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Individuals can learn by interacting with the environment and ex-
periencing a difference between predicted and obtained outcomes
(predictionerror).However,manyspeciesalso learnbyobservingthe
actions and outcomes of others. In contrast to individual learning,
observational learning cannot be based on directly experienced
outcome prediction errors. Accordingly, the behavioral and neural
mechanisms of learning through observation remain elusive. Here
we propose that human observational learning can be explained by
two previously uncharacterized forms of prediction error, observa-
tional action prediction errors (the actual minus the predicted choice
of others) and observational outcome prediction errors (the actual
minus predicted outcome received by others). In a functional MRI
experiment, we found that brain activity in the dorsolateral prefron-
tal cortex and the ventromedial prefrontal cortex respectively corre-
sponded to these two distinct observational learning signals.

prediction error | reward | vicarious learning | dorsolateral prefrontal
cortex | ventromedial prefrontal cortex

In uncertain and changing environments, flexible control of ac-
tions has individual and evolutionary advantages by allowing goal-

directed and adaptive behavior. Flexible action control requires an
understanding of how actions bring about rewarding or punishing
outcomes. Through instrumental conditioning, individuals can use
previous outcomes to modify future actions (1–4). However, indi-
viduals learn not only from their own actions and outcomes but
also from those that are observed. One of the most illustrative
examples of observational learning happens in Antarctica, where
flocks of Adelie penguins often congregate at the water’s edge
to enter the sea and feed on krill. However, the main predator
of the penguins, the leopard seal, is often lurking out of sight be-
neath the waves, making it a risky prospect to be thefirst one to take
the plunge. As this waiting game develops, one of the animals often
becomes so hungry that it jumps, and if no seal appears the rest of
the group will all follow suit. The following penguins make a de-
cision after observing the action and outcome of the first (5). This
ability to learn from observed actions and outcomes is a pervasive
feature of many species and can be absolutely crucial when the
stakes are high. For example, predator avoidance techniques or the
eating of a novel food item are better learned from another’s ex-
perience rather than putting oneself at risk with trial-and-error
learning. Although we know a fair amount about the neural mech-
anisms of individuals learning about their own actions and outcomes
(6), almost nothing is known about the brain processes involved
when individuals learn from observed actions and outcomes (7).
This lack of knowledge is all the more surprising given that obser-
vational learning is such a wide-ranging phenomenon.
In this study, 21 participants engaged in a novel observational

learning task based on a simple two-armed bandit problem (Fig.
1A) while being scanned. On a given trial, participants chose one
of two abstract fractal stimuli to gain a stochastic reward or to
avoid a stochastic punishment. One stimulus consistently delivered
a good outcome (reward or absence of punishment) 80% of the
time and a bad outcome (absence of reward or punishment) 20%of
the time. The other stimulus consistently had opposite outcome
contingencies (20% good outcome and 80% bad outcome). The
participants’ task was to learn to choose the better of the two
stimuli. However, before the participants made their own choice,
they were able to observe the behavior of a confederate player who

was given the same stimuli to choose from. As such, participants
had access to two sources of information to help them learn which
stimulus was the best; they could observe the other player’s actions
and outcomes and also learn from their own reinforcement given
their own action. In an individual learning baseline condition, no
information about the confederate’s actions and outcomes was
available. Thus, participants could learn the task only through their
own outcomes and actions (individual trial and error). In an
impoverished observational learning condition, the actions but
not the outcomes of the confederate player were available. Finally,
in a full observational learning condition, the amount of informa-
tion shown to participants was maximized by displaying both the
actions and outcomes of the confederate player. Thus, in both the
impoverished and the full observational learning conditions par-
ticipants could learn not only from individual but also from ex-
ternal sources.
We hypothesized that the ability of humans to learn from

observed actions and outcomes could be explained using well-
established reinforcement learning models. In particular, we ex-
plored the possibility that two previously uncharacterized forms of
prediction error underlie the ability to learn from others and that
these parameters are represented in a similar manner to those seen
in the brain during individual learning. Prediction errors associated
with an event can be defined as the difference between the pre-
diction of an event and the actual occurrence of an event. Thus, on
experiencing an event repeatedly, prediction errors can be com-
puted and then used by an organism to increase the accuracy of
their prediction that the same event will occur in the future
(learning). We adapted a standard action-value learning algorithm
from computational learning theory to encompass learning from
both individual experience and increasing amounts of externally
observed information. By using a model-based functional MRI
(fMRI) approach (8) we were able to test whether activity in key
learning-related structures of the human brain correlated with the
prediction errors hypothesized by the models.

Results
Participants learned to choose the better stimulus more often with
increasing amounts of observable information (ANOVA, P <
0.001, Fig. 1 B and D; on the individual subject level, this relation
was significant in 18 of the 21 subjects). When the actions and the
outcomes of the confederate were observable, participants chose
the correct stimulus at a significantly higher rate compared with
when only confederate actions were observable (ANOVA, P <
0.01) and during individual learning (P < 0.001). In addition,
when only confederate actions were observable, the participants
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still chose the correct stimulus on a significantly higher proportion
of trials compared with the individual baseline (P < 0.05). Thus,
more observable information led to more correct choice.
As would be expected, more observable information also led

to higher earnings. In general, there was a monotonic increase in
the amount of reward received (in gain sessions) and a decrease
in the amount of punishment received (in loss sessions) with
increasing observable information. Although the confederate’s
behavior did not differ across conditions (Fig. S1), Significantly
more reward and less punishment was received by participants
when they observed the confederate’s actions and outcomes in
comparison with the individual baseline (P < 0.001 and P <
0.001, ANOVA; Fig. S2). The behavioral data demonstrate that
participants were able to use observed outcomes and actions to
improve their performance in the task.
Next we investigated whether participants relied on imitation in

the conditions in which actions or actions and outcomes of the
confederate were observable. Imitation occurred in the present
context when participants chose the same stimulus rather than the
same motion direction as confederates (because the positions of
stimuli were randomized across confederate and participants peri-
ods within a trial). Participants showed more imitative responses
whenonly the actions of confederateswereobservable (on66.4%of
all trials) compared with when both actions and outcomes were
observable (on 41.1% of all trials; two-tailed t test, P < 0.001). This
finding, together with the finding that participants made more
correct choices and earned more money when both actions and
outcomes were observable, suggests that they adaptively used
available information in the different conditions.
To relate individual learning to brain activity when participants had

no access to external information, we fitted a standard action-value
learning algorithm onto individual behavior and obtained individual
learning rates. Based on these individual learning rates, we computed
expected prediction errors for each participant in each trial. These
values correspond to the actual outcome participants received minus

the outcome they expected from choosing a given stimulus. Finally, we
entered the expected outcomeprediction error values into a parametric
regression analysis and located brain activations correlating with
expected individual prediction errors. In concordance with previous
studies on individual action–outcome learning, brain activations
reflected prediction error signals in the ventral striatum (peak at 9, 9,
−12, Z = 5.96, P < 0.05, whole-brain corrected) (Fig. 2A).
In a second condition, we increased the level of information

available to participants and allowed them to observe the actions,
but not the outcomes, of the confederate player. Contrary to the
individual learning baseline condition, in this environment par-
ticipants can infer the outcome received by the other player and
observationally learn from the other player’s actions. Subse-
quently, they can combine this inference with individual learning.
Such a process can be thought of as a two-stage learning process;
first, observing the action of another player biases the observer to
imitate that action (at least on early trials), and second, the out-
come of the observer’s own action refines the values associated
with each stimulus. Learning from the actions but not the out-
comes of others is usually modeled using sophisticated Bayesian
updating strategies, but we hypothesized it could also be explained
using slight adaptations to the standard action-value model used
in individual learning, by the inclusion of a novel form of pre-
diction error. Imitative responses can bemodeled using an “action
prediction error” which corresponds to the difference between
the expected probability of observing a choice and the actual
choice made, analogous to the error terms in the delta learning
rule (9, 10) and some forms of motor learning (11). Contrary to an
incentive outcome, a simple motor action does not have either
rewarding or punishing value in itself. Accordingly, the best parti-
cipants could do was to pay more attention to unexpected action
choices by the confederate as opposed to expected action choices.
Attentional learning models differ from standard reinforcement
learning models in that they use an unsigned rather than a signed
prediction error (12). Accordingly, the degree to which an action
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Fig. 1. Experimental design and behavioral results. (A)
After a variable ITI, participants were first given the op-
portunity to observe the confederate player being pre-
sented with two abstract fractal stimuli to choose from.
After another variable ITI, participants were then pre-
sented with the same stimuli, and the trial proceeded in
the same manner. When the fixation cross was circled,
participants made their choice using the index finger (for
left stimulus) and middle finger (for right stimulus) on the
response pad. (B) The proportion of correct choices in-
creased with increasing amounts of social information. (C)
There was a monotonic increase in the proportion of
correct choices as a function of the observability of the
other player’s behavior and outcomes. Learning from the
actions and outcomes of the other player resulted in sig-
nificantly more correct choices than action only observ-
able and individual learning conditions.
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choice by the confederate is unexpected would drive attention
and, by extension, learning in the present context through an
unsigned prediction error. This unsigned action prediction error
is multiplied by an imitation factor (analogous to the learning rate
in individual reinforcement learning) to update the probability
of the participant choosing that stimulus the next time they see it.
The participant then refines the values associated with the stimuli
by experiencing individual outcomes (and therefore individual
outcome prediction errors) when making decisions between the
respective stimuli. The values associated with a particular stimu-
lus pair are used to update the individual probabilities of choosing
each stimulus via a simple choice rule (softmax). These proba-
bilities are also the predicted probabilities of the choice of the
other player. In such a way, combining imitative responses with
directly received individual reinforcement allows the observing
individual to increase the speed at which a correct strategy is ac-
quired compared with purely individual learning (13).
At the time of the choice of the other player in these imitative

learning trials, we found a highly significant activation in the dor-
solateral prefrontal cortex (DLPFC) [48, 30, 27, Z= 4.52, P< 0.05
small volume correction (SVC)] corresponding to the action pre-
diction error proposed in our imitation learning model (Fig. 3A).
Time-courses from the DLPFC showed that this previously
uncharacterized observational learning signal differentiated be-
tween small and large action prediction errors maximally between
3 and 6 s after the presentation of the choice of the other player
(Fig. 3B). The region showed a monotonic increase in activity with
increasing levels of the action prediction error expected by our
imitative reinforcement learning model (Fig. 3C). This signal can
be thought of as the degree of unpredictability of the actual choice
of the other player relative to the predicted choice probability. In
other words, if the scanned participant predicts that the confed-
erate will choose stimulus A with a high probability, the action
prediction error would be small if the confederate subsequently
makes that choice. On early trials, such a signal effectively biases

the participant to imitate the other player’s action (i.e., select the
same stimulus). Note that the imitative prediction error signal is
specific for stimulus choice and cannot be explained through sim-
plemotor/direction imitation because the position of the stimuli on
the other player’s and participant’s screens were varied randomly.
The dorsolateral prefrontal cortex was the only region that

showed an action prediction error at the time of choice of the other
player. Notably, there were no significant voxels in the ventral
striatum that correlated with the expected action prediction error
signal as predicted by ourmodel, even at the low statistical threshold
of P < 0.01, uncorrected. Upon occurrence of individual outcomes
however, a prediction error signal was again observed in the ventral
striatum (9, 6, −9, Z = 4.91, P < 0.023 whole-brain correction),
lending weight to the idea that a combination of observed action
prediction error and individual outcome prediction errors drive
learning when only actions are observable.When themodel was run
as if observable information was ignored by the participants (e.g.,
testing the hypothesis that participants only learned from their own
rewards), the regression of ventral striatum activity against expected
individual outcome prediction error became insignificant (R2 =
0.001, P = 0.917), indicating an integration of social and individual
learning at the neural level (Fig. 2C).
In the fully observable condition, we further increased the level of

information available to the scanned participants and allowed them
to observe not only confederate actions but also confederate out-
comes, in addition to their ownoutcomes. In a similarmanner to the
imitative learning model, we suggest that learning in this type of
situation is governed by a two-stage updating process, driven by
observational as well as individual outcome prediction errors.
However, as outcomes have incentive value, we used signed rather
than unsigned prediction error signals in both the observed and the
individual case. In the model, observational outcome prediction
errors arise at the outcome of the other player and the observer
updates their outcome expectations in a manner similar to in-
dividual learning. This necessitates the processing of outcomes that

-0.15
-0.1

-0.05
0

0.05
0.1

0.15
0.2

Positive δ i
Negative δ i

O
W

N
 O

U
TC

O
M

E

0 2 4 6 8 10
Seconds

-0.2
-0.15
-0.1

-0.05
0

0.05
0.1

0.15
0.2

0.25
+9

-9 -7 -5 -3 -1 1 3 5 7 9
Individual Outcome Prediction Error (δ i)

% 
Si

gn
al 

Ch
an

ge

A B C

Fig. 2. Activity in the ventral striatum correlating with individual outcome prediction error. (A) Coronal section showing significant voxels correlating with
individual outcome prediction errors (P < 0.05, whole-brain correction). (B) Time course of activity in the ventral striatum binned according to sign of individual
outcome prediction error. (C) Linear regression of activity in the ventral striatum against individual outcome prediction errors as expected by the model (red
circularmarkers, P< 0.001,R2 = 0.888). To demonstrate that social and nonsocial learning are integrated at the neural level, the gray triangularmarkers show the
regression with expected outcome prediction errors when social information is removed from the model on social learning trials (P = 0.917, R2 = 0.001).

Action Prediction Error (Action δ s)

A B C
Action δS; 0.5→1
Action δS; 0→0.5

0.6

-0.1
0

0.1
0.2
0.3
0.4
0.5

0 2 4 6 8 10

O
TH

E
R

’S
 C

H
O

IC
E

% 
Si

gn
al 

Ch
an

ge

+30

-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

0.1 0.3 0.5 0.7 0.9
Seconds

Fig. 3. Activity in the DLPFC correlating with observational action prediction error. (A) Coronal section showing significant voxels correlating with action pre-
diction errors (P < 0.05, SVC for frontal lobe). (B) Time course of activity in DLPFC at the time of the other player’s choice, binned according to magnitude of action
prediction error. (C) Linear regression of activity in DLPFC with action prediction errors expected by the model (red circular markers, P < 0.001, R2 = 0.773).

Burke et al. PNAS | August 10, 2010 | vol. 107 | no. 32 | 14433

N
EU

RO
SC

IE
N
CE

PS
YC

HO
LO

G
IC
A
L
A
N
D

CO
G
N
IT
IV
E
SC

IE
N
CE

S



are not directly experienced by the observer. Similarly to individual
prediction errors, observational outcome prediction errors serve to
update the observer’s probabilities of choosing a particular stimulus
next time they see it. Finally, learning is refined further by the en-
suing individual prediction error. We found a region of ventrome-
dial prefrontal cortex (VMPFC) that significantly correlated with
an observational outcome prediction error signal (peak at −6, 30,
−18, Z = 3.12, P < 0.05 SVC) at the time of the outcome of the
other player (Fig. 4A). This signal showed maximal differentiation
between positive and negative observational prediction errors be-
tween 4 and 6 s after the presentation of the outcome of the other
player. Also at the time of the outcome of the other player, we
observed the inverse pattern of activation in the ventral striatum
(i.e., increased activation with decreasing magnitude of observa-
tional prediction error; peak at −12, 12, −3, Z = 4.07, P < 0.003,
SVC) (Fig. 4 D–F). In other words, the striatum was activated
by observed outcomes worse than predicted and deactivated by
outcomes better than predicted. Conversely, during the partic-
ipants’ outcomes in the full observational condition, ventral stria-
tum activity reflected the usual expected individual outcome
prediction error, with (de)activations to outcomes (worse) better
than predicted (Z = 5.49, P < 0.001 whole-brain corrected). Taken
together, these data suggest that the VMPFC processes the degree
to which the actual outcome of the other player was unpredicted
relative to the individual’s prediction, whereas the ventral striatum
emits standard and inverse outcome prediction error signals in
experience and observation respectively.

Discussion
In the present study, we show that human participants are able to
process and learn from observed outcomes and actions. By in-
corporating two previously uncharacterized forms of prediction
error into simple reinforcement learning algorithms, we have
been able to investigate the possible neural mechanisms of two
aspects of observational learning.

In the first instance, learning from observing actions can be
explained in terms of an action prediction error, coded in the
dorsolateral prefrontal cortex, corresponding to the discrepancy
between the expected and actual choice of an observed individual.
Upon experiencing the outcomes of their own actions, learners
can then combine what they have learned based on action pre-
diction errors with individual learning based on outcome pre-
diction errors. Through such a combination, the learner acquires
a better prediction of others’ future actions. The application of
a simple reinforcement learning rule to such behavior is tractable
as it does not require the observer to remember the previous se-
quence of choices and outcomes (14). Small action prediction
errors allow the learning participant to reconfirm that they are
engaging in the correct strategy without observing the outcome of
the other player. The region of DLPFC where activity correlates
most strongly with the expected action prediction error signal has
previously been shown to respond to other types of prediction
error (15), to conflict (16), and to trials that violate an expectancy
that was learned from previous trials (17). The present finding
also fits well with previous research implicating the DLPFC in
action selection (18). In particular, DLPFC activity increases with
increasing uncertainty regarding which action to select (19). In the
present task, uncertainty about which action to select may have
been particularly prevalent when subjects were learning which
action to select through observation, an interpretation that could
be partially supported by the finding of increases in imitative
responses in the action only observation condition.
In the second instance, the VMPFC processed observational

outcome prediction errors. This learning signal applies to observed
outcomes that could never have been obtained by the individual
(as opposed to actually or potentially experienced outcomes) and
drives the observational (or vicarious) learning seen in our two-
stage bandit task. In a distinct form of learning (fictive or coun-
terfactual learning), agents learn from the outcomes that they could
have received, had they chosen differently. Fictive reward signals
(rewards that could have been, but were not directly received) have
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been previously documented in the anterior cingulate cortex (20)
and the inferior frontal gyrus (21). These regions contrast with
those presently observed, further corroborating the fundamental
differences between fictive and the presently studied vicarious
rewards. Fictive rewards are those that the individual could have
received (but did not receive), whereas vicarious rewards are those
that another agent received but were never receivable by the ob-
serving individual. Outside the laboratory, vicarious rewards are
usually spatially separated from the individual, whereas fictive
rewards tend to be temporally separated (what could have been,
had the individual acted differently). The observational outcome
prediction errors in the present study may be the fundamental
learning signal driving vicarious learning, which has previously
been unexplored from combined neuroscientific and reinforcement
learning perspectives.
In addition to the fundamental difference in the present study’s

findings on observational learning and those on fictive learning,
amajor development is the inclusionof two learning algorithms that
canexplainobservational learningusing the standard reinforcement
learning framework (these models are depicted graphically in Figs.
S3 and S4, with parameter estimates shown in Fig. S5). These
models should be of considerable interest to psychologists working
on observational learning in animals and behavioral ecologists. To
our knowledge, standard reinforcement learning methods have not
previously been used to explain this phenomenon.
Of particular relevance to our results, the VMPFC has been

previously implicated in processing reward expectations based on
diverse sources of information, and activity in this region may
represent the value of just-chosen options (22). Our data add
to these previous findings by showing an extension to outcomes
resulting from options just chosen by others. Taken together, the
present results suggest a neural substrate of vicarious reward
learning that differs from that of fictive reward learning.
Interestingly, it appears that the ventral striatum, an area that

has been frequently associated with the processing of prediction
errors in individual learning (23–26), was involved in processing
prediction errors related to actually experienced, individual re-
ward in our task in a conventional sense (i.e., with increasing ac-
tivity to positive individual reward prediction errors) but showed
the inverse coding pattern for observational prediction errors.
Although our task was not presented to participants as a game
situation (and the behavior of the confederate in no way affected
the possibility of participants receiving reward), this inverse re-
ward prediction error coding for the confederate’s outcomes is
supported by previous research highlighting the role the ventral
striatum plays in competitive social situations. However, the fol-
lowing interpretations must be considered with reservation, es-
pecially because of the lack of nonsocial control trials in our task.
For instance, the ventral striatum has been shown to be activated
when a competitor is punished or receives less money than oneself
(27). This raises a number of interesting questions for future re-
search on the role of the ventral striatum in learning from others.
For example, do positive reward prediction errors when viewing
another person lose drive observational learning, or is it simply
rewarding to view the misfortunes of others? Recent research
suggests that the perceived similarity in the personalities of the
participant and confederate modulates ventral striatum activity
when observing a confederate succeed in a nonlearning game
show situation (28). During action-only learning, the individual
outcome prediction error signal emitted by the ventral striatum
can serve not only to optimize one’s own outcome-oriented choice
behavior but (in combination with information on what others did
in the past) can also refine predictions of others’ choice behavior
when they are in the same choice situation.
We found observational outcome and individual outcome pre-

diction errors as well as prediction errors related to the actions of
others. They are all computed according to the same principle of
comparing what is predicted and what actually occurs. Neverthe-

less, we show that different types of prediction error signals are
coded in distributed areas of the brain. Taken together, our findings
lend weight to the idea that the computation of prediction errors
may be ubiquitous throughout the brain (29–31). This predictive
coding framework has been shown to be present during learning
unrelated to reward (32, 33) and for highly cognitive concepts such
as learning whether or not to trust someone (34). Indeed, an in-
teresting extension in future research on observational learning in
humans would be to investigate the role “social appraisal” plays
during learning from others. For example, participants may change
the degree to which they learn from others depending on prior
information regarding the observed individual, and outcome-
related activity during iterated trust games has been shown to be
modulated by perceptions of the partner’s moral character (35).
These findings show the utility of a model-based approach in

the analysis of brain activity during learning (36). The specific
mechanisms of observational learning in this experiment are
consistent with the idea that it is evolutionary efficient for general
learning mechanisms to be conserved across individual and vi-
carious domains. Previous research on observational learning in
humans has focused on the learning of complex motor sequences
that may recruit different mechanisms, with many studies postu-
lating an important role for the mirror system (37). However, the
role that the mirror system plays in observationally acquired
stimulus-reward mappings remains unexplored. The prefrontal
regions investigated in this experiment may play amore important
role in inferring the goal-directed actions of others to create
a more accurate picture of the local reward environment. This
idea is borne out in recent research suggesting that VMPFC and
other prefrontal regions (such as more dorsal regions of pre-
frontal cortex and the inferior frontal gyrus) are involved in
a mirror system that allows us to understand the intentions of
others. This would allow the individual to extract more reward
from the environment than would normally be possible relying
only on individual learning with no possibility to observe the
mistakes or success of others.

Materials and Methods
Participants. A total of 23 right-handed healthy participants were recruited
through advertisements on the University of Cambridge campus and on
a local community website. Two participants were excluded for excessive
head motion in the scanner. Of those scanned and retained, 11 were female
and the mean age of participants was 25.3 y (range 18–38 y). Before the
experiment, participants were matched with a confederate volunteer who
was previously unknown to them (SI Text).

Behavioral Task—Sequence of Events Each trial of the task started with
a variable intertrial interval (ITI) with the fixation cross-presented on the side
of the screen dedicated to the other player (Fig. 1A). This marked the be-
ginning of the “observation stage,” which would later in the trial be fol-
lowed by the “action stage.” During the observation stage, the photo of the
other player was displayed on their half of the screen at all times. The side
of the screen assigned to the other player was kept fixed throughout the
experiment, but counterbalanced across participants to control for visual
laterality confounds. The ITI varied according to a truncated Poisson distri-
bution of 2–11 s. After fixation, two abstract fractal stimuli were displayed
on the other player’s screen for 2 s. When the fixation cross was circled, the
player in the scanner was told that the other player must choose between
the two stimuli within a time window of 1 s. The participant in the scanner
also had to press the third button of the response pad during this 1-s win-
dow in order for the trial to progress. This button press requirement pro-
vided a basic motor control for motor requirements in the action stage
and ensured attentiveness of participants during the observation stage.
Depending on the trial type, participants were then shown the other play-
er’s choice by means of a white rectangle appearing around the chosen
stimulus for 1s. On trial types in which the action of the other player was
unobservable, both stimuli were surrounded by a rectangle so the actual
choice could not be perceived by the participant. The outcome of the other
player was then displayed for 2 s. On trial types in which no outcome was
shown, a scrambled image with the same number of pixels as unscrambled
outcomes was displayed.
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After the end of observation stage, the fixation cross switched to the
participant’s side of the screen and another ITI (with the same parameters as
previously mentioned) began. This marked the beginning of the action stage
of a trial. During the action stage, the photograph of the player inside the
scanner was displayed on their half of the screen at all times. The participant
in the scanner was presented with the same stimuli as previously shown to
the other player. The left/right positions of the stimuli were randomly varied
at the observation and action stages of each trial to control for visual and
motor confounds. When the fixation cross was circled, participants chose the
left or right stimuli by pressing the index or middle finger button on the re-
sponse box respectively. Stimulus presentation and timing was implemented
using Cogent Graphics (Wellcome Department of Imaging Neuroscience,
London, United Kingdom) and Matlab 7 (Mathworks).

Trial Types and Task Sessions. Three trial types were used to investigate the
mechanisms of observational learning. The trial types differed according to the
amount of observable information available to the participant in the scanner
(Table S1). Participants underwent six sessions of ≈10 min each in the scanner.
Three of these sessions were “gain” sessions and three were “loss” sessions.
During gain sessions, the possible outcomes were 10 and 0 points, and during
loss sessions, the possible outcomes were 0 and 10 points. Gain and loss ses-
sions alternated. and participants were instructed before each session started
as to what type it would be. In each session, participants learned to discrim-
inate between three pairs of stimuli. Within a session, one of three stimulus
pairs was used for each of the three trial types (coinciding with the different
levels of information regarding the confederate’s behavior).

The trial types experienced by the participant were randomly interleaved
during a session, although the same two stimuli were used for each trial type.
For example, all “full observational” learning trials in a single session would
use the same stimuli and “individual” learning trials would use a different
pair. On a given trial, one of the two stimuli presented produced a “good”
outcome (i.e., 10 in a gain session and 0 in a loss session) with probability 0.8
and a bad outcome (i.e., 0 in a gain session and −10 in a loss session) with
a probability of 0.2. For the other stimulus, the contingencies were reversed.
Thus, participants had to learn to choose the correct stimulus over the
course of a number of trials. New stimuli were used at the start of every
session, and participants experienced each trial type 10 times per session
(giving 60 trials per trial type over the course of the experiment). Time
courses in the three regions of interest over the course of a full trial can be
seen in Fig. S6. Lists of significant activation clusters in all three conditions
can be seen in Table S2.

Image Analysis. We conducted a standard event-related analysis using SPM5
(Functional Imaging Laboratory, University College London, available at
www.fil.ion.ucl.ac.uk/spm/software/spm5). Prediction errors generated by
the computational models were used as parametric modulation of outcome
regressors (SI Materials and Methods).
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SI Materials and Methods
Participants. All participants were fluent speakers of English and
had normal or corrected-to-normal vision in the scanner. Par-
ticipants were preassessed to exclude previous histories of neu-
rological or psychiatric illness. All participants gave informed
consent, and the Local Research Ethics Committee of the
Cambridgeshire Health Authority approved the study. To mini-
mize error trials during scanning, participants learned the timings
and sequence of task events (for 20 training trials per condition
with stimuli not used in the experiment) no more than 7 d before
scanning. During the training period, black and white portrait
photographs were taken of each participant against a plain white
background at a fixed distance of 2 m. The images were cropped
to 100 × 100 pixels and adjusted to have equal luminance. Du-
ring training, participants were instructed that they would be
taking part in a social experiment with two players. They were
instructed that they would be able to observe the behavior of
another player but that the other player would not be able to
observe them. When participants arrived at the scanner, an ex-
perimental confederate arrived a little later. The participants
were gender matched to confederates. Confederates and par-
ticipants sat together in the waiting area of the MR facility and
went through the same procedures with regards to filling in
forms, reading task instructions and being checked for metals.
After these preliminary procedures, one research team member
led the confederate into another room, where another computer
was present. Another member of the research team led the true
participant into the scanner. After scanning, the exit of the con-
federate from the facility was timed to coincide with the debriefing
of the true participant (who was sat in the waiting area). The
confederates never actually performed the task (except to famil-
iarize themselves with the experiment), and the behavior of what
the true participant believed to be the other player was controlled
by a computer and kept constant across participants. There was
very little difference in the performance of the computer over the
trial types (Fig. S1), indicating that the differential participant
performance according to trial type was a function of the amount
of social information available.

Participant Payment. Participants were paid according to the total
points accumulated during all sessions of the task, which were
converted to British pounds sterling at a rate of 30 points to the
pound. In accordance with local payment protocol, participants
also received 20 pounds for participating regardless of task
performance. The average participant payment was 52 pounds.

Data Acquisition. Scanning took place at the Medical Research
Council’s Cognition and Brain Sciences Unit (MRC-CBU), Cam-
bridge, United Kingdom. The task was projected on a display,
which participants viewed through amirror fitted on top of the head
coil. We acquired gradient echo T2*-weighted echo-planar images
(EPIs) with blood-oxygen-level–dependent (BOLD) contrast on
a Siemens Trio 3 Tesla scanner (slices/volume, 33; repetition time,
2 s). Depending on performance of participants, 280–350 volumes
were collected in each session of the experiment, together with five
“dummy” volumes at the start and end of each scanning session.
Scan onset times varied randomly relative to stimulus onset times.
A T1-weighted MP-RAGE structural image was also acquired

for each participant. Signal dropout in basal frontal and medial
temporal structures resulting from susceptibility artifact was re-
duced by using a tilted plane of acquisition (30° to the anterior
commissure-posterior commissure line, rostral > caudal). Imag-

ing parameters were the following: echo time, 50 ms; field of view,
192 mm. The in-plane resolution was 3 × 3 mm, with a slice
thickness of 2 mm and an interslice gap of 1 mm. High-resolution
T1-weighted structural scans were coregistered to their mean
EPIs and averaged together to permit anatomical localization of
the functional activations at the group level.

Image Analysis. We used a standard rapid-event–related fMRI
approach in which evoked hemodynamic responses to each event
type are estimated separately by convolving a canonical hemo-
dynamic response function with the onsets for each event and
regressing these against the measured fMRI signal (1, 2). This
approach makes use of the fact that the hemodynamic response
function summates in an approximately linear manner over time
(3). By presenting trials in strictly random order and using ran-
domly varying intertribal intervals, it is possible to separate out
fMRI responses to rapidly presented events without waiting for
the hemodynamic response to reach baseline after each single
trial (1, 2).
Statistical parametric mapping (SPM5; Functional Imaging

Laboratory,UniversityCollegeLondon, availableatwww.fil.ion.ucl.
ac.uk/spm/software/spm5) served to spatially realign functional
data, normalize them to a standard EPI template and smooth them
using an isometric Gaussian kernel with a full-width at half-maxi-
mum of 8 mm. Onsets of stimuli and outcomes were modeled as
separate delta functions and convolved with a canonical hemody-
namic response function. Participant-specific movement parame-
ters were modeled as covariates of no interest. Linear contrasts of
regression coefficients were computed at the individual subject
level and then taken to group-level t tests.

Computational Models. We adapted a basic Q learning algorithm
that has been previously shown to account for instrumental choice
in probabilistic reward-learning tasks (4, 5). Generally, for a given
binary choice between two stimuli (A and B), the standard Q
learning model estimates the expected value of choosing A or B.
Whenever an outcome is observed for choosing a particular
stimulus at time t, a prediction error (δ) (corresponding to the
realized minus the expected outcome) is computed. The Q value
associated with that stimulus is updated accordingly by multi-
plying the prediction error by the learning rate (α). At the start of
a session, the Q values associated with each stimulus were set to
zero. If, for example, on the first trial the subject chose stimulus A
and received an outcome (r) of 10 points, the prediction error δ
would be given by δ(t) = r(t) − Qa(t). The value of stimulus A
would then be updated according to Qa(t+1) = Qa(t)+α*δ(t).
The probability of the model subsequently selecting a stimulus was
determined using the softmax function (6). The softmax function
computes a probability of selecting a particular stimulus from
a pair according to the ratio of the Q values associated with each
stimulus and parameter β (the inverse temperature, which cap-
tures the degree of variability in choices). The softmax function
has been shown to provide a good approximation of binary choice
in previous experiments (4).
Full observational learning. During full observational learning (i.e.,
when the action and outcome of the other player was observable),
the standard Q learning algorithm was modified by incorporating
a two-stage update process per trial (Fig. S3). The first update
occurs during the “observation stage” and the second during the
“action stage” (Fig. 1A). As such, the first update (after the ob-
servation stage) occurs at t+0.5, halfway through the trial. Upon
observing an outcome received by the other player, the scanned
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participant is assumed to experience an observational reward
prediction error (δS), according to the outcome received by the
confederate (rS) minus the Q value associated with that stimulus.
This trial-by-trial observational outcome prediction error was
entered as a parametric modulator at the onset of the other
player’s outcome. The scanned participant is able to learn from
the reinforcement received by the other player by multiplying the
social reward prediction error (δS) by the observational learning
rate (αS), capturing the degree to which participants are able to
learn from outcomes that are not directly experienced. This up-
date results in an observationally-updated Q value at time t+0.5
(denoted by QS in Fig. S1 for display purposes).
At the choice of the participant (during the action stage), the

probabilities of choosing a particular stimulus are modeled using
the softmax function, taking the observationally updated Q values
as arguments. Upon receipt of individual outcome (r), an in-
dividual reward prediction error (δi) is computed by subtracting
the previous observationally updated Q value (QS) from the in-
dividual outcome (r). These trial-by-trial values were entered
into the general linear model as a parametric modulator at the
onset of the participant’s outcome. The Q values are then up-
dated according to the standard algorithm by multiplying δi with
the individual learning rate (αi).
Action imitation learning.When only the action of the other player is
observable, learning can be modeled with the incorporation of
action prediction errors with the standard Q learning algorithm
(Fig. S4). The protocol follows the two-stage update procedure
outlined previously. At the start of the observation stage, the
participant in the scanner has Q values associated with each
stimulus on the screen, and therefore has some probability of
choosing each stimulus according to the softmax function. For
example, at the start of a session when no learning has occurred
the ratio of the two stimulus values gives a 0.5 probability of
choosing a particular stimulus. When the confederate goes on to
make a choice, the action prediction error (δaction) is given by the
actual choice minus the probability of choice associated with that
stimulus from softmax. Because the actual choice is always 1 or 0,
action prediction errors are always in the positive domain. For
example, if at the start of the session the probability associated
with choosing stimulus A is 0.5 (as no learning has occurred and
the Q values for the stimuli are equal), the action prediction error
would be [action (a) = 1] − [probability of choosing (a) = 0.5] =
0.5. The degree to which the participant incorporates this in-
formation in driving his subsequent choice behavior is controlled
by an imitation factor (κ) analogous to the learning rate in the
standard algorithm. Therefore, the probability of the participant
subsequently choosing A is P(a)(t+0.5) = P(a) (t)+ κ* δaction.
Conversely, the probability of choosing B is simply 1 − P(a). Al-
though no actual outcome has been observed, after a number of
trials the ratio of the stimulus values is inferred. This ratio of
action probabilities drives the scanned participant’s choice in an
analogous fashion to softmax. When the scanned participant
subsequently chooses and receives an outcome from a particular
stimulus, the participant computes an individual reward pre-
diction error and update the Q values according to the standard
algorithm, thereby refining value estimations.
Individual learning. On individual learning trials, the choice and
outcome of the confederate player were not observable. On such
trials, at the time of the confederate’s choice during the obser-
vation stage both stimuli were surrounded by white rectangles,

making it impossible for the scanned participant to determine
which was chosen. At the time of the confederate’s outcome,
a scrambled image was displayed at the same location. On these
trials, participants were required to learn from only their re-
ceived reinforcements, and the standard Q-learning algorithm
was used to model this.
To generate the regressors for the novel prediction error signals,

the free parameters in each model (αi, αS, κ, and β) were adjusted
to maximize the likelihood of observing each participant’s choices
given the respective model according to L = ∏N

n = 1∏T
t =

1P(choice,n,t), where N is the number of participants; T is the
number of trials per participant, and P(choice,n,t) is the likelihood of
choice made by participant n at trial t given the model. MATLAB
(Mathworks) was used to find the parameters maximizing the
likelihood L, with values of the parameters searched in increments
of 0.01 from 0 to 1, the results of which can be seen in Fig. S5. In
such a manner, individual, session-specific regressors for theoret-
ical social, individual, and action prediction errors were generated
and subsequently tested for covariation with brain signals.

Behavioral Results.As noted in the main text, there was a significant
increase in participants’ performances with increasing amounts of
observable information [ANOVA, F(2,21) = 11.305, P < 0.001].
For example, participants chose the correct stimulus at a signifi-
cantly higher rate when they were able to observe the actions and
outcomes of the confederate compared with when only confed-
erate actions were observable (P < 0.01). In turn, the participants
did significantly better when actions were observable compared
with learning without any observable information (P < 0.05).
When the data were split according to gain and loss sessions

(Fig. S2), the monotonic increase in performance with observ-
able information was preserved (P < 0.001 in gain sessions, P <
0.02 in loss sessions). In both gain and loss scenarios, participants
chose the correct stimulus at a significantly higher rate and re-
ceived significantly more points in the fully observable condition
compared with the individual learning baseline. However, in gain
sessions, there was a significant difference between fully ob-
servable and action-only conditions for both correct choices and
reward received (P < 0.001 and P < 0.001 respectively) but not
between action-only and individual conditions. In loss session,
this pattern was reversed (no significant differences between fully
observable and action-only conditions for both performance and
points received). However, a two-way ANOVA with sessions
(gain/loss) and trial type (fully observable, action-only, and in-
dividual learning conditions) as factors failed to show a signifi-
cant interaction (P = 0.42). In summary, it appears that parti-
cipants were able to increase their performance by learning from
the actions of the confederate more efficiently in loss sessions as
opposed to gain sessions. Previous research has suggested that
learning from positive and negative reinforcement may be me-
diated by opposing neural systems (7) and individual differences
in the effectiveness of learning from rewards and punishments
have been documented (8). One possibility underlying the dif-
ferences we observed could be that learning through observing
the actions of others is more effective in situations where an
avoidance response is necessary, numerous examples of which
exist in the literature (9, 10). Indeed, research in foraging theory
predicts that observational learning should proceed more readily
in resource-poor environments or for the learning of predator
avoidance mechanisms (11).
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Fig. S1. Computer-controlled confederate’s behavioral performance was constant across trial type.

Fig. S2. Percentage of correct choices in gain (A) and loss (B) sessions and points scored by participants in gain (C) and loss sessions (D), separated according to
trial type. (E) Probabilities of correct choices on a trial-by-trial basis in gain sessions. (F) Probabilities of correct choices on a trial-by-trial basis in loss sessions.
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Fig. S3. Schematic diagram illustrating the learning model for when all social information is available (i.e., when the action and outcome of the confederate
player is observable). The two-stage learning process is illustrated as if stimulus A has been chosen by both confederate and participant, denoted in the
lowercase and subscript text. In this particular example, the confederate received 10 points and the participant 0 points for their choices.
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Fig. S4. Schematic illustrating the learning model for when only the actions of the other player are observable. In this particular example, both confederate
and participant chose stimulus A, denoted in the lowercase and subscript text.

Fig. S5. Free parameter values that maximized the likelihood of observing participants’ behavioral data given the social learning models.

Burke et al. www.pnas.org/cgi/content/short/1003111107 5 of 7

www.pnas.org/cgi/content/short/1003111107


Fig. S6. Time course in the three regions of interest (DLPFC, VMPFC, and ventral striatum) over the course of a full trial.
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Table S1. Trial types summarized in terms of the availability of social information to
the participant in the scanner

Learning type Other’s action Other’s outcome

Full observational learning Observable Observable
Action imitation learning Observable Hidden
Nonobservational learning Hidden Hidden

Colored shapes are the same as those used in the main text.

Table S2. Locations of significant activation clusters for the action learning, action + outcome
learning, and individual learning conditions in a whole-brain analysis

Cluster location MNI X (mm) MNI Y (mm) MNI Z (mm) No. of voxels Peak z score

Action learning condition
R inferior temporal gyrus 48 −48 −15 74 4.25
R middle occipital gyrus 39 −72 21 27 3.98
R inferior occipital gyrus 39 −72 −15 16 3.52
Full observational learning
L insula −42 −6 3 12 2.93
R medial orbitofrontal cortex 12 45 −12 3 2.56
L medial orbitofrontal cortex −3 39 −15 2 2.48
Individual learning
L precuneus −27 −60 21 45 5.91
R superior occipital gyrus 30 −78 0 43 5.80
L angular gyrus −48 −72 36 35 5.60
L middle temporal gyrus −54 −3 −24 44 5.60
L cerebellum −21 −57 −45 13 5.54
R cerebellum 42 −66 −42 149 5.53
R middle temporal gyrus 60 0 −15 30 5.30
L paracentral Lobule −18 −9 66 28 4.13
L rolandic opercularis −57 15 12 20 3.90

Montreal Neurological Institute (MNI) coordinates denote the peak of each cluster. Activations at P < 0.001
uncorrected with an extent threshold of 10 voxels are listed. However, for the full observational learning
condition, no other activations were observed at the usual threshold of P < 0.001 with an extent threshold
of 10 voxels. As such, activations at P < 0.01 uncorrected with an extent threshold of 0 voxels are listed for this
contrast. R, right; L, left.
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