from Martin-Soelch, C., Leenders, K. L., Chevalley, A. F., Missimer, J., Kunig, G., Magyar, S., Mino, A., & Schultz, W. (2001). Reward
mechanisms in the brain and their role in dependence: Evidence from neurophysiological and neuroimaging studies. Brain Research Reviews 36,
139–149. (b) Differential BOLD response in putamen to juice reward-predicting and control stimuli. Reproduced from Tobler, P. N., O’Doherty, J. P.,
Dolan, R., & Schultz, W. (2006). Human neural learning depends on reward prediction errors in the blocking paradigm. The Journal of Neurophysiology
95, 301–310. (c) Amygdala BOLD response reflecting frame of reference. A sure gain of £20 out of a potential gain of £50 is valued positively,
whereas a loss of £30 out of a potential gain of £50 is valued negatively, although both cases result in obtaining £20. Reproduced from De Martino, B.,
Kumaran, D., Seymour, B., & Dolan, R. (2006). Frames, biases, and rational decision-making in the human brain. Science 313, 684–687.
(d) Differential influence of risk on dorsolateral prefrontal value signal. Risk decreases BOLD value responses in risk avoiders and increases value
responses in risk takers. Reproduced from Tobler, P. N., Christopoulos, G. I., O’Doherty, J. P., Dolan, R. J., & Schultz W. (2009). Risk-dependent reward
value signal in human prefrontal cortex. Proceedings of the National Academy of Sciences of the United States of America 106, 7185–7190.
(e) Bidirectional BOLD responses in ventromedial frontal cortex to positive and negative reward prediction errors observed in another player during
learning. Reproduced from Burke, C. J., Tobler, P. N., Baddeley, M., & Schultz, W. (2010) Neuronal mechanisms of observational learning. Proceedings
of the National Academy of Sciences of the United States of America 107, 14431–14436.
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value of food assessed by willingness to pay (Plassmann,

O’Doherty, & Rangel, 2007). Temporal discounting, which

decreases subjective but not objective value, reduces monetary

BOLD signals in the striatum and ventromedial frontal cortex

across widely varying delays (Gregorios-Pippas, Tobler, &

Schultz, 2009; Kable & Glimcher, 2007). Monetary value cod-

ing depends on reference rewards in the striatum and prefron-

tal cortex (Nieuwenhuis et al., 2005) and varies according to

win or loss frames of choice in the amygdala (Figure 4(c))

(De Martino, Kumaran, Seymour, & Dolan, 2006). Thus,

reward signals incorporate basic notions of reward value and

exemptions conceptualized by utility and prospect theories.
 
 
 
 
 

Reward Risk

BOLD signals in the striatum, orbital, and dorsolateral prefron-

tal cortex code variance risk distinct from striatal value signals

(Preuschoff, Bossaerts, & Quartz, 2006; Tobler et al., 2007). In

different parts of the dorsolateral prefrontal cortex, risk signals

correspond closely to individual risk attitudes. Ambiguity,

which elicits more pronounced behavioral attitudes than risk,

induces stronger BOLD signals than risk in the amygdala and

orbitofrontal cortex (Hsu, Bhatt, Adolphs, Tranel, & Camerer,
Brain Mapping: An Encyclopedic Refere

 

2005). Besides being coded as own variable, risk reduces pre-

frontal value signals in risk avoiders and increases value

responses in risk seekers (Figure 4(d)) (Tobler, Christopoulos,

O’Doherty, Dolan, & Schultz, 2009), thus reflecting the influ-

ence of risk on subjective value conceptualized by utility

theory.

The observation and comparison of reward between indi-

viduals are particularly important and well developed in

humans. We usually hate to receive less reward than others,

all other factors being equal, called disadvantage inequity

aversion, and we often feel guilty for getting more than others,

called advantageous inequity aversion, unless we are in com-

petition. Reward signals in human striatum decrease with

disadvantageous inequity. The response to the same amount

of money decreases when a conspecific receives twice as much

(Fliessbach et al., 2007). Also, we learn from watching others.

While participants benefit from observing probabilistic learn-

ing in conspecifics, BOLD signals in ventromedial cortex code

the other’s reward prediction errors (in addition to striatal

signals for own reward prediction errors) (Figure 4(e))

(Burke, Tobler, Baddeley, & Schultz, 2010). These examples

show only a selection of the many human neuroimaging stud-

ies on widely ranging social processes.
nce, (2015), vol. 2, pp. 643-651 
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Chang, S. W. C., Gariépy, J.-F., & Platt, M. L. (2013). Neuronal reference frames for
social decisions in primate frontal cortex. Nature Neuroscience, 16, 243–250.

Cohen, J. Y., Haesler, S., Vong, L., Lowell, B. B., & Uchida, N. (2012). Neuron-type-
specific signals for reward and punishment in the ventral tegmental area. Nature,
482, 85–88.

Corbett, D., & Wise, R. A. (1980). Intracranial self-stimulation in relation to the
ascending dopaminergic systems of the midbrain: A moveable microelectrode
study. Brain Research, 185, 1–15.

De Martino, B., Kumaran, D., Seymour, B., & Dolan, R. (2006). Frames, biases, and
rational decision-making in the human brain. Science, 313, 684–687.

Deaner, R. O., Khera, A. V., & Platt, M. L. (2005). Monkeys pay per view: Adaptive
valuation of social images by rhesus monkeys. Current Biology, 15, 543–548.

Enomoto, K., Matsumoto, N., Nakai, S., Satoh, T., Sato, T. K., Ueda, Y., et al. (2011).
Dopamine neurons learn to encode the long-term value of multiple future rewards.
Proceedings of the National Academy of Sciences of the United States of America,
108, 15462–15467.

Fiorillo, C. D. (2013). Two dimensions of value: Dopamine neurons represent reward
but not aversiveness. Science, 341, 546–549.

Fiorillo, C. D., Song, M. R., & Yun, S. R. (2013). Multiphasic temporal dynamics in
responses of midbrain dopamine neurons to appetitive and aversive stimuli. The
Journal of Neuroscience, 33, 4710–4725.

Fiorillo, C. D., Tobler, P. N., & Schultz, W. (2003). Discrete coding of reward probability
and uncertainty by dopamine neurons. Science, 299, 1898–1902.

Flagel, S. B., Clark, J. J., Robinson, T. E., Mayo, L., Czuj, A., Willuhn, I., et al. (2011).
A selective role for dopamine in stimulus-reward learning. Nature, 469, 53–57.

 
 
 
 
 

Brain Mapping: An Encyclopedic Referen

 

Fliessbach, K., Weber, B., Trautner, P., Dohmen, T., Sunde, U., Elger, C. E., et al.
(2007). Social comparison affects reward-related brain activity in the human ventral
striatum. Science, 318, 1305–1308.

Grabenhorst, F., Hernadi, I., & Schultz, W. (2012). Prediction of economic choice by
primate amygdala neurons. Proceedings of the National Academy of Sciences of the
United States of America, 109, 18950–18955.

Gregorios-Pippas, L., Tobler, P. N., & Schultz, W. (2009). Short term temporal
discounting of reward value in human ventral striatum. Journal of Neurophysiology,
101, 1507–1523.

Gurden, H., Takita, M., & Jay, T. M. (2000). Essential role of D1 but not D2 receptors in
the NMDA receptor-dependent long-term potentiation at hippocampal-prefrontal
cortex synapses in vivo. Journal of Neuroscience, 20, RC106, 1–5.

Hernandez-Lopez, S., Bargas, J., Surmeier, D. J., Reyes, A., & Galarraga, E. (1997). D1
receptor activation enhances evoked discharge in neostriatal medium spiny neurons
by modulating an L-type Ca2þ conductance. Journal of Neuroscience, 17,
3334–3342.

Hernandez-Lopez, S., Tkatch, T., Perez-Garci, E., Galarraga, E., Bargas, J., Hamm, H.,
et al. (2000). D2 dopamine receptors in striatal medium spiny neurons reduce L-
type Ca2þ currents and excitability via a novel PLCb1-IP3-calcineurin-signaling
cascade. Journal of Neuroscience, 20, 8987–8995.

Hikosaka, O., Sakamoto, M., & Usui, S. (1989). Functional properties of monkey
caudate neurons. III. Activities related to expectation of target and reward. Journal of
Neurophysiology, 61, 814–832.

Hollerman, J. R., Tremblay, L., & Schultz, W. (1998). Influence of reward expectation on
behavior-related neuronal activity in primate striatum. Journal of Neurophysiology,
80, 947–963.

Hosokawa, T., & Watanabe, M. (2012). Prefrontal neurons represent winning and losing
during competitive video shooting games between monkeys. Journal of
Neuroscience, 32, 7662–7671.

Hsu, M., Bhatt, M., Adolphs, R., Tranel, D., & Camerer, C. F. (2005). Neural systems
responding to degrees of uncertainty in human decision-making. Science, 310,
1680–1683.

Kable, J. W., & Glimcher, P. W. (2007). The neural correlates of subjective value during
intertemporal choice. Nature Neuroscience, 10, 1625–1633.

Kepecs, A., Uchida, N., Zariwala, H., & Mainen, Z. F. (2008). Neural correlates,
computation and behavioural impact of decision confidence. Nature, 455, 227–231.

Kim, H., Sul, J. H., Huh, N., Lee, D., & Jung, M. W. (2009). Role of striatum in updating
values of chosen actions. Journal of Neuroscience, 29, 14701–14712.

Kobayashi, S., Pinto de Carvalho, O., & Schultz, W. (2010). Adaptation of reward
sensitivity in orbitofrontal neurons. Journal of Neuroscience, 30, 534–544.

Kobayashi, S., & Schultz, W. (2008). Influence of reward delays on responses of
dopamine neurons. Journal of Neuroscience, 28, 7837–7846.

Kobayashi, S., & Schultz, W. (2014). Reward contexts extend dopamine signals to
unrewarded stimuli. Current Biology, 24, 56–62.

Lak, A., Stauffer, W. R., & Schultz, W. (2014). Dopamine prediction error
responses integrate subjective value from different reward dimensions. Proceedings
of the National Academy of Sciences of the United States of America, 111,
2343–2348.

Levy, D., & Glimcher, P. W. (2011). Comparing apples and oranges: Using reward-
specific and reward-general subjective value representation in the brain. Journal of
Neuroscience, 31, 14693–14707.

Martin-Soelch, C., Leenders, K. L., Chevalley, A. F., Missimer, J., Kunig, G., Magyar, S.,
et al. (2001). Reward mechanisms in the brain and their role in dependence:
Evidence from neurophysiological and neuroimaging studies. Brain Research
Reviews, 36, 139–149.

Matsumoto, M., & Hikosaka, O. (2009). Two types of dopamine neuron distinctively
convey positive and negative motivational signals. Nature, 459, 837–841.

Matsumoto, M., & Takada, M. (2013). Distinct representations of cognitive and
motivational signals in midbrain dopamine neurons. Neuron, 79, 1011–1024.

Mirenowicz, J., & Schultz, W. (1996). Preferential activation of midbrain dopamine
neurons by appetitive rather than aversive stimuli. Nature, 379, 449–451.

Nieuwenhuis, S., Heslenfeld, D. J., Alting van Geusau, N., Mars, R. B., Holroyd, C. B., &
Yeung, N. (2005). Activity in human reward-sensitive brain areas is strongly context
dependent. NeuroImage, 25, 1302–1309.

Nomoto, K., Schultz, W., Watanabe, T., & Sakagami, M. (2010). Temporally extended
dopamine response to perceptually demanding reward-predictive stimuli. Journal of
Neuroscience, 30, 10692–10702.

O’Doherty, J., Kringelbach, M. L., Rolls, E. T., Hornak, J., & Andrews, C. (2001).
Abstract reward and punishment representations in the human orbitofrontal cortex.
Nature Neuroscience, 4, 95–102.

O’Neill, M., & Schultz, W. (2010). Coding of reward risk by orbitofrontal neurons is
mostly distinct from coding of reward value. Neuron, 68, 789–800.
ce, (2015), vol. 2, pp. 643-651 

http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0010
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0010
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0010
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0015
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0015
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0015
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0020
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0020
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0020
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0025
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0025
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0025
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0025
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0030
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0030
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0030
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0035
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0035
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0035
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0040
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0040
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0040
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0040
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0045
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0045
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0050
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0050
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0050
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0055
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0055
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0055
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0060
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0060
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0065
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0065
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0070
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0070
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0070
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0070
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0075
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0075
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0080
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0080
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0080
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0085
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0085
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0090
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0090
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0095
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0095
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0095
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0100
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0100
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0100
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0105
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0105
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0105
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0110
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0110
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0110
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0115
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0115
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0115
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0115
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0115
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0120
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0120
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0120
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0120
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0120
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0120
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0120
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0125
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0125
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0125
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0130
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0130
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0130
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0135
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0135
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0135
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0140
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0140
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0140
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0145
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0145
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0150
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0150
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0155
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0155
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0160
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0160
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0165
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0165
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0170
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0170
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0175
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0175
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0175
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0175
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0180
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0180
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0180
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0185
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0185
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0185
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0185
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0190
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0190
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0195
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0195
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0200
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0200
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0205
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0205
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0205
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0210
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0210
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0210
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0215
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0215
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0215
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0220
http://refhub.elsevier.com/B978-0-12-397025-1.00059-2/rf0220


INTRODUCTION TO SYSTEMS | Reward 651 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Author's personal copy
Padoa-Schioppa, C. (2009). Range-adapting representation of economic value in the
orbitofrontal cortex. Journal of Neuroscience, 29, 14004–14014.

Padoa-Schioppa, C., & Assad, J. A. (2006). Neurons in the orbitofrontal cortex encode
economic value. Nature, 441, 223–226.

Paton, J. J., Belova, M. A., Morrison, S. E., & Salzman, C. D. (2006). The primate
amygdala represents the positive and negative value of visual stimuli during
learning. Nature, 439, 865–870.

Pawlak, V., & Kerr, J. N. D. (2008). Dopamine receptor activation is required for
corticostriatal spike-timing-dependent plasticity. Journal of Neuroscience, 28,
2435–2446.

Pessiglione, M., Seymour, B., Flandin, G., Dolan, R. J., & Frith, C. D. (2006).
Dopamine-dependent prediction errors underpin reward-seeking behaviour in
humans. Nature, 442, 1042–1045.

Plassmann, H., O’Doherty, J., & Rangel, A. (2007). Orbitofrontal cortex encodes
willingness to pay in everyday economic transactions. Journal of Neuroscience, 27,
9984–9988.

Preuschoff, K., Bossaerts, P., & Quartz, S. R. (2006). Neural differentiation of expected
reward and risk in human subcortical structures. Neuron, 51, 381–390.

Puig, M. V., & Miller, E. K. (2012). The role of prefrontal dopamine D1 receptors in the
neural mechanisms of associative learning. Neuron, 74, 874–886.

Rescorla, R. A. (1967). Pavlovian conditioning and its proper control procedures.
Psychological Review, 74, 71–80.

Reynolds, J. N. J., Hyland, B. I., & Wickens, J. R. (2001). A cellular mechanism of
reward-related learning. Nature, 413, 67–70.

Robbins, T. W., & Arnsten, A. F. T. (2009). The neuropsychopharmacology of fronto-
executive function: Monoaminergic modulation. Annual Review of Neuroscience,
32, 267–287.

Samejima, K., Ueda, Y., Doya, K., & Kimura, M. (2005). Representation of action-
specific reward values in the striatum. Science, 310, 1337–1340.

Schultz, W. (1998). Predictive reward signal of dopamine neurons. Journal of
Neurophysiology, 80, 1–27.

Schultz, W., Apicella, P., & Ljungberg, T. (1993). Responses of monkey dopamine
neurons to reward and conditioned stimuli during successive steps of learning a
delayed response task. Journal of Neuroscience, 13, 900–913.

 

Brain Mapping: An Encyclopedic Refere

 

 
 
 
 
 

Shen, W., Flajolet, M., Greengard, P., & Surmeier, D. J. (2008). Dichotomous
dopaminergic control of striatal synaptic plasticity. Science, 321, 848–851.

Steinberg, E. E., Keiflin, R., Boivin, J. R., Witten, I. B., Deisseroth, K., & Janak, P. H.
(2013). A causal link between prediction errors, dopamine neurons and learning.
Nature Neuroscience, 16, 966–973.

Tan, K. R., Yvon, C., Turiault, M., Mirzabekov, J. J., Doehner, J., Labouèbe, G., et al. (2012).
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