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Dissociating the Role of the Orbitofrontal Cortex and the
Striatum in the Computation of Goal Values and Prediction
Errors
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To make sound economic decisions, the brain needs to compute several different value-related signals. These include goal values that
measure the predicted reward that results from the outcome generated by each of the actions under consideration, decision values that
measure the net value of taking the different actions, and prediction errors that measure deviations from individuals’ previous reward
expectations. We used functional magnetic resonance imaging and a novel decision-making paradigm to dissociate the neural basis of
these three computations. Our results show that they are supported by different neural substrates: goal values are correlated with activity
in the medial orbitofrontal cortex, decision values are correlated with activity in the central orbitofrontal cortex, and prediction errors are
correlated with activity in the ventral striatum.
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Introduction
The brain must perform multiple value computations to make
sound choices. Among them are the computation of goal values
(GVs), decision values (DVs), and prediction errors (PEs). Goal
values measure the predicted amount of reward associated with
the outcome generated by each of the actions under consider-
ation. Decision values measure the net value of taking the differ-
ent actions; i.e., the benefits minus the costs. Prediction errors
measure deviations from individuals’ previous reward expecta-
tions; they are positive every time something better than expected
happens, and negative when the opposite occurs (Schultz et al.,
1997; Sutton and Barto, 1998). These three computations play
different roles in decision making. Goal values and decision val-
ues are used to guide decisions to those actions with the largest
net benefit at the time of decision making. Prediction errors are
used to learn the value of states of the world and, thus, are critical
for learning how to make better decisions in the future. An ex-
ample of the calculation of these values is given in the Materials
and Methods.

A large number of psychiatric diseases involve deficits in
decision-making mechanisms (Dom et al., 2005; Paulus, 2007).
An improved understanding of the neural basis of goal values,
decision values, and prediction errors would advance our under-
standing of the impact that different types of neuropathologies
and brain lesions might have on decision making. However, these

dissociable effects are predicated on the idea that separate neural
systems perform different value computations in decision
making.

The extent to which goal value, decision value, and prediction
error computations have a different neural basis is an important
open question in behavioral neuroscience and neuroeconomics.
Prediction error signals have been shown to be expressed by mid-
brain dopaminergic neurons that project widely to the striatum
and prefrontal cortex in nonhuman primates (Schultz et al., 1997;
Hollerman and Schultz, 1998; Bayer and Glimcher, 2005; Bayer et
al., 2007). Recent human neuroimaging studies have separately
suggested that blood oxygen level-dependent (BOLD) signal in
the ventral striatum (VS) correlates with both prediction errors
(McClure et al., 2003; O’Doherty et al., 2003; Abler et al., 2006; Li
et al., 2006; Rodriguez et al., 2006; Tobler et al., 2006; Bray and
O’Doherty, 2007; Murray et al., 2008; Rolls et al., 2008) and goal
values (Aharon et al., 2001; Knutson et al., 2001, 2007; Hariri et
al., 2006; Yacubian et al., 2006, 2007; Kable and Glimcher, 2007;
Schaefer and Rotte, 2007). However, other studies designed to
identify regions of the brain expressing goal value computations
have shown activity reflecting goal values in orbitofrontal and
medial prefrontal cortex, but not in the ventral striatum (Plass-
mann et al., 2007; Rolls et al., 2008).

Thus, the extent to which these computations have a common
or separate neural substrate remains unanswered. We address
this question using functional magnetic resonance imaging
(fMRI) and a novel decision-making paradigm that allowed us to
dissociate the neural substrates related to the goal value, decision
value, and prediction error computations. The crucial aspect of
this paradigm is that it decouples the parameters for the three
value signals, thus permitting us to answer the question of what
computation was performed in each brain region.
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Materials and Methods
Subjects
Sixteen subjects participated in the experiment (nine males; mean age,
24.1 years; age range, 19 –38 years). Three additional subjects partici-
pated in the experiment but were excluded from the analysis because
their low bids for the food items or their behavioral response curves
indicated that they did not desire the items. Another additional subject
was excluded because of difficulties in aligning his anatomy to the stan-
dard MNI space. All subjects were right handed, healthy, had normal or
corrected-to-normal vision, had no history of psychiatric diagnoses,
neurological or metabolic illnesses, and were not taking medications that
interfere with the performance of fMRI. All subjects had no history of
eating disorders and were screened for liking and at least occasionally
eating the types of foods that we used. Subjects were told that the goal of
the experiment was to study food preferences and gave written consent
before participating. The review board of the California Institute of
Technology (Pasadena, CA) approved the study.

Stimuli
Subjects made decisions on 50 different sweet and salty junk foods (e.g.,
chips and candy bars). The foods were presented to the subjects using
high-resolution color pictures (72 dpi). The stimulus presentation and
response recording was controlled by E-prime (Psychology Software
Tools). The visual stimuli were presented using video goggles.

Value computations
In the current study, all value computations were expressed in US dollars.
Goal values refer to the predicted reward associated with each of the food
items. Before the fMRI task, the goal values for each subject and food item
were measured using a Becker–DeGroot–Marschak (BDM) auction pro-
cedure that has been shown to elicit an individual’s willingness to pay for
a consumer good (Becker et al., 1964; Plassmann et al., 2007). Willing-
ness to pay is the maximum amount that an individual will spend to
obtain the item offered for sale. Note that an individual’s goal value for a
particular item does not remain constant and depends on the current
state. For example, when hungry, a person will pay more for a snack than
she will pay for the same snack when satiated. The decision value is equal
to the net value of getting the food item. Knowing the goal value (i.e.,
willingness to pay) for each food item allows us to compute the decision
value by subtracting the price at which the food item is offered from the
goal value. For example, if a candy bar with a goal value of $2 is offered at
the cost of $1, then the decision value would be $2 � $1 � $1. However
if the cost of the candy bar were $3, then the decision value would be $2 �
$3 � �$1. As stated above, prediction error measures the difference
between the current state of the world and the predicted value. If in the
current trial a candy bar valued by the subject at $2 is offered at a cost to
the subject of $1 and in addition the subject receives a random prize of $2,
then the total value of the current trial is the goal value ($2) minus the
cost ($1) plus the prize ($2) � $3. If the predicted value for the trial, based
on outcomes of previous trials was $1, then there would be a positive
prediction error of $2.

Task
Subjects were instructed not to eat for 4 h before the experiment, which
increased the value that they placed on the foods. They were also in-
formed that they would have to remain in the lab for 30 min at the
conclusion of the experiment, and that the only thing that they will be
able to eat is whatever food they earned or purchased during the task. In
addition to a $60 participation fee, each subject received five $1 bills in
“spending money” to purchase food from us. Whatever money they did
not spend was theirs to keep. The design of the behavioral task is a critical
component of the current study. In most experimental paradigms exam-
ining reward-based decision making, goal values, decision values, and
prediction, errors are highly correlated. This correlation makes it ex-
tremely difficult to distinguish areas that compute one value signal from
areas that compute another, and thus might have lead to the misattribu-
tion of function. The current paradigm reduced the correlation between
the goal value, decision value, and prediction error parameters by simul-
taneously presenting three sources of information that combined to form
the overall value measure for each decision-making trial. The subject’s

task was to decide whether or not to purchase a familiar snack food item.
Immediately before entering the MRI scanner, subjects placed bids in a
computerized BDM auction (Becker et al., 1964) for the right to eat a
snack at the end of the experiment in 50 different bidding trials. The rules
of the BDM auction create a situation in which the optimal strategy for
the subject is to bid exactly what she is willing to pay for that food item
(Becker et al., 1964; Plassmann et al., 2007). This optimal strategy was
explained in detail to the subjects before the experiment began. This
procedure yielded a precise estimate of the goal value for each food item
on an individual subject basis. Food items were presented in random
order and subjects were given four seconds to place a bid for the current
food item by clicking the mouse on a continuous scale from 0 to 5 dollars.
Each trial ended as soon as the subject placed a bid and the subsequent
trial began immediately. Two subjects failed to place a bid for one or two
items within four seconds during the prescan auction. Trials containing
the missed food items were assigned as errors during fMRI analysis for
those subjects.

Once inside the MRI scanner, subjects completed 300 trials of a forced-
choice (yes/no) task using the same 50 food items. Figure 1 describes the
time structure of the fMRI experiment. On each trial subjects were shown
a screen containing a high-resolution image of a food item with the price
(x) above it and a gain/loss (z) below it. Both x and z were drawn at
random from the distribution (�3:3), where negative numbers repre-
sented a subtraction from the subjects “spending money,” and positive
numbers an addition to it. The subjects responded with a button press to
indicate whether or not they would pay the indicated price for the food
item shown. Buttons assigned to the yes and no responses were counter-
balanced across subjects. The amount represented by z was added or
subtracted regardless of the subject’s decision. The presence of the posi-
tive/negative price and random gain/loss amount in this paradigm min-
imizes the relationship between goal values, decision values, and predic-
tion errors allowing the three signals to be dissociated. For example, on
one trial a highly valued food item (goal value) might be offered in
conjunction with a negative price and large loss resulting in a negative
prediction error, whereas in a different trial a low-value food item might
be offered along with a positive price and a gain, thus resulting in a
positive prediction error. Similarly, the fact that price could be either
positive or negative allowed the dissociation of goal and decision values.
For example, a low-value food item offered at a very positive price would
result in a high decision value, but a low goal value. On 61% of the trials,
the food images, x, and z were drawn at random. On the remaining trials,
these variables were manipulated in the manner described below to in-
crease the orthogonality of the three value measures (GV, DV, and PE).
For 13% of the trials, x and z were set to 0 so that only the goal value was
present; on another 26% of the trials, the food image was replaced by a
yellow square. On half of the yellow square trials, z was set to 0, leaving
only the decision value, and on the other half x was set to 0, leaving only
the prediction error signal. All trials were modeled by the parametric
regressors for goal value, decision value, and prediction error. As a result
of this design the average correlation between the regressors for goal
value and prediction error was r � 0.306. Had our design included only
the food items and not x or z, the average correlation between goal value
and prediction error would have been r � 0.777. Similarly, the correla-
tion between decision value and prediction error was r � 0.573 in the
current design, whereas if we had not included z, the correlation would
have been r � 0.853. Thus, the current design greatly reduced the linear
relationship between goal and decision values, and prediction errors.

At the end of the experiment, one of the 50 prescan or 300 scanner
trials was randomly selected and the outcome of that trial, and only that
trial was implemented. As a result, subjects did not have to worry about
spreading their $5 dollar budget over the different items and they could
treat each trial as if it were the only decision that counted.

fMRI data acquisition
The functional imaging was conducted using a Siemens 3.0 Tesla Trio
MRI scanner to acquire gradient echo T2*-weighted echoplanar (EPI)
images with BOLD contrast. To optimize functional sensitivity in the
orbitofrontal cortex (OFC), we used a tilted acquisition in an oblique
orientation of 30° to the anterior commissure–posterior commissure line
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(Deichmann et al., 2003). In addition, we used an eight-channel phased
array coil that yields a 40% signal increase in signal in the medial OFC
over a standard head coil. Each volume comprised 44 axial slices. A total
of 1064 volumes were collected over four sessions during the experiment
in an interleaved ascending manner. The imaging parameters were as
follows: echo time, 30 ms; field of view, 192 mm; in-plane resolution and
slice thickness, 3 mm; repetition time, 2.75 s. Whole-brain high-
resolution T1-weighted structural scans (1 � 1 � 1 mm) were acquired
from the 16 subjects and coregistered with their mean EPI images and
averaged together to permit anatomical localization of the functional
activations at the group level.

fMRI data preprocessing
Image analysis was performed using SPM5 (Wellcome Department of
Imaging Neuroscience, Institute of Neurology, London, UK). Images
were corrected for slice acquisition time within each volume, motion
corrected with realignment to the last volume, spatially normalized to the
standard Montreal Neurological Institute EPI template, and spatially
smoothed using a Gaussian kernel with a full width at half maximum of
8 mm. Intensity normalization and high-pass temporal filtering (using a
filter width of 128 s) were also applied to the data.

fMRI data analysis
Primary model. The data analysis proceeded in three steps. First, we esti-
mated a general linear model (GLM) with AR(1) and 2 regressors includ-
ing response trials (R1), and missed trials (R2). To take advantage of the
parametric nature of our design, the general linear model also included
the following parametric modulators: response trials modulated by GV
(M1), response trials modulated by DV (M2), and response trials mod-
ulated by PE (M3). The parametric modulators are defined as follows.
Goal value equals the amount bid for the item sold in that trial during the
prescan auction and, thus, is a measure of the subject’s willingness to pay
for the item being shown. Decision value is equal to the amount bid plus
the value of x. (Recall that negative values of x represent prices, whereas
positive values of x represent compensations to the subject.) Prediction
error was calculated using the following equations: B(1) � 0; and for all
t � 1: PE(t) � V(t) � B(t); B(t � 1) � B(t) � � � PE(t), where PE is the
prediction error, t the trial number, � � 0.1, and B is the expected value.
The value of the current trial [V(t)] depended on the subject’s decision. If
the subject purchased the food item, then V(t) � bid(t) � x(t) � z(t).
However, if the subject choose not to purchase the food, then V(t) � z(t).
The data were modeled separately using � values ranging from 0.1 to 0.8.
These models were evaluated using the average � values from 8 mm
spheres centered in the bilateral ventral striatum and encompassing the
voxels reported to reflect prediction error signals for primary and mon-
etary rewards in previous studies (Knutson et al., 2005; O’Doherty et al.,
2006). � � 0.1 was found to provide the best fit for the current data. All
of the results reported below are based on this value.

Second, we calculated first-level single subject contrasts for (1) re-
sponse trials modulated by goal value (M1), (2) response trials modu-
lated by decision value (M2), and (3) response trials modulated by pre-
diction error (M3).

Third, we calculated second-level group contrasts using a one-sample
t test for each parametric regressor (GV, DV, and PE). Anatomical local-
izations were performed by overlaying the t maps on a normalized struc-
tural image averaged across subjects, and with reference to an anatomical
atlas (Duvernoy, 1999).

Post hoc analyses. Post hoc examinations of how activity in regions of
interest (ROIs) identified by the second-level group analysis scaled with
the values of GV, DV, PE, x, and z were conducted by running 10 addi-
tional general linear models. In the first, trials were split according the
quartile values of GV for each subject. This resulted in a general linear
model with five regressors including responses with first quartile GV
[low level of goal value] (R1), responses with second quartile GV
[medium-low level of goal value] (R2), responses with third quartile
GV [medium-high level of goal value] (R3), responses with fourth quar-
tile goal [[high level of goal value] (R4), and missed response trials (R5).
The general linear model also included parametric modulators for re-
gressors R1–R4, each modulated by DV and PE. The other additional

models were conducted in a similar manner, splitting the trials based on
the quartile values for DV, PE, x, and z. In the quartile models for DV and
x, regressors were modulated by GV and PE. In the quartile models for PE
and z, regressors were modulated by GV and DV. The � weights resulting
from these post hoc analyses were used to create the bar graphs shown in
Figures 2 and 7. The time-course graphs in Figure 3 and supplemental
Figure 1 (available at www.jneurosci.org as supplemental material) were
created by running these same five quartile models using finite impulse
response (FIR) basis functions rather than the canonical hemodynamic
response function. Responses were modeled for five 2 s intervals after
stimulus onset covering a total of 10 s.

To calculate the GLM in our primary analysis, the second parametric
regressor (DV) was orthogonalized with respect to the first parametric
regressor (GV), and the third parametric regressor (PE) was orthogonal-
ized with respect to the first and second by the SPM5 software. As a
consequence, any shared variance between the three parametric regres-
sors was assigned to the GV regressor and any shared variance between
the regressors for PE and GV or DV was assigned to first two regressors.
We specified the model in this order to give GV the maximal explanatory
power in all brain regions including the ventral striatum. For complete-
ness, we also ran two additional GLMs specifying the regressors for DV or
PE first. Both of these models also failed to show that activity in the
ventral striatum was correlated with GV.

In Figures 2, 3, and 7, functionally defined ROIs in the medial OFC
(mOFC), central OFC (cOFC), and VS were specified, respectively, using
the group contrasts for GV, DV, and PE from our primary model. Voxels
were included in the ROIs for DV and PE if they exceeded a threshold of
p � 0.01 uncorrected. We used a liberal threshold to create larger ROIs
that would allow for intersubject variability in the peak voxel. The ROI
for GV was created using a threshold of p � 0.0005 uncorrected because
more liberal thresholds included a large number of voxels beyond the
desired anatomical location. In the mOFC ROI, the peak voxel for each
subject was identified based on the GV contrast from the primary model
in which GV was the first parametric modulator. In the cOFC ROI, the
peak voxel for each subject was identified based on the contrast for DV
from the version of the GLM in which DV was the first regressor. In the
VS ROI, the peak voxel for each subject was identified based on the
contrast for PE from the version of the GLM in which PE was the first
regressor. This method resulted in peak voxels that were identified by
regressors retaining their original shape rather than being orthogonal-
ized with respect to another regressor.

To directly compare the fits for the GV, DV, and PE regressors, we
recalculated our primary model after first z scoring the values of GV, DV,
and PE within subjects to put them on the same scale. The average � for
each parametric regressor across all voxels in functionally defined ROIs
in the mOFC, cOFC, and VS was computed and compared within and
across ROIs using Wilcoxon signed rank tests. Functional ROIs were
defined by contrasts from our primary model for GV in the mOFC, DV in
the cOFC, and PE in the VS. ROIs were created at a threshold of p �
0.0005 uncorrected in each region.

Results
Behavioral results
Figure 1 shows that subjects made purchases based on decision
value computations (recall that the decision value is equal to the
benefit minus the cost). As expected, subjects were more likely to
purchase food items when the decision value was high and less
likely to purchase when the decision value was low.

Neuroimaging results
Our analysis of the fMRI data capitalized on the fact that the
nature of our design yielded three separate parameters for goal
value, decision value, and prediction error on every trial. We
analyzed the fMRI data using a GLM including parametric re-
gressors based on these three values to identify regions of the
brain that reflected the computation of the three value signals.
The contrast for goal values showed activity in several areas in-
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cluding the mOFC, the medial prefrontal cortex, and the amyg-
dala (for a complete list of regions and coordinates, see Tables
1–3). The contrast for decision values showed activity in the
cOFC. However, activity in the ventral striatum did not correlate
with either goal or decision value even at liberal thresholds ( p �
0.01, uncorrected); in fact, only the contrast for prediction error
showed activity in the ventral striatum. Figure 2 shows that activ-
ity in medial OFC, central OFC, and ventral striatum best re-
flected goal value, decision value, and prediction error,
respectively.

The findings so far support the conclusion that the BOLD
signal in the mOFC is correlated with goal values, but the signal in
ventral striatum is not. Because the latter part of the conclusion is
based on a failure to reject the null hypothesis, we performed
additional analyses to look more closely at this conclusion. In
particular, we conducted post hoc analyses on the regions of in-
terest in medial OFC, central OFC, and the ventral striatum iden-
tified by the primary analysis. To directly compare the fit of the
regressors for GV, DV, and PE in each region, we ran the GLM
again after first z scoring the three value computations within
subjects to put them on the same scale. Figure 3 shows the mean
and 95% confidence interval of the � (fitted parameter) for the
parametric regressors for GV, DV, and PE in medial OFC, central
OFC, and ventral striatum. These graphs again show that in the
medial OFC there is a significant effect only for GV, in the central
OFC there is an effect only for DV, and in the ventral striatum
there is an effect only for PE. Furthermore, in ventral striatum,
the effect of PE is significantly greater than GV, despite the fact
that GV was entered into the model as the first parametric regres-
sor and PE entered as the last resulting in any shared variance
between GV and PE being attributed to GV. Although the effects
of PE and DV were not significantly different in ventral striatum
in this model, when the order of regressors was changed to put PE
first giving it the maximum explanatory power, paired t tests
showed that the effect of PE was significantly greater than DV
(t(15) � 2.53; Bonferonni corrected, p � 0.05) (Fig. 4). Finally,
Figure 5 shows that the effect of GV was greater in medial OFC
than central OFC and ventral striatum. The effect of PE was
greater in the ventral striatum than the central OFC (Fig. 5).
However, although there was no significant effect of PE in the
medial OFC, the effect size did not differ between medial OFC
and ventral striatum. Similarly, although central OFC alone
showed a significant effect of DV, there was no difference in the
effect sizes for DV between central OFC, medial OFC, and ventral
striatum. Despite our efforts to decouple the GV, DV, and PE
parameters, DV remained correlated to a certain degree with
both GV (r � 0.531) and PE (r � 0.573). Thus, it is difficult to
determine whether the effects of DV in medial OFC and ventral
striatum are attributable to activity in those regions reflecting DV
computations or shared variance between DV and GV or DV and
PE.

We attempted to address the issue of correlation between
value computations by examining how activity in each of these
regions scaled with the separate and uncorrelated values of bid,
price, and random gain that are used to compute GV, DV, and
PE. Figure 6 shows that these three areas were selectively sensitive
to particular aspects of the trial. Activity in the medial OFC re-
flected only the bid or goal value of the food item. Activity in
central OFC was sensitive to both the bid and the price, which
shows that this area is sensitive both to the value of the outcomes
generated by actions and to the cost of taking the actions. Finally,
activity in ventral striatum reflected the amount of the price and
exogenous gain, which was to be expected because the total value

of the trial, and thus prediction errors, are a linear function of
them. (Recall that positive prices are compensations to the sub-
ject, whereas negative prices are subtractions from the subject’s
endowment.) In contrast, activity in the ventral striatum did not
reflect the amount bid for the food item. Time courses for bid,
price, and gain in medial OFC, central OFC, and ventral striatum
are shown in supplemental Figure 1 (available at www.jneurosci.
org as supplemental material).

These results indicate that goal value, decision value, and pre-
diction error computations are supported by dissociable neural
systems. This is illustrated in Figure 7, which shows the distinct
areas where these computations are reflected.

Discussion
The design of the behavioral task is a critical component of the
current study. In most experimental paradigms examining
reward-based decision making, goal values, decision values, and
prediction errors are highly correlated. This correlation makes it
extremely difficult to isolate the neural basis of these computa-
tions and, thus, can lead to the misattribution of function. Al-
though our task did not completely decouple the parameters for
GV, DV, and PE, it did significantly reduce the correlations be-
tween values. This reduction was sufficient to show that activity
in ventral striatum reflects prediction error and not goal value or
decision value computations. The fact that some degree of corre-
lation remains between the parameters for GV, DV, and PE does
not detract from our findings because these correlations bias the
data against our results.

Our data, together with the large number of studies that have
reported prediction errors in the ventral striatum (McClure et al.,
2003; O’Doherty et al., 2003; Abler et al., 2006; Li et al., 2006;
Rodriguez et al., 2006; Tobler et al., 2006; Bray and O’Doherty,
2007; Murray et al., 2008; Rolls et al., 2008) and the studies of
Plassman et al. (2007) and Rolls et al. (2008), which found goal

Figure 1. Task design. a, Subjects were presented with a high-resolution image of a food
item or a yellow square with a price shown above and an action independent gain/loss shown
below. Positive values indicated a gain and negative values indicated a cost or loss. Subjects
indicated with a button press whether or not they would pay the price above the image for the
right to eat the food item shown and the end of the experiment. The gain/loss below the image
occurred regardless of the subject’s choice. b, Trials including only food items, only price, and
only gain where included to help separate the values for GV, DV, and PE. Trial order, food items,
price, and gain were randomized within subjects. c, Percentage of “yes” responses as a function
of decision value. The y-axis represents the percentage of trials on which subjects responded
“yes” to purchase the food item shown. The x-axis represents the decision value of the trial.
Decision value was calculated as the amount the subject bid for the food item minus the cost for
that food item in the current trial. Error bars represent SEM.

5626 • J. Neurosci., May 28, 2008 • 28(22):5623–5630 Hare et al. • Neural Substrates of Value-Based Decision Making



value signals in the OFC and medial prefrontal cortex but not in
the striatum, suggest that activity in the ventral striatum reflects
prediction error but not goal value computations. This is an im-

portant result for neuroeconomics and behavioral neuroscience
because the interpretation of ventral striatal activity as reflecting
goal values is fairly widespread (Aharon et al., 2001; Knutson et

Table 1. Areas showing activity in the contrast of the parametric regressor for GV

Region Side BA MNI coordinates Peak Z

Inferior occipital gyrus R 18 33 �81 �9 5.41
Middle frontal gyrus, orbital sulcus R 11/47 30 27 �12 5.18
Middle frontal gyrus, orbital sulcus L 11/47 �24 30 �18 4.8
Medial frontal gyrus, medial OFC B 11/25 �1 27 �18 4.25
Anterior cingulated cortex B 24/32 1 39 6 4.16
Inferior frontal gyrus R 45 51 24 21 3.93
Inferior frontal gyrus R 45 45 33 9 3.92
Medial orbital gyrus R 28/47 21 9 �21 3.7
Parahippocampal gyrus R 27 21 �30 �3 3.69
Medial frontal gyrus R 10 6 51 0 3.61
Amygdala L �15 �9 �15 3.56

Height threshold, T � 4.09, false discovery rate corrected p � 0.01; extent threshold, k � 5 voxels. L, Left; R, right.

Table 2. Areas showing activity in the contrast of the parametric regressor for DV

Region Side BA MNI coordinates Peak Z

Middle frontal gyrus, posterior orbital gyrus L 11 �27 36 �6 3.66
Middle frontal gyrus, posterior orbital gyrus R 11 24 36 �3 3.16*

Height threshold, T � 3.73; p � 0.05, small volume false discovery rate (FDR) corrected, for anatomical mask of the ventral prefrontal cortex; extent threshold, k � 10 voxels. L, Left; R, right.

*p � 0.06, FDR corrected.

Table 3. Areas showing activity in the contrast of the parametric regressor for PE

Region Side BA MNI coordinates Peak Z

Ventral striatum, caudate/putamen R 15 21 �6 3.32

Height threshold, T � 3.73; p � 0.05, small volume false discovery rate corrected, for 10 mm sphere centered on peak coordinates for PE in the ventral striatum in the study by Knutson et al. (2005); extent threshold, k � 10 voxels. L, Left;
R, right.

Figure 2. Regions associated with goal value, decision value, and prediction error. For time courses in a– c, high values are shown with circular markers connected by solid lines. Low values are
marked by triangles connected by dotted lines. Markers represent the mean � value from a finite impulse response model at each time point. Error bars represent the SEM. Asterisks indicate points
in time where there is a significant difference between high and low based on paired t tests at p�0.05. Activation maps in d, e, and f are shown at a threshold of p�0.005 uncorrected and an extent
threshold of 10 voxels. Voxels in red are significant at p � 0.005 uncorrected, whereas voxels in yellow remain significant at p � 0.0001 uncorrected. d, Activity in the OFC and anterior cingulate
cortex correlated with goal value. e, Activity in the central OFC correlated with decision value. f, Activity in the ventral striatum correlated with prediction error. g– o, Bar graphs represent the mean
� value � SE at high (HH), medium high (MH), medium low (ML), and low (LL) levels of GV, DV, and PE. The p values displayed in the bar graphs were determined based on paired t tests between
high and low trials. Bars in black show the value that best fits each region.

Hare et al. • Neural Substrates of Value-Based Decision Making J. Neurosci., May 28, 2008 • 28(22):5623–5630 • 5627



al., 2001, 2007; Hariri et al., 2006; Yacubian et al., 2006, 2007;
Kable and Glimcher, 2007; Schaefer and Rotte, 2007). Here, we
use two recent examples to argue that this misinterpretation is
attributable to a limitation of previous task designs that con-
founded goal values with prediction PE signals. Knutson et al.
(2007) showed that ventral striatal activity was correlated with
subject’s preference ratings for various consumer products.
Based on this correlation, they suggested that ventral striatal ac-
tivity coded for the goal value of the object. A problem with their
interpretation is that in their design the prediction error at the
time of product presentation (equal to the goal value of the cur-
rent product, minus the predicted value derived from previously
shown products) is very highly correlated with the goal value of
the product. Therefore, another interpretation of their results,
consistent with the data in this study, is that the ventral striatum
is encoding prediction errors. Similarly, Kable and Glimcher
(2007) reported that activity in medial prefrontal cortex, poste-
rior cingulate and ventral striatum encode subjective goal value
in a temporal discounting paradigm. As in the study by Knutson
et al. (2007), in Kable and Glimcher’s (2007) experiment, predic-
tion errors and goal values are very highly correlated and, thus, it
is difficult to distinguish between areas that encode each compu-
tation. Our data suggest that their interpretation misattributes
the prediction error signals in the ventral striatum as goal value
computations for the same reasons discussed above.

We emphasize that the current data by no means diminish the
importance of the ventral striatum in reward learning and deci-
sion making, but rather serve to clarify its role in these processes.
The computation of goal value, decision value, and prediction
error are all necessary for economic decision making. Regions
involved in these computations must work in concert to deter-
mine the optimal course of action. Knowing the neural basis of
these computations provides a basis for determining the under-
lying dysfunction when specific deficits are seen in decision mak-
ing. With regard to regional specificity, it is important to note

that we are using fMRI to measure changes in the BOLD signal,
and this BOLD signal primarily reflects the input to and local
processing within a brain region rather than the efferent signals
from that region (Logothetis, 2002). For example, input from
midbrain dopamine neurons that have been shown to express
prediction error signals (Schultz et al., 1997; Hollerman and
Schultz, 1998; Bayer and Glimcher, 2005; Bayer et al., 2007) is
likely to contribute to the BOLD signal in the ventral striatum.
Thus, although our data show dissociations in the neural basis of
goal value, decision value, and prediction error computations,
these computations are still supported by interconnected neural
systems rather than isolated brain regions.

An important application of these results, and of related stud-
ies in neuroeconomics, is to neuropathologies involving
decision-making deficits such as addiction. Work in animal mod-
els and human neuroimaging studies have shown differential in-
volvement of prefrontal and ventral striatal regions as drug use
moves from acute initial experimentation to addiction and re-
lapse (Kalivas and Volkow, 2005). Knowing the precise value
computations performed in each region could aid in the devel-

Figure 3. Fit of each value computation to activity in medial OFC, central OFC, and ventral
striatum. The y-axis shows the mean � for GV, DV, and PE. The error bars represent the 95%
confidence interval of the mean. The different value computations (GV, DV, PE) are shown on
the x-axis. Dark gray bars highlight value computations for which the fit to activity is greater
than zero. The effects of GV, DV, and PE were compared in each region using Wilcoxon signed
rank tests and those results are represented by the p values on each graph.

Figure 4. Fit for GV, DV, and PE to activity in the ventral striatum. The � values in this figure
come from a secondary fMRI analysis model where PE was entered as the first parametric
regressor for response giving it the maximum explanatory power. The y-axis shows the mean �
for GV, DV, and PE. The error bars represent the 95% confidence interval of the mean. The
different value computations (GV, DV, PE) are shown on the x-axis. Dark gray bars highlight
value computations for which the fit to activity is greater than zero. The effects of GV, DV, and PE
were compared using paired t tests and those results are represented by the p values on the
graph.

Figure 5. Comparison of the fits for GV, DV, and PE in mOFC, cOFC, and VS The y-axis shows
the mean � for value specified in the graph title. The error bars represent the 95% confidence
interval of the mean. The regions of interest (mOFC, cOFC, and VS) are shown on the x-axis. Dark
gray bars highlight regions where the fit to activity is greater than zero. The effects fits were
compared between regions using Wilcoxon signed rank tests and those results are represented
by the p values on each graph.
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opment of behavioral and pharmacotherapeutic interventions
targeted at specific stages of addiction. A better understanding of
how the brain computes different value signals in the context of
decision making might also help to determine the mechanisms
underlying altered reward processing in neuropathologies like
depression, and schizophrenia (Tremblay et al., 2005; Forbes et
al., 2006; Juckel et al., 2006; Murray et al., 2008). These possibil-
ities are clearly important avenues for future research.
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