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Economic choices are largely determined by two principal elements, reward value (utility) and probability. Although nonlinear utility
functions have been acknowledged for centuries, nonlinear probability weighting (probability distortion) was only recently recognized as
a ubiquitous aspect of real-world choice behavior. Even when outcome probabilities are known and acknowledged, human decision
makers often overweight low probability outcomes and underweight high probability outcomes. Whereas recent studies measured utility
functions and their corresponding neural correlates in monkeys, it is not known whether monkeys distort probability in a manner similar
to humans. Therefore, we investigated economic choices in macaque monkeys for evidence of probability distortion. We trained two
monkeys to predict reward from probabilistic gambles with constant outcome values (0.5 ml or nothing). The probability of winning was
conveyed using explicit visual cues (sector stimuli). Choices between the gambles revealed that the monkeys used the explicit probability
information to make meaningful decisions. Using these cues, we measured probability distortion from choices between the gambles and
safe rewards. Parametric modeling of the choices revealed classic probability weighting functions with inverted-S shape. Therefore, the
animals overweighted low probability rewards and underweighted high probability rewards. Empirical investigation of the behavior
verified that the choices were best explained by a combination of nonlinear value and nonlinear probability distortion. Together, these
results suggest that probability distortion may reflect evolutionarily preserved neuronal processing.
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Introduction
Economic choices between uncertain options require an appre-
ciation of reward utility and a proper understanding of reward
probability. Indeed, linear probability weighting is a central as-
sumption in normative theories of risky decision making such as
expected utility theory (von Neumann and Morgenstern, 1944).
However, a well known paradox and many experimental studies
have demonstrated that humans often overweight low probabil-
ity outcomes and underweight high probability outcomes (Allais,
1953; Kahneman and Tversky, 1979; Prelec, 1998; Gonzalez and
Wu, 1999; Abdellaoui, 2000; Tobler et al., 2008; Hsu et al., 2009).
The Allais paradox illustrated that many decision makers would

forego the chance of a large gain when the chance of getting
nothing increased from 0 to 1/100; howeer, those same decision
makers would choose the very same chance of a large gain when
the chance of getting nothing increased from 89 to 90/100 (Allais,
1953). Therefore, a small increase in the probability of getting
nothing appeared more significant at low probabilities compared
with higher ones. This phenomenon, probability distortion, has
subsequently been incorporated into modern decision theories
(Kahneman and Tversky, 1979; Quiggin, 1982; Tversky and Kahne-
man, 1992) that provide a better description of human behavior
compared with expected utility theory (Machina, 1987). However, it
is not known whether probability distortion occurs in macaque
monkeys, which afford excellent opportunities for studying neuro-
nal mechanisms underlying economic choices.

Previous studies of decision making in monkeys have mea-
sured a diversity of risk attitudes, but none has identified proba-
bility distortions. The majority have shown that monkeys are risk
seeking for small rewards (McCoy and Platt, 2005; O’Neill and
Schultz, 2010; Kim et al., 2012; So and Stuphorn, 2012; Lak et al.,
2014; Raghuraman and Padoa-Schioppa, 2014), but others have
uncovered the risk aversion more commonly observed in hu-
mans (Yamada et al., 2013; Stauffer et al., 2014). In these studies,
risk was modulated either by changing probability and magnitude
(So and Stuphorn, 2012; Raghuraman and Padoa-Schioppa, 2014)
or by holding probability constant and changing the magnitude
(McCoy and Platt, 2005; Kim et al., 2012; Yamada et al., 2013; Lak et
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al., 2014; Stauffer et al., 2014). Therefore, there has been no system-
atic investigation of probability distortion in monkeys.

Here, we investigated whether monkeys exhibited a nonlinear
probability weighting function independent from nonlinear util-
ity. We constructed gambles with constant outcome utilities but
different reward probabilities and observed value-based choices
between these gambles and safe rewards. In this way, we mea-
sured the certainty equivalents (CEs) of these gambles, defined as
the amount of reward for which the monkey is indifferent be-
tween receiving that amount of reward for certain and taking the
gamble. We parametrically separated nonlinear probability
weighting from nonlinear utility and followed this analysis with
several empirical tests to validate the estimated functions. Our
results revealed overweighting of small probability rewards and
underweighting of high probability rewards. The one-parameter
Prelec probability weighting function (Prelec, 1998) best ex-
plained the trial-by-trial choice behavior. Therefore, similar to
humans, monkeys displayed an inverted S-shaped probability
weighting function with a crossover point below p � 0.5.

Materials and Methods
Animals and experimental setup. Two male rhesus monkeys (Macaca mu-
latta) were used for these studies (9.1 and 12.5 kg). A third subject
(weighing 17 kg) was used for one test, shown in Figure 6. The Home
Office of the United Kingdom approved all experimental protocols and
procedures.

A custom-made head holder was aseptically implanted under general
anesthesia before the experiment. During experiments, animals sat in a
primate chair (Crist Instruments) positioned 30 cm from a computer
monitor. Eye position was monitored noninvasively using infrared eye
tracking (ETL200; ISCAN). Eye data and digital task event signals were
sampled at 2 kHz and stored at 200 Hz (eye) or 1 kHz. Liquid reward was
delivered by means of a computer-controlled solenoid liquid valve (0.004
ml/ms opening time). Custom-made software (MATLAB; The Math-
Works) running on a Microsoft Windows XP computer controlled the
behavioral tasks.

Behavioral training and tasks. We first trained monkeys on reward
predicting cues (see Fig. 1a). Following successful central gaze fixation
for 0.5 s, one cue (pseudorandomly drawn) was presented on the screen
for 1.5 s and the reward was delivered at cue offset. There was no further
operant requirement after the central fixation time had ended and the
cue appeared. Unsuccessful central fixation resulted in a 6 s timeout. The
gamble cue (see Fig. 1b) was a pie chart with two sectors whose areas
corresponded to the probability of reward ( p, indicated by horizontal
bars) and no reward (1�p, indicated by vertical bars), respectively. The
safe cues (see Fig. 1c) contained one horizontal bar whose vertical posi-
tion indicated the reward amount (between 0 and 0.8 ml in monkey A
and between 0 and 1.2 ml in monkey B). Training was done in blocks for
the two cue types, and included 3 safe and 6 gamble cues ( p � 0.10, 0.25,
0.40, 0.60, 0.75 or 0.90 in both monkeys; � 4000 trials over a month in
monkey A and 3900 trials over 3 weeks in monkey B). Within each block
cues were presented to the monkey in pseudorandom order. Impor-
tantly, during training and the choice tasks (see Figs. 1d, 2a), the area
indicating the probability of reward (horizontally striped sector) began at
a pseudorandomly selected angle between 0 and 360 (theta(A), see Fig.
1b). Therefore, the section indicating reward could appear on any part of
the pie chart, insuring that animals evaluated the whole stimulus rather
than only considering a particular portion associated with the reward.

We assessed binary choices between different gambles (n � 2444 and
1101 trials in monkey A and B, respectively, see Fig. 1d), and between a
gamble and a safe reward (n � 8885 and 4699 trials in monkey A and B,
respectively, see Fig. 2a). Each trial (see Fig. 1e) began with a fixation spot
at the center of the monitor. The animal directed its gaze to the fixation
spot and held it there for 0.5 s. Following successful central fixation, the
fixation spot disappeared and two gamble cues (see Fig. 1d), or one
gamble cue and one safe cue (see Fig. 2a), were pseudorandomly selected
and appeared to the left and right of the fixation spot, pseudorandomly

varying between the two positions. The animal had 1 s to indicate its
choice by shifting its gaze to the center of the chosen cue and holding it
there for another 0.5 s. Then the unchosen cue disappeared while the
chosen cue remained on the screen for an additional 1 s. The reward was
delivered at offset of the chosen cue. Trials were interleaved with inter-
trial intervals of pseudorandom durations conforming to a truncated
Poisson distribution (� � 5, truncated at 2 and 8 s). Unsuccessful fixation
during any task epoch resulted in a 6 s timeout.

Measurement of certainty equivalent using parameter
estimation by sequential testing
To measure the certainty equivalent (CE) for different gambles, we used
an adaptive psychometric measurement technique (Parameter Estima-
tion by Sequential Testing, PEST) adapted from Luce (Luce, 2000) and
fully described previously (Lak et al., 2014). Using this procedure we
assessed the amount of blackcurrant juice that was subjectively equiva-
lent to the value associated with each gamble. Each PEST sequence con-
sisted of several consecutive trials during which one gamble was
presented as a choice option against the safe reward. During each exper-
imental session we performed 15 to 30 PEST procedures. During each
individual PEST procedure (6 –30 trials), the gamble was constant (i.e., it
indicated a constant reward probability). Similar to initial learning task,
theta(A) was selected pseudorandomly on every trial throughout the
PEST. During each daily session we pseudorandomly selected the tested
probabilities such that the average probability for the daily session was
�p � 0.5.

On the initial trial of a PEST sequence, the amount of safe reward was
chosen pseudorandomly from the interval 0.1 to 0.8 ml (1.2 ml for mon-
key B). Based on the animal’s choice between the safe reward and gamble,
the safe amount was adjusted on the following trial. If the animal chose
the gamble on trial t, then the safe amount was increased by � on trial t �
1. However, if the animal chose the safe reward on trial t, the safe amount
was reduced by � on trial t�1. Initially, � was large. After the third trial of
a PEST sequence, � was adjusted according to the doubling rule and the
halving rule. Specifically, every time two consecutive choices were the
same, the size of � was doubled, and every time the animal switched from
one option to the other, the size of � was halved. Therefore, the procedure
converged by locating subsequent safe offers on either side of the true
indifference value and reducing � until the interval containing the indif-
ference value was small. The size of this interval is a parameter set by the
experimenter, called the exit rule. For our study, the exit rule was 20 �l.
When � fell below the exit rule, the PEST procedure terminated, and the
indifference value was calculated by taking the mean of the final two safe
offers (see Lak et al., 2014 and Stauffer et al., 2014 for further details). A
typical PEST session lasted 15–20 trials. All together, we collected 602
PEST measurements from monkey A over 8885 trials, and 278 PEST
measurements over 4699 trials.

Behavioral analysis. Trial-by-trial data was collected and stored for
analysis in Matlab and R (Wickham, 2009; RCoreTeam, 2014). We ana-
lyzed two types of data: CEs collected by running PEST sequences (see
above) and discrete trial-by-trial choice data.

We first verified the monkeys appropriately used the information pro-
vided by the sector cues during choices between two gambles, analyzed
using logistic regression as follows:

y � �0 � �1�VGamble1� � �2�VGamble2� � �4�Position LR� � � (1)

where y was 1 when Gamble1 was chosen and 0 otherwise (error trials,
which accounted for 	5% of all trials, were not included in this analysis),
VGamble1 and VGamble2 were determined by the probability of getting 0.5
ml in each gamble gamble, and position LR indicated the position on the
screen.

Whereas choices between gamble cues provided directly comparable
visual information, choices between a gamble cue and a safe cue did not
(one indicated magnitude, the other probability, drr Fig. 1b,c). To ensure
that the animals used the two sources of information appropriately we
analyzed choices between gambles and safe rewards using a similar logis-
tic regression model as follows:
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y � �0 � �1�VGamble� � �2�Vsafe� � �3�Risk� � �4�Position LR� � �

(2)

where y was 1 when the gamble was chosen and 0 when the safe was
chosen (error trials, which accounted for 	5% of all trials, were not
included in this analysis), VGamble was determined by the probability of
getting 0.5 ml in the gamble, Vsafe was determined the magnitude of juice
reward offered by the safe option, risk was defined with a measure pro-
portional to the SD of a binomial distribution, �� p � �1 � p�, and po-
sition LR indicated the position (right or left) of the cues on the screen.
Each regression coefficient was standardized by multiplying the raw re-
gression coefficient with the ratio of the SD of the independent variable
corresponding to the coefficient and the SD of the dependent variable.
The model was run on each behavioral session independently and the
standardized regression coefficients were tested for significance (t test)
across behavioral sessions that included �200 trials (n � 26 and 13
sessions in monkeys A and B, respectively).

Although the logistic regression analysis between gambles (Eq. 1) did
not contain a significant intercept, the logistic regression analysis on
choices between gambles and safe rewards (Eq. 2) indicated that both
animals had a small but significant bias toward choosing the sector stim-
ulus over the value bar even after risk, probability, and reward magnitude
had been accounted for (�0 � 0.5 and 2.2, p 	 10 �10 in monkeys A and
B; Wald test). This difference could be due either to misspecification of
the logistic model in capturing unexplained randomness in choice or
because of incorrect modeling of subjective value (e.g., inadequate cor-
rection for risk). Parametric modeling of probability distortion and util-
ity curvature (see below) supported the former explanation: estimates of
probability weights became absurd (low and high probabilities of win-
ning were valued equally) without subtracting from the safe value the
magnitude bias revealed in the intercept of the logistic regression (�60
�l). Misspecification of the logistic model has been documented before
and to the extent it differs across members of a species, it has even been
linked to genetics (Frydman et al., 2011). Here, we suspect that the mag-
nitude bias reflected difficulty of the choice scenario, where visual infor-
mation about the two cues (gamble; safe option) differed. We describe
and investigate possible sources for the choice bias in the Results section
(third paragraph) and interpret it in the Discussion.

Because the gambles had only one nonzero outcome, probability dis-
tortions were approximated by dividing the CEs by the outcome (CE/0.5
ml) and normalizing between 0 and 1 according to (Tversky and Kahne-
man, 1992). Average CE data were compared by t test (see Fig. 6).

Parametric analysis of probability distortion (see Figs. 4, 5) used trial-
by-trial choice data. We binned the data into 10 unique probability bins,
each comprising 21 unique safe alternative magnitudes per bin. We as-
sumed a standard discrete choice model where the probability of select-
ing the gamble was indicated by:

Pchoose Gamble � 1/�1 � e���UG�US�� (3)

where UG and US were the utilities (see below) of the gamble and the safe
option, respectively, and � was the softmax parameter that dictated how
likely the animals were to choose the higher valued option.

We computed the utilities of the choice options using the following:

UG � w�	, p� � u�0.5 ml� (4)

Us � Safe ml
 (5)

where w(	, p) was the weight assigned to probability of getting 0.5 ml
given parameters 	 and u(0.5 ml) � 1. We chose a power function to
model the utility function, as is commonly done (Lattimore et al., 1992;
Gonzalez and Wu, 1999; Hsu et al., 2009), where 
 � 1 indicates risk
seeking, 
 � 1 indicates risk neutrality, and 
 	 1 indicates risk aversion.
For direct comparability with the gamble, the resulting utility functions
were normalized such that u(0.5 ml) � 1.

Finally, we investigated three widely used probability distortion mod-
els, the one- and two-parameter Prelec functions (Eqs. 6 and 7, respec-
tively, Prelec, 1998) and the linear in log-odds model (Eq. 8, Lattimore et
al., 1992; Gonzalez and Wu, 1999):

w�p� � exp����lnp��� (6)

w�p� � exp�����lnp��� (7)

w�p� �
�p

�p � �1 � p� (8)

where �, �, �, and  were free parameters. We used an unconstrained
Nelder–Mead search algorithm (MATLAB: fminsearch) to minimize the
sum of the negative log likelihoods with respect to the utility function,

Figure 1. Behavioral training and choice task. a, Pavlovian trial structure. The animal
had to fix its gaze on a central spot to start the trial, the cue was presented 0.5 s later, and
the reward was delivered 1.5 s after cue onset. b, c, Cues indicating gambles and safe
rewards. Gambles were indicated by a pie chart (b) with two sectors, indicated by hori-
zontal and vertical lines, the areas of which corresponded to the probability of reward (0.5
ml) and no reward, respectively. 	 corresponded to the starting angle of the rewarded
probability sector (horizontal lines). On every trial, it was pseudorandomly selected (be-
tween 0 and 360) such that the rewarded sector could appear on any portion of the cue.
Safe offers were indicated by a horizontal bar crossing a vertical scale (c) that represented
volumes from 0 (bottom) to 0.8 ml (top) (1.2 ml in monkey B). d, Saccadic choices between
two sector cues, each indicating a gamble. e, Saccade choice trial structure. The animal
fixed its gaze on a central spot to start the trial, 2 cues were presented 0.5 s later, after
which the animal had 1 s to indicate its choice with a saccade to 1 of the 2 cues. The
unchosen target disappeared and the chosen option remained on the screen for 1 s, after
which the reward was delivered. The timing of the choice trials approximated the timing
of the Pavlovian learning trials. f, Probability of choosing one of the gambles as a function
of difference in probability of the two presented gambles. Dots show average choice
probability in 12 equally populated bins for monkey A. Black line is a logistic fit on the
trial-by-trial data.
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softmax parameter, and probability distortion parameter(s). The log
likelihood for each binned gamble-safe pair was given by the following:

LL �
�i�1

t
yi� log�Pchoose Gamble�

total Gamble choices
�
�i�1

t
y
i� log�Pchoose Safe�

total Safe choices
(9)

where i � trial number, t � total trial number in a bin, and y and y
 were
choices for gamble and safe outcomes (1 if chosen, 0 otherwise), respec-
tively. Model comparison was done using Bayesian information criteria
(BIC) with the optimized parameters for each model (see Table 1). To
verify the validity of this procedure, we repeated this exact procedure on
simulated data (see Fig. 5). Simulated choice data were derived from five
different decision models consisting of a power utility function and one

parameter Prelec probability weighting func-
tion. Each model was presented with the same
choice trials shown to monkey A and the
choices were generated using Equation 3 with a
softmax parameter � 1 (which was approxi-
mately the value of that parameter estimated
from the monkeys’ behavior), followed by a
weighted coin flip.

Results
Basic task and behavioral performance
After extensive conditioning with sector
stimuli that indicated gambles and value
bars that predicted safe rewards (Fig. 1a–c;
see Materials and Methods), monkeys
made saccade-guided choices between
two cues (Fig. 1d,e). We first investigated
whether the animals appropriately used
the sector information to select between
gambles (Fig. 1d). Both monkeys consis-
tently selected the gamble with higher
probability (Fig. 1f, 89% and 82% of the
time, monkey A and B, respectively).
Their choice behavior on every trial de-
pended on both gamble values (p 	
10�10, both animals; logistic regression,
Eq. 1), which were determined solely by
the gambles’ respective probabilities (the
outcomes were always 0.5 and 0 ml). Nei-
ther animal exhibited a side bias (p � 0.34
and 0.2 in monkey A and B, respectively;
logistic regression). Therefore, the mon-
keys appeared to use the sector stimuli to
make meaningful choices and maximize
value on a trial-by-trial basis.

Next, we measured choice behavior
when the animals selected between a gam-
ble and a safe reward (Fig. 2a). Due to the
nature of the cues, these choices were
more demanding compared with those
between two gambles because the animals
could not visually compare the size of
shaded regions to determine the more
valuable option. Rather, the value of the
gamble was determined by the probability
of winning (outcomes always 0.5 and 0
ml), whereas the value of the safe option
was determined by the offered magnitude
(probability � 1). Logistic regression re-
vealed that both values were used in an
economically rational way; a higher
chance of winning increased the probabil-

ity of choosing the gamble (Fig. 2b, p � 5.02�10 and 9.44�12 in
monkeys A and B, respectively; t test), whereas larger safe mag-
nitude decreased the probability of choosing the gamble (Fig. 2b,
p � 7.94�12 and 1.64�12 in monkeys A and B, respectively; t test).
As in many previous studies (McCoy and Platt, 2005; O’Neill and
Schultz, 2010; Kim et al., 2012; So and Stuphorn, 2012; Lak et al.,
2014; Raghuraman and Padoa-Schioppa, 2014), both animals
were risk seeking (Fig. 2b, p � 4.62�6 and 6.22�8 in monkeys A
and B, respectively; t test), but neither animal exhibited a signif-
icant side bias (Fig. 2b, p � 0.617 and 0.862 in monkey A and B,
respectively; t test).

Figure 2. Explicit cue information used for choices. a, Choice task for measuring CEs and trial-by-trial choice data for probability
distortion analysis. One gamble and one safe cue were presented on pseudorandomly alternating sides of the computer monitor
and the animal indicated its choice by making a saccade to one of the cues. b, Standardized regression coefficients (SRCs) for choices
between gambles and safe rewards. VG and VS, Value of the gamble and safe options, respectively; Pos, position on the screen;
Risk, risk of the gamble. Error bars indicate SD of regression coefficients across sessions. Asterisks indicate significant regressors
(VG: p � 5.02 �10 and 9.44 �12; VS: p � 7.94 �12 and 1.64 �12; Risk: p � 4.62 �6 and 6.22 �8, all in monkeys A and B,
respectively; t test). c, d, Choice probability versus safe offer value for low reward probability gambles ( p 	 0.3). Each bar
represents the average likelihood for choosing the gamble at different safe offer values in 0.05 ml bins. Red arrow indicates the winning
outcome magnitude of the gamble (0.5 ml). The animals rarely chose the gamble when the safe offer was �0.5 ml, providing strong
evidence that they understood the value of cues relative to each other. Error bars are SEM across reward probability.

Figure 3. Certainty equivalents indicating probability distortion. a, b, Probability weighting versus nominal probability. Each
data point represents a measured certainty equivalent divided by 0.5 ml and normalized so that the smallest and largest measured
CEs were equal to 0 and 1, respectively. n � 602 in monkey A and 278 in monkey B. Red lines are identity lines.
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Although the choices between two
gambles indicated that the animals under-
stood the sector stimuli (Fig. 1f), the lo-
gistic regression on choices between the
gamble and safe reward revealed a small
but significant bias toward choosing the
gamble over the safe option, even after
risk, probability, and reward magnitude
had been accounted for (�0 � 0.5 and 2.2,
logistic regression across as trials, p 	
10�10 in monkeys A and B; Wald test).
There was no significant trend in this bias
as a function of chronological session se-
quence (R 2 � 0.01 and 0.005, p � 0.08
and 0.8 in monkeys A and B, linear regres-
sion between intercept and session num-
ber). Likewise, the bias did not appear to
reflect a simple cutoff rule according to
which the animals chose the gambles
when safe reward magnitudes were low
(even at low probability). The likelihood
of choosing low probability gambles (p 	
0.3) did not dramatically increase at low
reward magnitudes (Fig. 2c,d). In fact, the
only dramatic shift in the likelihood of
choosing the gamble occurred when the
magnitude of the safe offer was �0.5 ml
(Fig. 2c,d, red arrows). When the safe
value offered was larger than 0.5 ml, there
was no possible benefit to choosing the
gamble. That the choice behavior re-
flected this objective value difference is
strong evidence that the monkeys understood the relative value of
the options. Therefore, the choice bias did not seem to arise from
a gross misunderstanding of the cues. Rather, the bias seemed to
reflect misspecification of the logistic model in capturing ran-
domness in the behavior and we corrected for this during para-
metric analysis by subtracting 60 �l from the safe offer (see
Materials and Methods). Because the bias was treated as a con-
stant independent of reward magnitude and probability, it did
not contribute to the estimated nonlinearity associated with
magnitude (utility) or probability (distortion).

Estimation of probability weighting functions
Choice indifference points between gambles and safe rewards
(i.e., CE) are a measure of the subjective value of a gamble. Be-
cause the gambles had one nonzero outcome, the CE divided by
the nonzero outcome (0.5 ml) provided a measure of probability
distortion (Tversky and Kahneman, 1992). A comparison of the
resulting data with the identity line indicated that the animals
overweighted low probability rewards and underweighted high
probability rewards (Fig. 3). However, a significant challenge in
identifying probability distortion is the existence of other factors
influencing subjective value, namely nonlinear utility functions,

which specify the relationship between subjective value and re-
ward magnitude.

To address this challenge, we simultaneously estimated the
shape of the underlying probability weighting and utility func-
tions. We used a standard discrete choice model (Eq. 3) to find
the set of parameters that best explained the observed choice
probability for each gamble-safe alternative option (Materials
and Methods, “Behavioral analysis”). We explored classical one-
and two-parameter probability weighting functions that are able
to capture overweighting, underweighting, or linear treatment of
probability (Eqs. 6 – 8; Lattimore et al., 1992; Prelec, 1998; Gon-
zalez and Wu, 1999). Likewise, power functions appropriately
modeled utility because they easily accommodate diverse risk
attitudes (indicating risk neutrality when 
 � 1, risk avoiding
when 
 	 1, and risk seeking when 
 � 1; Eq. 5). The estimation
procedure placed no constraints or boundaries on the values pa-
rameters could take. Table 1 provides the optimized parameters
for the three models as well as a model comparison index, the
BIC. The one-parameter Prelec model outperformed both two-
parameter models (�BIC�6, indicating relatively strong differ-
ences, but with the large trial number, BIC places a large penalty
on extra parameters; therefore, we plotted all three functions in
Fig. 4a,b). The distinctive “inverted S” of the probability weight-
ing functions indicated that both monkeys overweighted lower

Figure 4. Parametric estimation of probability distortion and utility functions. Trial-by-trial choice data were best explained by
a combination of inverted S-shaped probability weighting functions and convex utility functions. a, b, Estimated probability
distortion curves using one- or two-parameter weighting functions. The legend in a applies to all panels and describes the specific
model used. The estimated probability weighting functions show the traditional overweighting of small probability rewards and
underweighting of large probability rewards, for monkeys A and B, respectively. c, d, Estimated power utility functions for monkeys
A and B, respectively. The utility functions were nearly overlapping, thus the utility function paired with the two-parameter Prelec
model (blue) is not visible because of overlap.

Table 1. Parameter estimates from discrete choice models for monkey A and B

Model 
 (A, B) 	1 (A, B) 	2 (A, B) � (A, B) BIC (A, B)

1 parameter Prelec (	1 � �) 3.45, 3.62 0.31, 0.47 NA 0.85, 1.44 341.3, 294.6
2 parameter Prelec (	1 � �, 	2 � �) 3.60, 3.84 0.49, 0.54 1.48, 1.20 0.81, 1.39 347.7, 301.2
Gonzalez and Wu (	1 � �, 	2 � ) 3.61, 3.83 0.41, 0.62 0.63, 0.58 0.80, 1.39 347.7, 301.2

NA, Not applicable.
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probability rewards and underweighted high probability rewards
(Fig. 4a,b). The crossover point for the best-fitting one-
parameter model was near p � 0.37, enforced by the model itself
(1/e). Nevertheless, in the other models that do not enforce a specific
crossover point, the fitted function crossed the identity line at low
probabilities (Fig. 4a,b). The simultaneously estimated utility
functions were convex in both monkeys independent of which
probability distortion function was used (Fig. 4c,d). Therefore,
the utility functions indicated risk seeking and corroborated the
positive logistic regression coefficients for risk (Fig. 2b). Together,
these results reinforced the commonly observed risk-seeking be-
havior in monkeys (McCoy and Platt, 2005; O’Neill and Schultz,
2010; Kim et al., 2012; So and Stuphorn, 2012; Lak et al., 2014;
Stauffer et al., 2014) and revealed evidence that monkeys exhibit
a nonlinear probability weighting function with an inverted
S-shaped form.

To ensure that the parameter estimation analysis appropriately
attributed weight to the utility and probability weighting functions,
we tested the parameter estimation procedure against five simu-
lated datasets for which the true parameter values were known.
These simulated choice data were created from five different dis-
crete choice models with identical probability weighting func-
tions (Fig. 5a, left), but broadly spaced utility functions to
represent both risk seeking and risk avoiding tendencies (Fig. 5a,
right). Each model was presented with the same choice options
presented to monkey A (Materials and Methods). In all cases, the
parameter estimation technique recovered the true probability
distortion function with great fidelity (Fig. 5b, left). Likewise,
despite some apparent overestimation of the power term, the
technique correctly dissociated the risk averse utility functions
from the risk seeking utility functions (Fig. 5b, right). This result
indicates that the parameter estimation technique used here ad-
equately assigned weight to the two functions and provided val-
idation for the best-fitting utility and probability distortion
functions described above.

Monkeys are risk seeking for small rewards
Probability weighting functions and nonlinear utility can explain
some of the same behavioral phenomena such as risk seeking for
small probability gambles. However, there are certain situations
in which only one or the other is appropriate. To empirically validate
the estimated functions and provide evidence for probability distor-
tion that is independent from nonlinear utility (and vice versa), we
investigated preferences that cannot be explained by both functions.

The logistic regression analysis (Fig. 2b) and the estimated
convex utility functions (Fig. 4c,d) indicated that the monkeys
were risk seeking. To empirically validate the presence of convex
utility, we measured the CE of a 50:50 gamble between 0.1 and 0.4
ml and compared it with the CE of the 50:50 gamble between 0
and 0.5 ml. The latter gamble is a mean preserving spread of the
former (Rothschild and Stiglitz, 1970). Therefore, a risk-seeking
individual with a convex utility function will prefer (and should
report a higher CE for) the riskier gamble compared with the less
risky gamble, reflecting second order stochastic dominance for
risk seeking (Fishburn, 1974). Because the probabilities are iden-
tical, a risk preference in this situation cannot be attributed to
probability distortion. Indeed, monkey B reported a significantly
larger CE for the riskier compared with the less risky gamble (Fig.
6a, p � 0.001, t test). We verified this behavior in a third animal
(monkey C, Fig. 6a, p � 0.02, t test). This result provides strong
evidence in favor of the identified convex utility functions in the
tested reward magnitude range (Fig. 4c,d), and agrees with the
behavioral results reported previously (McCoy and Platt, 2005;

O’Neill and Schultz, 2010; Kim et al., 2012; So and Stuphorn,
2012; Lak et al., 2014; Raghuraman and Padoa-Schioppa, 2014;
Stauffer et al., 2014).

Reward probabilities are weighted in a nonlinear fashion
Convex utility functions explain the preference for a riskier
gamble that is a mean preserving spread of a less risky gamble
with the same reward probability. Here, we investigate
whether these utility functions are sufficient to explain pref-
erences for gambles with other reward probability. A hallmark
of expected utility (EU) theory is a linear treatment of proba-
bility. Therefore, the EU of a binary gamble is calculated ac-
cording to the following:

EU � p1 � u�outcome1� � p2 � u�outcome2� (10)

where p is the nominal probability and u is the utility function. In
contrast, prospect theory and other modern decision theories
incorporated probability distortion into the value computation.
Therefore, the value (V) of a binary gamble is calculated accord-
ing to the following:

V � w�p1� � v�outcome1� � w�p2� � v�outcome2� (11)

where w is the weight applied to the probability and � is a non-
linear value function. To investigate whether the expected utility
theory approximated the animals’ choice behavior, we estimated
utility functions from the CE of 50:50 gambles using a power
function (Fig. 6b, light and dark gray correspond to the utility
functions from monkeys A and B, respectively). Because the ori-
gin and scale of utility functions are arbitrary [u(0.5 ml) � 1 and
u(0 ml) � 0], Equation 10 reveals the indicated probability ac-

Figure 5. Parametric estimation of simulated probability distortion and utility functions. a,
Left, 5 1-parameter probability weighting functions with identical (overlapping) curvature
(� � 0.37). Right, 5 utility functions modeled with a power function consisting of terms (in
order of decreasing risk aversion) 0.2 (purple), 0.3 (cyan), 1 (black), 2 (red), and 3 (olive). Each
utility function was paired with a probability weighting function and together one pair acted as
a “starting function” to generate choice data. b, Each pair of starting functions (a) operated on
the choice trials presented to monkey A and created gamble or safe choices via a “softmax”
algorithm (Eq. 3) followed by a weighted coin flip. We ran the parametric optimization proce-
dure on each of the five simulated datasets. The recovered functions are color coded according
to the starting functions shown in a.
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cording to EU/1 � p. Likewise, we used the estimated utility
functions to calculate the observed probability (p̂) from the util-
ity of the measured CE (u(CE)/1 � p̂). An example is demon-
strated for a gamble with reward probability p � 0.25 (Fig. 6b,
blue and orange lines). If the subjects were approximating EU-
like behavior [i.e., gambles EU � u(CE)], then p should approx-
imate p̂ and there should not be a trend in the difference between
the two variables. In fact, the difference between p̂ and p was
significantly positive at lower probabilities (95% CI of the
mean � 0.04 and 0.07, p � 5.7�9; t test), suggesting overweight-
ing of low probability outcomes, and significantly negative at
higher probabilities (95% CI of the mean � �0.22 and �0.18,
p 	 10�10; t test), suggesting underweighting of high probability
outcomes (Fig. 6c, black dots). The differences were highly cor-
related with the difference between the estimated one-parameter
Prelec probability weighting function and nominal probability
(Fig. 6c, green line, 
 � 0.97, p � 3.12�13; Pearson’s correlation).
This result demonstrates that convex utility alone is not sufficient
to explain the choice data and validates the presence and form of
the parametrically estimated probability weighting function
shown in Figure 4.

Choices reflect probability rather than recent
reinforcement history
The gambles (indicated by the probability cues) remained con-
stant over the course of a PEST sequence (Fig. 7a, left). However,
a computerized random number generator determined the ac-
tual reward sequence. Therefore, especially on short sequences,
the local reinforcement history could provide a relative frequency
of rewarded and nonrewarded outcomes that deviated from the
indicated probability (Fig. 7a, right). To determine whether re-
inforcement history explained the apparent probability distor-
tions, we investigated whether the idiosyncratic deviation of
reward frequency from indicated probability could explain the
deviation of w(p) from identity. The results indicate that local
reinforcement history failed to provide extra explanatory power

over the indicated probability (Fig. 7b, combined data, R 2 �
0.001 and p � 0.62 in monkey A, R 2 � 0.02 and p � 0.12 in
monkey B; linear regressions). Indeed, the indicated probability
explained a greater portion of the variance compared with the
experienced reward frequency in separate linear regressions with
w(p) (R 2 � 0.64 vs 0.55 for indicated probability and experienced
reward frequency, respectively, p 	 10�10 in both animals, linear

Figure 6. Subjective values reflecting nonlinear utility and probability distortion. a, Animals preferred the riskier of two gambles with same mean and probability but different outcome
magnitudes. Each bar represents the average CE for a 50:50 gamble between 0.1 and 0.4 ml (G1, gray) or a 50:50 gamble between 0 and 0.5 ml (G2, black). Gamble G2 is a mean preserving spread
of gamble G1, so probability distortion cannot explain the preference, which is likely due to convex utility. Error bars are SEM across CE measurements (n � 16 in monkey B, 6 in monkey C). b, Utility
functions fit to the CEs of the 50:50 gambles reflect the convex utility functions that were parametrically estimated from the choices (Fig. 4c,d). Light and dark gray lines and dots represent the fitted
utility functions and mean CE from 50:50 gambles, respectively, from monkeys A and B, respectively. Error bars are SEM across CEs. Because the origin and scale of the utility axis are 0 and 1, the
expected utility (EU) mirrors the indicated probability. The blue arrow illustrates this relationship for a gamble with a p � 0.25 chance of 0.5 ml or 0 otherwise. We projected the observed CE for the
same gamble (orange arrow) onto the utility axis to estimate u(CE), which revealed the observed probability (p̂). c, Observed (p̂) is larger than indicated probability ( p) at low indicated probabilities
(positive difference, indicating overweighting), whereas observed (p̂) is smaller than indicated probability ( p) at higher indicated probabilities (negative difference, indicating
underweighting). The p̂ values were calculated separately for each animal (so that we could use the separate utility functions shown in b and avoid impossible interpersonal utility
comparisons) and then combined. The black dots represent the average data in 13 equally populated bins (excluding 0 and 1 endpoints). Error bars are SEM across p̂ � p measurements.
The green line represents the difference between the optimized one-parameter probability weighting function (averaged across the two animals) and the indicated probability. The
secondary y-axis corresponds to the green line.

Figure 7. Probability distortions do not reflect recent reinforcement history. a, Local
reinforcement history may induce deviation of experienced reward frequencies from in-
dicated probabilities. In the example shown, indicated probability is 0.25 (left), but the
gamble was chosen five times and rewarded twice, so the “experienced” frequency is
2/5 � 0.20. S, Safe choice; G, gamble choice; 1, rewarded trial; 0, unrewarded trial. b,
Deviation of experienced frequency from indicated probability fails to explain deviation of
w( p) from p. Each data point represents one PEST session. The black line represents the
best-fit line (R 2 � 0.005, p � 0.2 combined data both animals; linear regression).
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regressions). These results suggest that the substantial experience
of the monkeys had enabled them to use the indicated reward
probability rather than inferring probability from recently expe-
rienced outcomes. Moreover, idiosyncratic reinforcement histo-
ries did not explain the probability distortion.

Discussion
This study demonstrated that monkeys distorted reward proba-
bility during value-based choices. When making choices between
risky and safe rewards, the monkeys appeared to overweight low
probability rewards and underweight high probability rewards.
The probability distortion was well described by traditional proba-
bility weighting functions with an inverted S shape and a crossover
point near p � 0.37. To isolate probability distortion, we held the
outcome magnitudes (and hence the outcome utilities) constant
while varying the probability of winning liquid reward. As in many
previous studies, the monkeys were risk seeking for small rewards
(McCoy and Platt, 2005; O’Neill and Schultz, 2010; Kim et al., 2012;
So and Stuphorn, 2012; Lak et al., 2014; Raghuraman and Padoa-
Schioppa, 2014). However, in addition to evidence for convex utility,
the analysis of the choice data revealed evidence for classical proba-
bility distortion. This result suggests that specific patterns of proba-
bility distortion might have an evolutionary origin, perhaps directly
founded in neuronal function. Therefore, economic decision mak-
ing under risk in monkeys could provide the unique possibility of
investigating the neurophysiological correlates of probability distor-
tion in a species with sophisticated behavioral capacity.

Probability distortion is a key pillar of behavioral economics.
Despite the normative appeal of expected utility theory (von
Neumann and Morgenstern, 1944), decision makers often violate
fundamental assumptions, such as the independence axiom
(Allais, 1953). Therefore, expected utility theory often fails as a de-
scriptive tool (Machina, 1987). Prospect theory, rank-dependent
utility theory, and cumulative prospect theory all incorporate
probability distortion (Kahneman and Tversky, 1979; Quiggin,
1982; Tversky and Kahneman, 1992). Therefore, our findings in
monkeys are highly consistent with basic assumptions of modern
decision theories and with studies in humans that revealed probabil-
ity distortion (Lattimore et al., 1992; Gonzalez and Wu, 1999; Ab-
dellaoui, 2000; Hsu et al., 2009).

Probability distortion and nonlinear utility functions are able
to explain some of the same phenomena. However, neither alone
was sufficient to explain the data presented here. The CE data
(Fig. 3) strongly suggested risk seeking, but it could only be ex-
plained by nonlinear utility alone had all the data points stayed on
the same side of the identity line. Accordingly, multiplying con-
vex utility functions with nominal probabilities (according to
expected utility theory) underestimated the CE of low probability
rewards and overestimated the CE of high probability rewards
(thus indicating overweighting and underweighting of low and
high probability rewards, respectively, Fig. 6b,c). Therefore, convex
utility alone was not adequate to explain the subjective values mea-
sured for gambles with different probability. Conversely, monkeys
preferred the riskier of two gambles with the same mean and prob-
ability but different outcome magnitudes (Fig. 6a). This preference
between mean preserving options cannot be explained by probabil-
ity distortion (because the reward probabilities are identical), but is
entirely consistent with convex utility functions. Together, these re-
sults from the full range of the extensively tested behavioral situa-
tions indicate the presence of nonlinearity in both utility and
probability weighting functions.

Probability distortion is commonly invoked to explain the “four-
fold pattern of risk attitudes” that spans the gain and loss domain
around a reference point (Kahneman and Tversky, 1979). However,
in this study there is the lack of a well defined reference point, so it is
unclear whether the “unlucky” outcomes can be described as losses.
Some economic theories incorporate the rational expectation (Ko-
szegi and Rabin, 2006) or the CE of the gamble (Gul, 1991) as a
natural reference point; however, the traditional reference point is
the status quo (Kahneman and Tversky, 1979). In the former two
models, the unlucky gamble outcome used here (0 ml) would be
considered a loss, whereas in the latter model it would not. It is
therefore not clear whether the unlucky gamble outcome used in this
study can be considered a genuine loss. Nevertheless, analysis of
probability distortion has commonly been restricted to the gain do-
main (Gonzalez and Wu, 1999) or characterized in the absence of a
reference point, as in rank dependent utility (Quiggin, 1982). There-
fore, the current methods and results are entirely consistent with
established behavioral economic theory.

The means by which probability is known leads to differently
formed probability weighting functions. In previous research on
instructed probability, individuals overweighted small probabil-
ity outcomes and underweighted larger ones (the classical in-
verted S form shown here). Conversely, when probabilities were
learned from experience, the opposite pattern was often ob-
served; individuals exhibited underweighting of low chance
events and overweighting of high chance events (Hertwig et al.,
2004; Hertwig and Erev, 2009). In our behavioral task, we delib-
erately used an explicit representation of probability (sector stim-
uli) to mimic instruction rather than experience. Initially, the
animals had to learn the meaning of the sectors, which added an
initial element of experience to this study. However, the impact of
this experience element should decrease over thousands of learn-
ing trials. Consistent with this argument, analysis of the choice
data revealed that the indicated (instructed) probability was a
better explanatory variable than the local reward history (Fig. 7).
Moreover, the experience component here remains qualitatively dif-
ferent from real world decision making. In the real world, rare events
are normally undersampled. In contrast, our animals commonly
experienced 300–500 trials per day, so even the low probability
events were generously sampled. Accordingly, the probability distor-
tion conformed to the inverted S shape normally associated with
instructed probability.

Both animals accurately selected between two risk cues, but
the logistic regression revealed a bias that arose when they
made choices between safe and risky options. This indicated
that after magnitude, risk, and probability had been consid-
ered, both monkeys were still more likely to choose the gamble
over the safe option. Importantly, this bias appeared not to
arise from a gross misunderstanding of the two cue types, or
their relative values. First, when the animals selected between
two gambles, they chose the higher value option the majority
of the time (Fig. 1f ). Second, when the magnitude of the safe
offer was greater than the winning outcome of the gamble,
both monkeys correctly chose the safe offer (Fig. 2c,d). Finally,
the bias did not decrease as a function of sequential session,
indicating that there was no ongoing learning; that is, the
animals were not “getting better” at the task over time. There-
fore, although both animals selected the risky option more
often than the models accounted for, they appeared to under-
stand the relative value of the choice options and behaved in
an economically reasonable way.

The observed similarity in probability weighting functions
between human and nonhuman primates suggests that similar
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neuronal mechanisms might be engaged. Previous functional
imaging studies have found evidence of probability distortion
in the brain in both choice and nonchoice tasks (Tobler et al.,
2008; Hsu et al., 2009). However, no study has examined prob-
ability distortion at the single-cell level. Reward probability
modulates the activity of neurons in the midbrain dopamine
system (Fiorillo et al., 2003), the striatum (Samejima et al.,
2005; Lau and Glimcher, 2008), parietal cortex (Platt and
Glimcher, 1999; Yang and Shadlen, 2007), the orbitofrontal
cortex (Kennerley et al., 2011; Raghuraman and Padoa-
Schioppa, 2014), and other frontal cortex structures (Kenner-
ley et al., 2011; So and Stuphorn, 2012). A question to ask is
whether reward probability is distorted during simple reward
prediction tasks or if a distorted reward probability represen-
tation only arises during choice. Such a study could illuminate
whether probability distortion arises out of faulty beliefs
about probability itself or if the behavioral manifestation of
probability distortion represents a limit on neuronal process-
ing capacity that is exceeded by the demands of value-based
decisions. The explicit probability cues used here appear to
offer a flexible and dynamic means to neurophysiologically
investigate this important behavioral phenomenon. Indeed,
the sector cues were constructed with this application in mind.
The horizontal and vertical hatched areas indicating probabil-
ity of reward and no reward, respectively, ensure that the lu-
minance and physical salience of every indicated probability is
identical. This design enables well controlled investigation of
neuronal responses.

In summary, the current choice data suggest that monkeys
distort indicated reward probabilities when making economic
choices. Traditional models of probability distortion provide a
good model for this behavior in monkeys. The similarity be-
tween the inverted S-shaped probability weighting function in
monkeys and humans suggests that this phenomenon may
have an evolutionary origin, perhaps preserved in common
neuronal processes. This study thus lays the foundation for an
in depth neurophysiological investigation of how probability
is combined with utility to guide choice behavior.
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