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Participants. All participants were fluent speakers of English and
had normal or corrected-to-normal vision in the scanner. Par-
ticipants were preassessed to exclude previous histories of neu-
rological or psychiatric illness. All participants gave informed
consent, and the Local Research Ethics Committee of the
Cambridgeshire Health Authority approved the study. To mini-
mize error trials during scanning, participants learned the timings
and sequence of task events (for 20 training trials per condition
with stimuli not used in the experiment) no more than 7 d before
scanning. During the training period, black and white portrait
photographs were taken of each participant against a plain white
background at a fixed distance of 2 m. The images were cropped
to 100 × 100 pixels and adjusted to have equal luminance. Du-
ring training, participants were instructed that they would be
taking part in a social experiment with two players. They were
instructed that they would be able to observe the behavior of
another player but that the other player would not be able to
observe them. When participants arrived at the scanner, an ex-
perimental confederate arrived a little later. The participants
were gender matched to confederates. Confederates and par-
ticipants sat together in the waiting area of the MR facility and
went through the same procedures with regards to filling in
forms, reading task instructions and being checked for metals.
After these preliminary procedures, one research team member
led the confederate into another room, where another computer
was present. Another member of the research team led the true
participant into the scanner. After scanning, the exit of the con-
federate from the facility was timed to coincide with the debriefing
of the true participant (who was sat in the waiting area). The
confederates never actually performed the task (except to famil-
iarize themselves with the experiment), and the behavior of what
the true participant believed to be the other player was controlled
by a computer and kept constant across participants. There was
very little difference in the performance of the computer over the
trial types (Fig. S1), indicating that the differential participant
performance according to trial type was a function of the amount
of social information available.

Participant Payment. Participants were paid according to the total
points accumulated during all sessions of the task, which were
converted to British pounds sterling at a rate of 30 points to the
pound. In accordance with local payment protocol, participants
also received 20 pounds for participating regardless of task
performance. The average participant payment was 52 pounds.

Data Acquisition. Scanning took place at the Medical Research
Council’s Cognition and Brain Sciences Unit (MRC-CBU), Cam-
bridge, United Kingdom. The task was projected on a display,
which participants viewed through amirror fitted on top of the head
coil. We acquired gradient echo T2*-weighted echo-planar images
(EPIs) with blood-oxygen-level–dependent (BOLD) contrast on
a Siemens Trio 3 Tesla scanner (slices/volume, 33; repetition time,
2 s). Depending on performance of participants, 280–350 volumes
were collected in each session of the experiment, together with five
“dummy” volumes at the start and end of each scanning session.
Scan onset times varied randomly relative to stimulus onset times.
A T1-weighted MP-RAGE structural image was also acquired

for each participant. Signal dropout in basal frontal and medial
temporal structures resulting from susceptibility artifact was re-
duced by using a tilted plane of acquisition (30° to the anterior
commissure-posterior commissure line, rostral > caudal). Imag-

ing parameters were the following: echo time, 50 ms; field of view,
192 mm. The in-plane resolution was 3 × 3 mm, with a slice
thickness of 2 mm and an interslice gap of 1 mm. High-resolution
T1-weighted structural scans were coregistered to their mean
EPIs and averaged together to permit anatomical localization of
the functional activations at the group level.

Image Analysis. We used a standard rapid-event–related fMRI
approach in which evoked hemodynamic responses to each event
type are estimated separately by convolving a canonical hemo-
dynamic response function with the onsets for each event and
regressing these against the measured fMRI signal (1, 2). This
approach makes use of the fact that the hemodynamic response
function summates in an approximately linear manner over time
(3). By presenting trials in strictly random order and using ran-
domly varying intertribal intervals, it is possible to separate out
fMRI responses to rapidly presented events without waiting for
the hemodynamic response to reach baseline after each single
trial (1, 2).
Statistical parametric mapping (SPM5; Functional Imaging

Laboratory,UniversityCollegeLondon, availableatwww.fil.ion.ucl.
ac.uk/spm/software/spm5) served to spatially realign functional
data, normalize them to a standard EPI template and smooth them
using an isometric Gaussian kernel with a full-width at half-maxi-
mum of 8 mm. Onsets of stimuli and outcomes were modeled as
separate delta functions and convolved with a canonical hemody-
namic response function. Participant-specific movement parame-
ters were modeled as covariates of no interest. Linear contrasts of
regression coefficients were computed at the individual subject
level and then taken to group-level t tests.

Computational Models. We adapted a basic Q learning algorithm
that has been previously shown to account for instrumental choice
in probabilistic reward-learning tasks (4, 5). Generally, for a given
binary choice between two stimuli (A and B), the standard Q
learning model estimates the expected value of choosing A or B.
Whenever an outcome is observed for choosing a particular
stimulus at time t, a prediction error (δ) (corresponding to the
realized minus the expected outcome) is computed. The Q value
associated with that stimulus is updated accordingly by multi-
plying the prediction error by the learning rate (α). At the start of
a session, the Q values associated with each stimulus were set to
zero. If, for example, on the first trial the subject chose stimulus A
and received an outcome (r) of 10 points, the prediction error δ
would be given by δ(t) = r(t) − Qa(t). The value of stimulus A
would then be updated according to Qa(t+1) = Qa(t)+α*δ(t).
The probability of the model subsequently selecting a stimulus was
determined using the softmax function (6). The softmax function
computes a probability of selecting a particular stimulus from
a pair according to the ratio of the Q values associated with each
stimulus and parameter β (the inverse temperature, which cap-
tures the degree of variability in choices). The softmax function
has been shown to provide a good approximation of binary choice
in previous experiments (4).
Full observational learning. During full observational learning (i.e.,
when the action and outcome of the other player was observable),
the standard Q learning algorithm was modified by incorporating
a two-stage update process per trial (Fig. S3). The first update
occurs during the “observation stage” and the second during the
“action stage” (Fig. 1A). As such, the first update (after the ob-
servation stage) occurs at t+0.5, halfway through the trial. Upon
observing an outcome received by the other player, the scanned
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participant is assumed to experience an observational reward
prediction error (δS), according to the outcome received by the
confederate (rS) minus the Q value associated with that stimulus.
This trial-by-trial observational outcome prediction error was
entered as a parametric modulator at the onset of the other
player’s outcome. The scanned participant is able to learn from
the reinforcement received by the other player by multiplying the
social reward prediction error (δS) by the observational learning
rate (αS), capturing the degree to which participants are able to
learn from outcomes that are not directly experienced. This up-
date results in an observationally-updated Q value at time t+0.5
(denoted by QS in Fig. S1 for display purposes).
At the choice of the participant (during the action stage), the

probabilities of choosing a particular stimulus are modeled using
the softmax function, taking the observationally updated Q values
as arguments. Upon receipt of individual outcome (r), an in-
dividual reward prediction error (δi) is computed by subtracting
the previous observationally updated Q value (QS) from the in-
dividual outcome (r). These trial-by-trial values were entered
into the general linear model as a parametric modulator at the
onset of the participant’s outcome. The Q values are then up-
dated according to the standard algorithm by multiplying δi with
the individual learning rate (αi).
Action imitation learning.When only the action of the other player is
observable, learning can be modeled with the incorporation of
action prediction errors with the standard Q learning algorithm
(Fig. S4). The protocol follows the two-stage update procedure
outlined previously. At the start of the observation stage, the
participant in the scanner has Q values associated with each
stimulus on the screen, and therefore has some probability of
choosing each stimulus according to the softmax function. For
example, at the start of a session when no learning has occurred
the ratio of the two stimulus values gives a 0.5 probability of
choosing a particular stimulus. When the confederate goes on to
make a choice, the action prediction error (δaction) is given by the
actual choice minus the probability of choice associated with that
stimulus from softmax. Because the actual choice is always 1 or 0,
action prediction errors are always in the positive domain. For
example, if at the start of the session the probability associated
with choosing stimulus A is 0.5 (as no learning has occurred and
the Q values for the stimuli are equal), the action prediction error
would be [action (a) = 1] − [probability of choosing (a) = 0.5] =
0.5. The degree to which the participant incorporates this in-
formation in driving his subsequent choice behavior is controlled
by an imitation factor (κ) analogous to the learning rate in the
standard algorithm. Therefore, the probability of the participant
subsequently choosing A is P(a)(t+0.5) = P(a) (t)+ κ* δaction.
Conversely, the probability of choosing B is simply 1 − P(a). Al-
though no actual outcome has been observed, after a number of
trials the ratio of the stimulus values is inferred. This ratio of
action probabilities drives the scanned participant’s choice in an
analogous fashion to softmax. When the scanned participant
subsequently chooses and receives an outcome from a particular
stimulus, the participant computes an individual reward pre-
diction error and update the Q values according to the standard
algorithm, thereby refining value estimations.
Individual learning. On individual learning trials, the choice and
outcome of the confederate player were not observable. On such
trials, at the time of the confederate’s choice during the obser-
vation stage both stimuli were surrounded by white rectangles,

making it impossible for the scanned participant to determine
which was chosen. At the time of the confederate’s outcome,
a scrambled image was displayed at the same location. On these
trials, participants were required to learn from only their re-
ceived reinforcements, and the standard Q-learning algorithm
was used to model this.
To generate the regressors for the novel prediction error signals,

the free parameters in each model (αi, αS, κ, and β) were adjusted
to maximize the likelihood of observing each participant’s choices
given the respective model according to L = ∏N

n = 1∏T
t =

1P(choice,n,t), where N is the number of participants; T is the
number of trials per participant, and P(choice,n,t) is the likelihood of
choice made by participant n at trial t given the model. MATLAB
(Mathworks) was used to find the parameters maximizing the
likelihood L, with values of the parameters searched in increments
of 0.01 from 0 to 1, the results of which can be seen in Fig. S5. In
such a manner, individual, session-specific regressors for theoret-
ical social, individual, and action prediction errors were generated
and subsequently tested for covariation with brain signals.

Behavioral Results.As noted in the main text, there was a significant
increase in participants’ performances with increasing amounts of
observable information [ANOVA, F(2,21) = 11.305, P < 0.001].
For example, participants chose the correct stimulus at a signifi-
cantly higher rate when they were able to observe the actions and
outcomes of the confederate compared with when only confed-
erate actions were observable (P < 0.01). In turn, the participants
did significantly better when actions were observable compared
with learning without any observable information (P < 0.05).
When the data were split according to gain and loss sessions

(Fig. S2), the monotonic increase in performance with observ-
able information was preserved (P < 0.001 in gain sessions, P <
0.02 in loss sessions). In both gain and loss scenarios, participants
chose the correct stimulus at a significantly higher rate and re-
ceived significantly more points in the fully observable condition
compared with the individual learning baseline. However, in gain
sessions, there was a significant difference between fully ob-
servable and action-only conditions for both correct choices and
reward received (P < 0.001 and P < 0.001 respectively) but not
between action-only and individual conditions. In loss session,
this pattern was reversed (no significant differences between fully
observable and action-only conditions for both performance and
points received). However, a two-way ANOVA with sessions
(gain/loss) and trial type (fully observable, action-only, and in-
dividual learning conditions) as factors failed to show a signifi-
cant interaction (P = 0.42). In summary, it appears that parti-
cipants were able to increase their performance by learning from
the actions of the confederate more efficiently in loss sessions as
opposed to gain sessions. Previous research has suggested that
learning from positive and negative reinforcement may be me-
diated by opposing neural systems (7) and individual differences
in the effectiveness of learning from rewards and punishments
have been documented (8). One possibility underlying the dif-
ferences we observed could be that learning through observing
the actions of others is more effective in situations where an
avoidance response is necessary, numerous examples of which
exist in the literature (9, 10). Indeed, research in foraging theory
predicts that observational learning should proceed more readily
in resource-poor environments or for the learning of predator
avoidance mechanisms (11).
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Fig. S1. Computer-controlled confederate’s behavioral performance was constant across trial type.

Fig. S2. Percentage of correct choices in gain (A) and loss (B) sessions and points scored by participants in gain (C) and loss sessions (D), separated according to
trial type. (E) Probabilities of correct choices on a trial-by-trial basis in gain sessions. (F) Probabilities of correct choices on a trial-by-trial basis in loss sessions.
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Fig. S3. Schematic diagram illustrating the learning model for when all social information is available (i.e., when the action and outcome of the confederate
player is observable). The two-stage learning process is illustrated as if stimulus A has been chosen by both confederate and participant, denoted in the
lowercase and subscript text. In this particular example, the confederate received 10 points and the participant 0 points for their choices.
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Fig. S4. Schematic illustrating the learning model for when only the actions of the other player are observable. In this particular example, both confederate
and participant chose stimulus A, denoted in the lowercase and subscript text.

Fig. S5. Free parameter values that maximized the likelihood of observing participants’ behavioral data given the social learning models.
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Fig. S6. Time course in the three regions of interest (DLPFC, VMPFC, and ventral striatum) over the course of a full trial.
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Table S1. Trial types summarized in terms of the availability of social information to
the participant in the scanner

Learning type Other’s action Other’s outcome

Full observational learning Observable Observable
Action imitation learning Observable Hidden
Nonobservational learning Hidden Hidden

Colored shapes are the same as those used in the main text.

Table S2. Locations of significant activation clusters for the action learning, action + outcome
learning, and individual learning conditions in a whole-brain analysis

Cluster location MNI X (mm) MNI Y (mm) MNI Z (mm) No. of voxels Peak z score

Action learning condition
R inferior temporal gyrus 48 −48 −15 74 4.25
R middle occipital gyrus 39 −72 21 27 3.98
R inferior occipital gyrus 39 −72 −15 16 3.52
Full observational learning
L insula −42 −6 3 12 2.93
R medial orbitofrontal cortex 12 45 −12 3 2.56
L medial orbitofrontal cortex −3 39 −15 2 2.48
Individual learning
L precuneus −27 −60 21 45 5.91
R superior occipital gyrus 30 −78 0 43 5.80
L angular gyrus −48 −72 36 35 5.60
L middle temporal gyrus −54 −3 −24 44 5.60
L cerebellum −21 −57 −45 13 5.54
R cerebellum 42 −66 −42 149 5.53
R middle temporal gyrus 60 0 −15 30 5.30
L paracentral Lobule −18 −9 66 28 4.13
L rolandic opercularis −57 15 12 20 3.90

Montreal Neurological Institute (MNI) coordinates denote the peak of each cluster. Activations at P < 0.001
uncorrected with an extent threshold of 10 voxels are listed. However, for the full observational learning
condition, no other activations were observed at the usual threshold of P < 0.001 with an extent threshold
of 10 voxels. As such, activations at P < 0.01 uncorrected with an extent threshold of 0 voxels are listed for this
contrast. R, right; L, left.
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