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B Abstract The functions of rewards are based primarily on their effects on behavior
and are less directly governed by the physics and chemistry of input events as in
sensory systems. Therefore, the investigation of neural mechanisms underlying reward
functions requires behavioral theories that can conceptualize the different effects of
rewards on behavior. The scientific investigation of behavioral processes by animal
learning theory and economic utility theory has produced a theoretical framework that
can help to elucidate the neural correlates for reward functions in learning, goal-directed
approach behavior, and decision making under uncertainty. Individual neurons can be
studied in the reward systems of the brain, including dopamine neurons, orbitofrontal
cortex, and striatum. The neural activity can be related to basic theoretical terms of
reward and uncertainty, such as contiguity, contingency, prediction error, magnitude,
probability, expected value, and variance.
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INTRODUCTION

How can we understand the common denominator of Pavlov’s salivating dogs, an
ale named Hobgoblin, a market in southern France, and the bargaining for lock
access on the Mississippi River? Pavlov’s dogs were presented with pieces of
delicious sausage that undoubtedly made them salivate. We know that the same
animal will salivate also when it hears a bell that has repeatedly sounded a few
seconds before the sausage appears, as if the bell induced the well-known, pleasant
anticipation of the desired sausage. Changing slightly the scenery, imagine you
are in Cambridge, walk down Mill Lane, and unfailingly end up in the Mill pub by
the river Cam. The known attraction inducing the pleasant anticipation is a pint of
Hobgoblin. Hobgoblin’s provocative ad reads something like “What’s the matter
Lager boy, afraid you might taste something?” and refers to a full-bodied, dark ale
whose taste alone is a reward. Changing the scenery again, you are in the middle
of a Saturday morning market in a small town in southern France and run into a
nicely arranged stand of rosé and red wines. Knowing the presumably delicious
contents of the differently priced bottles to varying degrees, you need to make
a decision about what to get for lunch. You can do a numerical calculation and
weigh the price of each bottle by the probability that its contents will please your
taste, but chances are that a more automatic decision mechanism kicks in that is
based on anticipation and will tell you quite quickly what to choose. However, you
cannot use the same simple emotional judgment when you are in the shoes of an
economist trying to optimize the access to the locks on the Mississippi River. The
task is to find a pricing structure that assures the most efficient and uninterrupted
use of the infrastructure over a 24-hour day, by avoiding long queues during prime
daytime hours and inactive periods during the wee hours of the night. A proper
pricing structure known in advance to the captains of the barges will shape their
decisions to enter the locks at a moment that is economically most appropriate
for the whole journey. The common denominator in these tasks appears to relate
to the anticipation of outcomes of behavior in situations with varying degrees of
uncertainty: the merely automatic salivation of a dog without much alternative, the
choice of sophisticated but partly unknown liquids, or the well-calculated decision
of a barge captain on how to get the most out of his money and time.

The performance in these tasks is managed by the brain, which assesses the
values and uncertainties of predictable outcomes (sausage, ale, wine, lock pricing,
and access to resources) and directs the individuals’ decisions toward the current
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optimum. This review describes some of the knowledge on brain mechanisms
related to rewarding outcomes, without attempting to provide a complete account
of all the studies done. We focus on the activity of single neurons studied by
neurophysiological techniques in behaving animals, in particular monkeys, and
emphasize the formative role of behavioral theories, such as animal learning theory
and microeconomic utility theory, on the understanding of these brain mechanisms.
Given the space limits and the only just beginning neurophysiological studies
based on game theory (Barraclough et al. 2004, Dorris & Glimcher 2004), the
description of the neurophysiology of this promising field will have to wait until
more data have been gathered. The review will not describe the neurobiology of
artificial drug rewards, which constitutes a field of its own but does not require
vastly different theoretical backgrounds of reward function for its understanding.
Readers interested in the rapidly emerging and increasingly large field of human
neuroimaging of reward and reward-directed decision making are referred to other
reviews (O’Doherty 2004).

GENERAL IDEAS ON REWARD FUNCTION,
AND A CALL FOR THEORY

Homer’s Odysseus proclaims, “Whatever my distress may be, I would ask you
now to let me eat. There is nothing more devoid of shame than the accursed
belly; it thrusts itself upon a man’s mind in spite of his afflictions. . .my heart is
sad but my belly keeps urging me to have food and drink. . .it says imperiously:
‘eat and be filled’.” (The Odyssey, Book VII, 800 BC). Despite these suggestive
words, Homer’s description hardly fits the common-sensical perceptions of reward,
which largely belong to one of two categories. People often consider a reward as
a particular object or event that one receives for having done something well. You
succeed in an endeavor, and you receive your reward. This reward function could
be most easily accommodated within the framework of instrumental conditioning,
according to which the reward serves as a positive reinforcer of a behavioral act. The
second common perception of reward relates to subjective feelings of liking and
pleasure. You do something again because it produced a pleasant outcome before.
We refer to this as the hedonic function of rewards. The following descriptions
will show that both of these perceptions of reward fall well short of providing a
complete and coherent description of reward functions.

One of the earliest scientifically driven definitions of reward function comes
from Pavlov (1927), who defined it as an object that produces a change in behavior,
also called learning. The dog salivates to a bell only after the sound has been paired
with a sausage, but not to a different, nonpaired sound, suggesting that its behavioral
response (salivation) has changed after food conditioning. It is noteworthy that
this definition bypasses both common-sensical reward notions, as the dog does
not need to do anything in particular for the reward to occur (notion 1) nor is it
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relevant what the dog feels (notion 2). Yet we will see that this definition is a key
to neurobiological studies.

Around this time, Thorndike’s (1911) Law of Effect postulated that a reward
increases the frequency and intensity of a specific behavioral act that has resulted in
areward before or, as acommon interpretation has it, “rewards make you come back
for more.” This definition comes close to the idea of instrumental conditioning, in
that you get a reward for having done something well, and not automatically as
with Pavlovian conditioning. It resembles Pavlov’s definition of learning function,
as it suggests that you will do more of the same behavior that has led previously to
the rewarding outcome (positive reinforcement). Skinner pushed the definition of
instrumental, or operant, conditioning further by defining rewards as reinforcers
of stimulus-response links that do not require mental processes such as intention,
representation of goal, or consciousness. Although the explicit antimental stance
reduced the impact of his concept, the purely behaviorist approach to studying
reward function allowed scientists to acquire a huge body of knowledge by studying
the behavior of animals, and it paved the way to neurobiological investigations
without the confounds of subjective feelings.

Reward objects for animals are primarily vegetative in nature, such as different
foodstuffs and liquids with various tastes. These rewards are necessary for sur-
vival, their motivational value can be determined by controlled access, and they
can be delivered in quantifiable amounts in laboratory situations. The other main
vegetative reward, sex, is impossible to deliver in neurophysiological laboratory
situations requiring hundreds of daily trials. Animals are also sensitive to other,
nonvegetative rewards, such as touch to the skin or fur and presentation of novel
objects and situations eliciting exploratory responses, but these again are difficult
to parameterize for laboratory situations. Humans use a wide range of nonvegeta-
tive rewards, such as money, challenge, acclaim, visual and acoustic beauty, power,
security, and many others, but these are not considered as this review considers
neural mechanisms in animals.

Anissue with vegetative rewards is the precise definition of the rewarding effect.
Is it the seeing of an apple, its taste on the tongue, the swallowing of a bite of it,
the feeling of its going down the throat, or the rise in blood sugar subsequent to its
digestion that makes it a reward and has one come back for more? Which of these
events constitutes the primary rewarding effect, and do different objects draw their
rewarding effects from different events (Wise 2002)? In some cases, the reward may
be the taste experienced when an object activates the gustatory receptors, as with
saccharin, which has no nutritional effects but increases behavioral reactions. The
ultimate rewarding effect of many nutrient objects may be the specific influence on
vegetative parameters, such as electrolyte, glucose, and amino acid concentrations
in plasma and brain. This would explain why animals avoid foods that lack such
nutrients as essential amino acids (Delaney & Gelperin 1986, Hrupka et al. 1997,
Rogers & Harper 1970, Wang et al. 1996). The behavioral function of some reward
objects may be determined by innate mechanisms, whereas a much larger variety
might be learned through experience.
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Although these theories provide important insights into reward function, they
tend to neglect the fact that individuals usually operate in a world with limited
nutritional and mating resources, and that most resources occur with different de-
grees of uncertainty. The animal in the wild is not certain whether it will encounter
a particular fruit or prey object at a particular moment, nor is the restaurant goer
certain that her preferred chef will cook that night. To make the uncertainty of out-
comes tractable was the main motive that led Blaise Pascal to develop probability
theory around 1650 (see Glimcher 2003 for details). He soon realized that humans
make decisions by weighing the potential outcomes by their associated probabili-
ties and then go for the largest result. Or, mathematically speaking, they sum the
products of magnitude and probability of all potential outcomes of each option and
then choose the option with the highest expected value. Nearly one hundred years
later, Bernoulli (1738) discovered that the utility of outcomes for decision making
does not increase linearly but frequently follows a concave function, which marks
the beginning of microeconomic decision theory. The theory provides quantifiable
assessments of outcomes under uncertainty and has gone a long way to explain
human and animal decision making, even though more recent data cast doubt on
the logic in some decision situations (Kahneman & Tversky 1984).

A Call for Behavioral Theory

Primary sensory systems have dedicated physical and chemical receptors that
translate environmental energy and information into neural language. Thus, the
functions of primary sensory systems are governed by the laws of mechanics, op-
tics, acoustics, and receptor binding. By contrast, there are no dedicated receptors
for reward, and the information enters the brain through mechanical, gustatory,
visual, and auditory receptors of the sensory systems. The functions of rewards
cannot be derived entirely from the physics and chemistry of input events but are
based primarily on behavioral effects, and the investigation of reward functions re-
quires behavioral theories that can conceptualize the different effects of rewards on
behavior. Thus, the exploration of neural reward mechanisms should not be based
primarily on the physics and chemistry of reward objects but on specific behavioral
theories that define reward functions. Animal learning theory and microeconomics
are two prominent examples of such behavioral theories and constitute the basis
for this review.

REWARD FUNCTIONS DEFINED BY ANIMAL
LEARNING THEORY

This section will combine some of the central tenets of animal learning theories in
an attempt to define a coherent framework for the investigation of neural reward
mechanisms. The framework is based on the description of observable behav-
ior and superficially resembles the behaviorist approach, although mental states
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of representation and prediction are essential. Dropping the issues of subjective
feelings of pleasure will allow us to do objective behavioral measurements in con-
trolled neurophysiological experiments on animals. To induce subjective feelings
of pleasure and positive emotion is a key function of rewards, although it is un-
clear whether the pleasure itself has a reinforcing, causal effect for behavior (i.e.,
I feel good because of the outcome I got and therefore will do again what pro-
duced the pleasant outcome) or is simply an epiphenomenon (i.e., my behavior
gets reinforced and, in addition, I feel good because of the outcome).

Learning

Rewards induce changes in observable behavior and serve as positive reinforcers
by increasing the frequency of the behavior that results in reward. In Pavlovian, or
classical, conditioning, the outcome follows the conditioned stimulus (CS) irre-
spective of any behavioral reaction, and repeated pairing of stimuli with outcomes
leads to a representation of the outcome that is evoked by the stimulus and elicits
the behavioral reaction (Figure 1a). By contrast, instrumental, or operant, con-
ditioning requires the subject to execute a behavioral response; without such re-
sponse there will be no reward. Instrumental conditioning increases the frequency
of those behaviors that are followed by reward by reinforcing stimulus-response
links. Instrumental conditioning allows subjects to influence their environment and
determine their rate of reward.

The behavioral reactions studied classically by Pavlov are vegetative responses
governed by smooth muscle contraction and gland discharge, whereas more recent
Pavlovian tasks also involve reactions of striated muscles. In the latter case, the
final reward usually needs to be collected by an instrumental contraction of striated
muscle, but the behavioral reaction to the CS itself, for example, anticipatory lick-
ing, is not required for the reward to occur and thus is classically conditioned. As
a further emphasis on Pavlovian mechanisms, the individual stimuli in instrumen-
tal tasks that predict rewards are considered to be Pavlovian conditioned. These
distinctions are helpful when trying to understand why the neural mechanisms of
reward prediction reveal strong influences of Pavlovian conditioning.

Three factors govern conditioning, namely contiguity, contingency, and predic-
tion error. Contiguity refers to the requirement of near simultaneity (Figure 1a).
Specifically, a reward needs to follow a CS or response by an optimal interval of
a few seconds, whereas rewards occurring before a stimulus or response do not
contribute to learning (backward conditioning). The contingency requirement pos-
tulates that a reward needs to occur more frequently in the presence of a stimulus
as compared with its absence in order to induce “excitatory” conditioning of the
stimulus (Figure 1b); the occurrence of the CS predicts a higher incidence of re-
ward compared with no stimulus, and the stimulus becomes a reward predictor. By
contrast, if a reward occurs less frequently in the absence of a stimulus, compared
with its presence, the occurrence of the stimulus predicts a lower incidence of re-
ward, and the stimulus becomes a conditioned inhibitor, even though the contiguity



Annu. Rev. Psychol. 2006.57:87-115. Downloaded from arjournals.annualreviews.org
by CALIFORNIA INSTITUTE OF TECHNOLOGY on 12/01/05. For personal use only.

THEORY AND NEUROPHYSIOLOGY OF REWARD

93

4 ™
a Contiguity
CS react us
-~ T i <
4 v,
4 } N N )
b Contingency ¢ Prediction error
10
B Learning =3
S 08— =8
£ o
G 06 ® |
= g
E 044 £
= . Conditioned 8 3
< inhibition 8 AV=aB@-V)
TR TR e
\ p (reward | no stimulus) JAR Trials ---> y

Figure 1 Basic assumptions of animal learning theory defining the behavioral functions
of rewards. (a) Contiguity refers to the temporal proximity of a conditioned stimulus (CS),

or action, and the reward. (b) Contingency refers to the conditional probability of reward
occurring in the presence of a conditioned stimulus as opposed to its absence (modified
from Dickinson 1980). (c¢) Prediction error denotes the discrepancy between an actually
received reward and its prediction. Learning (AV, associative strength) is proportional to the
prediction error (A—V) and reaches its asymptote when the prediction error approaches zero

after several learning trials. All three requirements need to be fulfilled for learning to occur.

US, unconditioned stimulus.

requirement is fulfilled. The crucial role of prediction error is derived from Kamin’s
(1969) blocking effect, which postulates that a reward that is fully predicted does
not contribute to learning, even when it occurs in a contiguous and contingent man-
ner. This is conceptualized in the associative learning rules (Rescorla & Wagner
1972), according to which learning advances only to the extent to which a reinforcer
is unpredicted and slows progressively as the reinforcer becomes more predicted
(Figure 1c). The omission of a predicted reinforcer reduces the strength of the CS
and produces extinction of behavior. So-called attentional learning rules in addition
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relate the capacity to learn (associability) in certain situations to the degree of at-
tention evoked by the CS or reward (Mackintosh 1975, Pearce & Hall 1980).

Approach Behavior

Rewards elicit two forms of behavioral reactions, approach and consumption. This
is because the objects are labeled with appetitive value through innate mechanisms
(primary rewards) or, in most cases, classical or instrumental conditioning, after
which these objects constitute, strictly speaking, conditioned reinforcers (Wise
2002). Nutritional rewards can derive their value from hunger and thirst states, and
satiation of the animal reduces the reward value and consequently the behavioral
reactions.

Conditioned, reward-predicting stimuli also induce preparatory or approach
behavior toward the reward. In Pavlovian conditioning, subjects automatically
show nonconsummatory behavioral reactions that would otherwise occur after the
primary reward and that increase the chance of consuming the reward, as if a part
of the behavioral response has been transferred from the primary reward to the CS
(Pavlovian response transfer).

In instrumental conditioning, a reward can become a goal for instrumental
behavior if two conditions are met. The goal needs to be represented at the time
the behavior is being prepared and executed. This representation should contain a
prediction of the future reward together with the contingency that associates the
behavioral action to the reward (Dickinson & Balleine 1994). Behavioral tests for
the role of “incentive” reward-predicting mechanisms include assessing behavioral
performance in extinction following devaluation of the reward by satiation or
aversive conditioning in the absence of the opportunity to perform the instrumental
action (Balleine & Dickinson 1998). A reduction of behavior in this situation
indicates that subjects have established an internal representation of the reward that
is updated when the reward changes its value. (Performing the action together with
the devalued outcome would result in reduced behavior due to partial extinction,
as the reduced reward value would diminish the strength of the association.) To
test the role of action-reward contingencies, the frequency of “free” rewards in the
absence of the action can be varied to change the strength of association between
the action and the reward and thereby modulate instrumental behavior (Balleine
& Dickinson 1998).

Motivational Valence

Punishers have opposite valence to rewards, induce withdrawal behavior, and act as
negative reinforcers by increasing the behavior that results in decreasing the aver-
sive outcome. Avoidance can be passive when subjects increasingly refrain from
doing something that is associated with a punisher (don’t do it); active avoidance
involves increasing an instrumental response that is likely to reduce the impact of
a punisher (get away from it). Punishers induce negative emotional states of anger,
fear, and panic.
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NEUROPHYSIOLOGY OF REWARD BASED
ON ANIMAL LEARNING THEORY

Primary Reward

Neurons responding to liquid or food rewards are found in a number of brain struc-
tures, such as orbitofrontal, premotor and prefrontal cortex, striatum, amygdala,
and dopamine neurons (Amador et al. 2000, Apicella et al. 1991, Bowman et al.
1996, Hikosaka et al. 1989, Ljungberg et al. 1992, Markowitsch & Pritzel 1976,
Nakamura et al. 1992, Nishijo et al. 1988, Pratt & Mizumori 1998, Ravel et al.
1999, Shidara et al. 1998, Thorpe et al. 1983, Tremblay & Schultz 1999). Satia-
tion of the animal reduces the reward responses in orbitofrontal cortex (Critchley
& Rolls 1996) and in the secondary gustatory area of caudal orbitofrontal cortex
(Rolls et al. 1989), a finding that suggests that the responses reflect the rewarding
functions of the objects and not their taste. Taste responses are found in the primary
gustatory area of the insula and frontal operculum and are insensitive to satiation
(Rolls et al. 1988).

Contiguity

Procedures involving Pavlovian conditioning provide simple paradigms for learn-
ing and allow the experimenter to test the basic requirements of contiguity, con-
tingency, and prediction error. Contiguity can be tested by presenting a reward
1.5-2.0 seconds after an untrained, arbitrary visual or auditory stimulus for sev-
eral trials. A dopamine neuron that responds initially to a liquid or food reward
acquires a response to the CS after some tens of paired CS-reward trials (Figure
2) (Mirenowicz & Schultz 1994, Waelti 2000). Responses to conditioned, reward-
predicting stimuli occur in all known reward structures of the brain, including
the orbitofrontal cortex, striatum, and amygdala (e.g., Hassani et al. 2001, Liu
& Richmond 2000, Nishijo et al. 1988, Rolls et al. 1996, Thorpe et al. 1983,
Tremblay & Schultz 1999). (Figure 2 shows that the response to the reward itself
disappears in dopamine neurons, but this is not a general phenomenon with other
neurons.)

Contingency

The contingency requirement postulates that in order to be involved in reward
prediction, neurons should discriminate between three kinds of stimuli, namely
reward-predicting CSs (conditioned exciters), after which reward occurs more
frequently compared with no CS (Figure 1, top left); conditioned inhibitors, af-
ter which reward occurs less frequently compared with no CS (Figure 15, bottom
right); and neutral stimuli that are not associated with changes in reward frequency
compared with no stimulus (diagonal line in Figure 15). In agreement with these
postulates, dopamine neurons are activated by reward-predicting CSs, show de-
pressions of activity following conditioned inhibitors, which may be accompanied
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by small activations, and hardly respond to neutral stimuli when response gener-
alization is excluded (Figure 3) (Tobler et al. 2003). The conditioned inhibitor in
these experiments is set up by pairing the inhibitor with a reward-predicting CS
while withholding the reward, which amounts to a lower probability of reward in
the presence of the inhibitor compared with its absence (reward-predicting stim-
ulus alone) and thus follows the scheme of Figure 15 (bottom right). Without
conditioned inhibitors being tested, many studies find CS responses that distin-
guish between reward-predicting and neutral stimuli in all reward structures (e.g.,
Aosaki etal. 1994, Hollerman et al. 1998, Kawagoe et al. 1998, Kimura et al. 1984,
Nishijo et al. 1988, Ravel et al. 1999, Shidara et al. 1998, Waelti et al. 2001).

Further tests assess the specificity of information contained in CS responses.
In the typical behavioral tasks used in monkey experiments, the CS may contain
several different stimulus components, namely spatial position; visual object fea-
tures such as color, form, and spatial frequency; and motivational features such as
reward prediction. It would be necessary to establish through behavioral testing
which of these features is particularly effective in evoking a neural response. For
example, neurons in the orbitofrontal cortex discriminate between different CSs
on the basis of their prediction of different food and liquid rewards (Figure 4)
(Critchley & Rolls 1996, Tremblay & Schultz 1999). By contrast, these neurons
are less sensitive to the visual object features of the same CSs, and they rarely
code their spatial position, although neurons in other parts of frontal cortex are
particularly tuned to these nonreward parameters (Rao et al. 1997). CS responses
that are primarily sensitive to the reward features are found also in the amygdala
(Nishijo et al. 1988) and striatum (Hassani et al. 2001). These data suggest that
individual neurons in these structures can extract the reward components from the
multidimensional stimuli used in these experiments as well as in everyday life.

Reward neurons should distinguish rewards from punishers. Different neurons
in orbitofrontal cortex respond to rewarding and aversive liquids (Thorpe et al.
1983). Dopamine neurons are activated preferentially by rewards and reward-
predicting stimuli but are only rarely activated by aversive air puffs and saline
(Mirenowicz & Schultz 1996). In anesthetized animals, dopamine neurons show
depressions following painful stimuli (Schultz & Romo 1987, Ungless et al. 2004).
Nucleus accumbens neurons in rats show differential activating or depressing re-
sponses to CSs predicting rewarding sucrose versus aversive quinine solutions in
a Pavlovian task (Roitman et al. 2005). By contrast, the group of tonically active
neurons of the striatum responds to both rewards and aversive air puffs, but not
to neutral stimuli (Ravel et al. 1999). They seem to be sensitive to reinforcers
in general, without specifying their valence. Alternatively, their responses might
reflect the higher attention-inducing effects of reinforcers compared with neutral
stimuli.

The omission of reward following a CS moves the contingency toward the
diagonal line in Figure 15 and leads to extinction of learned behavior. By analogy,
the withholding of reward reduces the activation of dopamine neurons by CSs
within several tens of trials (Figure 5) (Tobler at al. 2003).
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Figure 2 Testing the contiguity requirement for associative learning: acquisition of neur-
al response in a single dopamine neuron during a full learning episode. Each line of dots
represents a trial, each dot represents the time of the discharge of the dopamine neuron, the
vertical lines indicate the time of the stimulus and juice reward, and the picture above the
raster shows the visual conditioned stimulus presented to the monkey on a computer screen.
Chronology of trials is from top to bottom. The top trial shows the activity of the neuron
while the animal saw the stimulus for the first time in its life, whereas it had previous expe-
rience with the liquid reward. Data from Waelti (2000).
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Figure 3 Testing the contingency requirement for associative learning: responses of
a single dopamine neuron to three types of stimuli. (7op) Activating response to a
reward-predicting stimulus (higher occurrence of reward in the presence as opposed to
absence of stimulus). (Middle) Depressant response to a different stimulus predicting
the absence of reward (lower occurrence of reward in the presence as opposed to
absence of stimulus). (Bottom) Neutral stimulus (no change in reward occurrence after
stimulus). Vertical line and arrow indicate time of stimulus.
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Prediction Error

Just as with behavioral learning, the acquisition of neuronal responses to reward-
predicting CSs should depend on prediction errors. In the prediction error—defining
blocking paradigm, dopamine neurons acquire a response to a CS only when the
CS is associated with an unpredicted reward, but not when the CS is paired with
a reward that is already predicted by another CS and the occurrence of the reward
does not generate a prediction error (Figure 6) (Waelti et al. 2001). The neurons
fail to learn to respond to reward predictors despite the fact that contiguity and
contingency requirements for excitatory learning are fulfilled. These data demon-
strate the crucial importance of prediction errors for associative neural learning and
suggest that learning at the single-neuron level may follow similar rules as those
for behavioral learning. This suggests that some behavioral learning functions may
be carried by populations of single neurons.

Neurons may not only be sensitive to prediction errors during learning, but
they may also emit a prediction error signal. Dopamine neurons, and some neu-
rons in orbitofrontal cortex, show reward activations only when the reward occurs
unpredictably and fail to respond to well-predicted rewards, and their activity is
depressed when the predicted reward fails to occur (Figure 7) (Mirenowicz &
Schultz 1994, Tremblay & Schultz 2000a). This result has prompted the notion
that dopamine neurons emit a positive signal (activation) when an appetitive event
is better than predicted, no signal (no change in activity) when an appetitive event
occurs as predicted, and a negative signal (decreased activity) when an appetitive
event is worse than predicted (Schultz et al. 1997). In contrast to this bidirectional
error signal, some neurons in the prefrontal, anterior, and posterior cingulate cor-
tex show a unidirectional error signal upon activation when a reward fails to occur
because of a behavioral error of the animal (Ito et al. 2003, McCoy et al. 2003,
Watanabe 1989; for review of neural prediction errors, see Schultz & Dickinson
2000).

More stringent tests for the neural coding of prediction errors include formal
paradigms of animal learning theory in which prediction errors occur in spe-
cific situations. In the blocking paradigm, the blocked CS does not predict a
reward. Accordingly, the absence of a reward following that stimulus does not
produce a prediction error nor a response in dopamine neurons, and the deliv-
ery of a reward does produce a positive prediction error and a dopamine re-
sponse (Figure 8a; left) (Waelti et al. 2001). By contrast, after a well-trained,

Figure 4 Reward discrimination in orbitofrontal cortex. (a) A neuron responding to
the instruction cue predicting grenadine juice (leff) but not apple juice (right), irre-
spective of the left or right position of the cue in front of the animal. (b) A different
neuron responding to the cue predicting grape juice (leff) but not orange juice (right),
irrespective of the picture object predicting the juice. From Tremblay & Schultz 1999,
© Nature MacMillan Publishers.
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Figure 5 Loss of response in dopamine neuron to the conditioned stimulus fol-
lowing withholding of reward. This manipulation violates the contiguity require-
ment (co-occurrence of reward and stimulus) and produces a negative prediction
error that brings down the associative strength of the stimulus. The contingency
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moves toward the neutral situation. Data from Tobler et al. (2003).
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Figure 6 Acquisition of dopamine response to reward-predicting stimulus is gov-
erned by prediction error. Neural learning is blocked when the reward is predicted
by another stimulus (/eft) but is intact in the same neuron when reward is unpre-
dicted in control trials with different stimuli (right). The neuron has the capacity to
respond to reward-predicting stimuli (fop left) and discriminates against unreward-
ed stimuli (fop right). The addition of a second stimulus results in maintenance and
acquisition of response, respectively (middle). Testing the added stimulus reveals
absence of learning when the reward is already predicted by a previously condi-
tioned stimulus (bottom left). Data from Waelti et al. (2001).



Annu. Rev. Psychol. 2006.57:87-115. Downloaded from arjournals.annualreviews.org
by CALIFORNIA INSTITUTE OF TECHNOLOGY on 12/01/05. For personal use only.

100 SCHULTZ

4 oo ' L o P R T R R T
oA a0 P T T I ' o R . ' © o
) R ' T FE S T e s N :
T R R [ T T R T v T T T f

ey R ) ' . I T ' . v I T R T R R
1o le aa ' s [ T I T R S R s : : I
. TR Toran e orrrea e x| R ] e
e P I T T T S ron P T R A R R
DS U T T I v ' [ f f ' '
o Vo I P R TR T T T T S S T R
B IR s f f h h ' I : .
[ T e ot ora]mr e s v T N e N A R I L T P
. I [ v . e Voo ' T
IR [ . v ' I -1 Vo o :
I oams r s o xala aa P T . BooEmes ' v
w4l 1 o . . T 1 a1 ' Ol - I . ' '
d e s e T g ] . ' I e e '
I rm s s e ' f 1o : I oroer ' ' I 1
Ve D1 R ] f | rero1 o v v
QAR TN R ) ' ' [ T Vo a1 '
[t 1 1 ate h s [ e s Ve e [ T T TR '
[ I T T S S R o1 P Y I ©oar 1 f f [
‘: vl Coce o o f R} ' P Ter
IS B T ' AR R ) 1 vaoa ' P B T Ve
P ER P I . v I I ' Vs v
' 1 T RN [ T T ¢ oo ' f ' ) ’ '
T n poar e e a0 Y . ' ¢ 0 oo f e e ' f
Eour o ' . ' ' . o [T e o o 3 o .
PR TR [ ISR s . h ORI T o Vs
Pl rrr ot oanoae v T rm ' f . v PR . ' .
[ tu . T : T e ) ' Vo f oo g .
T P PR N f f f f v v e :
U PR PR Y S R f ' [T T T IR
[ ] IR ) ' f ' e h v maa ' ' [
CE T RS T PR T T T R f . e
TR . o ' ' . f [ Yo ' f '
Iv 19 P U O PSR A S TR v ' v . ' 1
' f a1 o1 o P s e 1 ar . ' f
LR LI R R T T o 1 . . 1 ' () e ¢ i
N A L R R T ' 11 ' T : [
e I‘II 11 o1 111 v v 1 ' v e 1 1 PR v ' oo v
] e ' : [ S T . v T v than ] s '
1w T a1 . ' raoe . PR . I
. Teeon e a1 T ¢ troan ’ ' ' T T R ©oar o0
o [ TN EY U ' v PR . P e f
T T T T T T T 1

CSon CS off Reward

Figure 7 Dopamine response codes temporal reward prediction error. (a, ¢, €) No response
to reward delivered at habitual time. (b) Delay in reward induces depression at previous
time of reward, and activation at new reward time. (d) Precocious reward delivery induces
activation at new reward time, but no depression at previous reward time. Trial sequence is
from top to bottom. Data from Hollerman & Schultz (1998). CS, conditioned stimulus.

reward-predicting CS, reward omission produces a negative prediction error and a
depressant neural response, and reward delivery does not lead to a prediction error
or a response in the same dopamine neuron (Figure 8a; right). In a conditioned
inhibition paradigm, the conditioned inhibitor predicts the absence of reward, and
the absence of reward after this stimulus does not produce a prediction error or a
response in dopamine neurons, even when another, otherwise reward-predicting
stimulus is added (Figure 8b) (Tobler at al. 2003). By contrast, the occurrence
of reward after an inhibitor produces an enhanced prediction error, as the predic-
tion error represents the difference between the actual reward and the negative
prediction from the inhibitor, and the dopamine neuron shows a strong response
(Figure 8b; bottom). Taken together, these data suggest that dopamine neurons
show bidirectional coding of reward prediction errors, following the equation

Dopamine response = Reward occurred — Reward predicted.

This equation may constitute a neural equivalent for the prediction error term
of (A-V) of the Rescorla-Wagner learning rule. With these characteristics, the
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Figure 8 Coding of prediction errors by dopamine neurons in specific paradigms.
(a) Blocking test. Lack of response to absence of reward following the blocked stimulus,
but positive signal to delivery of reward (leff), in contrast to control trials with a learned
stimulus (right). Data from Waelti et al. 2001. (b) Conditioned inhibition task. Lack of
response to absence of reward following the stimulus predicting no reward (top), even if
the stimulus is paired with an otherwise reward-predicting stimulus (R, middle, summation
test), but strong activation to reward following a stimulus predicting no reward (bottom).
These responses contrast with those following the neutral control stimulus (right). Data
from Tobler et al. (2003).
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Figure 9 Time information contained in predictions acting on dopamine neu-
rons. In the particular behavioral task, the probability of reward, and thus the
reward prediction, increases with increasing numbers of trials after the last
reward, reaching p = 1.0 after six unrewarded trials. Accordingly, the positive
dopamine error response to a rewarding event decreases over consecutive trials
(upper curve), and the negative response to a nonrewarding event becomes more
prominent (lower curve). Data are averaged from 32 dopamine neurons studied
by Nakahara et al. (2004), © Cell. Press.
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Figure 12 A hypothetical concave utility function. EV, expected value (5 in both gambles
with outcomes of 1 and 9, and 4 and 6); EU, expected utility. See text for description.
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bidirectional dopamine error response would constitute an ideal teaching signal
for neural plasticity.

The neural prediction error signal provides an additional means to investigate
the kinds of information contained in the representations evoked by CSs. Time
apparently plays a major role in behavioral learning, as demonstrated by the un-
blocking effects of temporal variations of reinforcement (Dickinson et al. 1976).
Figure 7 shows that the prediction acting on dopamine neurons concerns the ex-
act time of reward occurrence. Temporal deviations induce a depression when
the reward fails to occur at the predicted time (time-sensitive reward omission
response), and an activation when the reward occurs at a moment other than pre-
dicted (Hollerman & Schultz 1998). This time sensitivity also explains why neural
prediction errors occur at all in the laboratory in which animals know that they will
receive ample quantities of reward but without knowing when exactly the reward
will occur. Another form of time representation is revealed by tests in which the
probability of receiving a reward after the last reward increases over consecutive
trials. Thus, the animal’s reward prediction should increase after each unrewarded
trial, the positive prediction error with reward should decrease, and the negative
prediction error with reward omission should increase. In line with this reasoning,
dopamine neurons show progressively decreasing activations to reward delivery
as the number of trials since the last reward increases, and increasing depressions
in unrewarded trials (Figure 9) (Nakahara et al. 2004). The result suggests that,
for the neurons, the reward prediction in the CS increases after every unrewarded
trial, due to the temporal profile of the task evoked by the CS, and contradicts
an assumption from temporal difference reinforcement modeling that the pre-
diction error of the preceding unrewarded trial would reduce the current reward
prediction in the CS, in which case the neural prediction error responses should
increase, which is the opposite to what is actually observed (although the authors
attribute the temporal conditioning to the context and have the CS conform to the
temporal difference model). The results from the two experiments demonstrate
that dopamine neurons are sensitive to different aspects of temporal information
evoked by reward-predicting CSs and demonstrate how experiments based on spe-
cific behavioral concepts, namely prediction error, reveal important characteristics
of neural coding.

The uncertainty of reward is a major factor for generating the attention that
determines learning according to the associability learning rules (Mackintosh 1975,
Pearce & Hall 1980). When varying the probability of reward in individual trials
from O to 1, reward becomes most uncertainatp = 0.5, as it is mostunclear whether
or not a reward will occur. (Common perception might say that reward is even more
uncertain at p = 0.25; however, at this low probability, it is nearly certain that
reward will not occur.) Dopamine neurons show a slowly increasing activation
between the CS and reward that is maximal at p = 0.5 (Fiorillo et al. 2003). This
response may constitute an explicit uncertainty signal and is different in time and
occurrence from the prediction error response. The response might contribute to
a teaching signal in situations defined by the associability learning rules.
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Approach Behavior and Goal Directedness

Many behavioral tasks in the laboratory involve more than a CS and a reward
and comprise instrumental ocular or skeletal reactions, mnemonic delays between
instruction cues and behavioral reactions, and delays between behavioral reactions
and rewards during which animals can expect the reward.

Appropriately conditioned stimuli can evoke specific expectations of reward,
and phasic neural responses to these CSs may reflect the process of evocation
(see above). Once the representations have been evoked, their content can influ-
ence the behavior during some time. Neurons in a number of brain structures
show sustained activations after an initial CS has occurred. The activations arise
usually during specific epochs of well-differentiated instrumental tasks, such as
during movement preparation (Figure 10a) and immediately preceding the reward
(Figure 10b), whereas few activations last during the entire period between CS
and reward. The activations differentiate between reward and no reward, between
different kinds of liquid and food reward, and between different magnitudes of
reward. They occur in all trial types in which reward is expected, irrespective of
the type of behavioral action (Figure 10). Thus, the activations appear to represent
reward expectations. They are found in the striatum (caudate, putamen, ventral
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Figure 10 Reward expectation in the striatum. (a) Activation in a caudate neuron preceding
the stimulus that triggers the movement or nonmovement reaction in both rewarded trial types
irrespective of movement, but not in unrewarded movement trials. (b) Activation in a putamen
neuron preceding the delivery of liquid reward in both rewarded trial types, but not before
the reinforcing sound in unrewarded movement trials. Data from Hollerman et al. (1998).
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striatum), amygdala, orbitofrontal cortex, dorsolateral prefrontal cortex, anterior
cingulate, and supplementary eye field (Amador et al. 2000, Apicella et al. 1992,
Cromwell & Schultz 2003, Hikosaka et al. 1989, Hollerman et al. 1998, Pratt &
Mizumori 2001, Schoenbaum et al. 1998, Schultz et al. 1992, Shidara & Richmond
2002, Tremblay & Schultz 1999, 2000a, Watanabe 1996, Watanabe et al. 2002).
Reward expectation-related activity in orbitofrontal cortex and amygdala develops
as the reward becomes predictable during learning (Schoenbaum et al. 1999). In
learning episodes with pre-existing reward expectations, orbitofrontal and striatal
activations occur initially in all situations but adapt to the currently valid expec-
tations, for example when novel stimuli come to indicate rewarded versus unre-
warded trials. The neural changes occur in parallel with the animal’s behavioral
differentiation (Tremblay et al. 1998, Tremblay & Schultz 2000b).

In some neurons, the differential reward expectation-related activity discrim-
inates in addition between different behavioral responses, such as eye and limb
movements toward different spatial targets and movement versus nonmovement
reactions (Figure 11). Such neurons are found in the dorsolateral prefrontal cor-
tex (Kobayashi et al. 2002, Matsumoto et al. 2003, Watanabe 1996) and striatum
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Figure 11 Potential neural mechanisms underlying goal-directed behavior. (a) Delay ac-
tivity of a neuron in primate prefrontal cortex that encodes, while the movement is being
prepared, both the behavioral reaction (left versus right targets) and the kind of outcome ob-
tained for performing the action. From Watanabe (1996), © Nature MacMillan Publishers.
(b) Response of a caudate neuron to the movement-triggering stimulus exclusively in unre-
warded trials, thus coding both the behavioral reaction being executed and the anticipated
outcome of the reaction. Data from Hollerman et al. (1998).
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(Cromwell & Schultz 2003, Hassani et al. 2001, Hollerman et al. 1998, Kawagoe
et al. 1998). The activations occur during task epochs related to the preparation
and execution of the movement that is performed in order to obtain the reward.
They do not simply represent outcome expectation, as they differentiate between
different behavioral reactions despite the same outcome (Figure 11a, left versus
right; Figure 115, movement versus nonmovement), and they do not simply reflect
different behavioral reactions, as they differentiate between the expected outcomes
(Figure 11a,b, top versus bottom). Or, expressed in another way, the neurons show
differential, behavior-related activations that depend on the outcome of the trial,
namely reward or no reward and different kinds and magnitudes of reward. The
differential nature of the activations develops during learning while the different re-
ward expectations are being acquired, similar to simple reward expectation-related
activity (Tremblay et al. 1998).

It is known that rewards have strong attention-inducing functions, and reward-
related activity in parietal association cortex might simply reflect the known
involvement of these areas in attention (Maunsell 2004). It is often tedious to
disentangle attention from reward, but one viable solution would be to test neu-
rons for specificity for reinforcers with opposing valence while keeping the levels
of reinforcement strength similar for rewards and punishers. The results of such
tests suggest that dopamine neurons and some neurons in orbitofrontal cortex dis-
criminate between rewards and aversive events and thus report reward-related but
not attention-related stimulus components (Mirenowicz & Schultz 1996, Thorpe
et al. 1983). Also, neurons showing increasing activations with decreasing reward
value or magnitude are unlikely to reflect the attention associated with stronger re-
wards. Such inversely related neurons exist in the striatum and orbitofrontal cortex
(Hassani et al. 2001, Hollerman et al. 1998, Kawagoe et al. 1998, Watanabe 1996).

General learning theory suggests that Pavlovian associations of reward-pre-
dicting stimuli in instrumental tasks relate either to explicit CSs or to contexts.
The neural correlates of behavioral associations with explicit stimuli may not only
involve the phasic responses to CSs described above but also activations at other
task epochs. Further neural correlates of Pavlovian conditioning may consist of
the sustained activations that occur during the different task periods preceding
movements or rewards (Figure 10), which are only sensitive to reward parameters
and not to the types of behavioral reactions necessary to obtain the rewards.

Theories of goal-directed instrumental behavior postulate that in order to con-
sider rewards as goals of behavior, there should be (a) an expectation of the out-
come at the time of the behavior that leads to the reward, and (b) a representation
of the contingency between the instrumental action and the outcome (Dickinson &
Balleine 1994). The sustained, reward-discriminating activations may constitute
a neural mechanism for simple reward expectation, as they reflect the expected
reward without differentiating between behavioral reactions (Figure 10). How-
ever, these activations are not fully sufficient correlates for goal-directed behavior,
as the reward expectation is not necessarily related to the specific action that
results in the goal being attained; rather, it might refer to an unrelated reward



Annu. Rev. Psychol. 2006.57:87-115. Downloaded from arjournals.annualreviews.org
by CALIFORNIA INSTITUTE OF TECHNOLOGY on 12/01/05. For personal use only.

THEORY AND NEUROPHYSIOLOGY OF REWARD 105

that occurs in parallel and irrespective of the action. Such a reward would not
constitute a goal of the action, and the reward-expecting activation might sim-
ply reflect the upcoming reward without being involved in any goal mechanism.
By contrast, reward-expecting activations might fulfill the second, more stringent
criterion if they are also specific for the action necessary to obtain the reward.
These reward-expecting activations differentiate between different behavioral acts
and arise only under the condition that the behavior leading to the reward is be-
ing prepared or executed (Figure 11). Mechanistically speaking, the observed
neural activations may be the result of convergent neural coding of reward and
behavior, but from a theoretical point, the activations could represent evidence for
neural correlates of goal-directed mechanisms. To distinguish between the two
possibilities, it would be helpful to test explicitly the contingency requirement by
varying the probabilities of reward in the presence versus absence of behavioral
reactions. Further tests could employ reward devaluations to distinguish between
goal-directed and habit mechanisms, as the relatively more simple habits might
also rely on combined neural mechanisms of expected reward and behavioral action
but lack the more flexible representations of reward that are the hallmark of goal
mechanisms.

REWARD FUNCTIONS DEFINED BY
MICROECONOMIC UTILITY THEORY

How can we compare apples and pears? We need a numerical scale in order to
assess the influence of different rewards on behavior. A good way to quantify
the value of individual rewards is to compare them in choice behavior. Given
two options, I would choose the one that at this moment has the higher value
for me. Give me the choice between a one-dollar bill and an apple, and you will
see which one I prefer and thus my action will tell you whether the value of the
apple for me is higher or lower or similar compared with one dollar. To be able
to put a quantifiable, numerical value onto every reward, even when the value is
short-lived, has enormous advantages for getting reward-related behavior under
experimental control.

To obtain a more complete picture, we need to take into account the uncertainty
with which rewards frequently occur. One possibility would be to weigh the value
of individual rewards with the probability with which they occur, an approach
taken by Pascal ca. 1650. The sum of the products of each potential reward and
its probability defines the expected value (EV) of the probability distribution and
thus the theoretically expected payoff of an option, according to

EV= Z (pi - Xi); i = 1,n; n = number of rewards.
i
With increasing numbers of trials, the measured mean of the actually occurring

distribution will approach the expected value. Pascal conjectured that human choice
behavior could be approximated by this procedure.
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Despite its advantages, expected value theory has limits when comparing very
small with very large rewards or when comparing values at different start positions.
Rather than following physical sizes of reward value in a linear fashion, human
choice behavior in many instances increases more slowly as the values get higher,
and the term of utility, or in some cases prospect, replaces the term of value
when the impact of rewards on choices is assessed (Bernoulli 1738, Kahneman
& Tversky 1984, Savage 1954, von Neumann & Morgenstern 1944). The utility
function can be modeled by various equations (for detailed descriptions, see Gintis
2000, Huang & Litzenberger 1988), such as

1. The logarithmic utility function, u(x) = In(x), yields a concave curve similar
to the Weber (1850) function of psychophysics.

2. The power utility function, u(x) = x*. With a € (0,1), and often a € [0.66,
0.75], the function is concave and resembles the power law of psychophysics
(Stevens 1957). By contrast, a = 1.0 produces a linear function in which
utility (value) = value. With a > 1, the curve becomes convex and increases
faster toward higher values.

3. The exponential utility function, u(x) = 1 - e bx, produces a concave func-
tion for b € (0,1).

4. With the weighted reward value being expressed as utility, the expected value
of a gamble becomes the expected utility (EU) according to

EU = Z (pi - u(xj));i = 1, n;n = number of rewards.

Assessing the expected utility allows comparisons between gambles that have
several outcomes with different values occurring at different probabilities. Note
that a gamble with a single reward occurring at a p < 1 actually has two out-
comes, the reward occurring with p and the nonreward with (1 — p). A gamble
with only one reward at p = 1.0 is called a safe option. Risk refers simply to
known probabilities of < 1.0 and does not necessarily involve loss. Risky gambles
have known probabilities; ambiguous gambles have probabilities unknown to the
agent.

The shape of the utility function allows us to deal with the influence of un-
certainty on decision-making. Let us assume an agent whose decision making is
characterized by a concave utility function, as shown in Figure 12, who performs
in a gamble with two outcomes of values 1 and 9 at p = 0.5 each (either the
lower or the higher outcome will occur, with equal probability). The EV of the
gamble is 5 (vertical dotted line), and the utility u(EV) (horizontal dotted line)
lies between u(1) and u(9) (horizontal lines). Interestingly, u(EV) lies closer to
u(9) than to u(1), suggesting that the agent foregoes more utility when the gamble
produces u(1) than she wins with u(9) over u(EV). Given that outcomes 1 and 9
occur with the same frequency, this agent would profit more from a safe reward
at EV, with u(EV), over the gamble. She should be risk averse. Thus, a concave
utility function suggests risk aversion, whereas a convex function, in which an
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agent foregoes less reward than she wins, suggests risk seeking. Different agents
with different attitudes toward risk have differently shaped utility functions.

A direct measure of the influence of uncertainty is obtained by considering
the difference between u(EV) and the EU of the gamble. The EU in the case of
equal probabilities is the mean of u(1) and u(9), as marked by EU(1-9), which is
considerably lower than u(EV) and thus indicates the loss in utility due to risk. By
comparison, the gamble of 4 and 6 involves a smaller range of reward magnitudes
and thus less risk and less loss due to uncertainty, as seen by comparing the vertical
bars associated with EU(4-6) and EU(1-9). This graphical analysis suggests that
value and uncertainty of outcome can be considered as separable measures.

A separation of value and uncertainty as components of utility can be achieved
mathematically by using, for example, the negative exponential utility function
often employed in financial mathematics. Using the exponential utility function
for EU results in

EU = ) (pi-—e "),
i

which can be developed by the Laplace transform into

EU :_efb (EV—b/2-var)

where EV is expected value, var is variance, and the probability distribution pi
is Gaussian. Thus, EU is expressed as f(EV, variance). This procedure uses vari-
ance as a measure of uncertainty. Another measure of uncertainty is the entropy
of information theory, which might be appropriate to use when dealing with infor-
mation processing in neural systems, but entropy is not commonly employed for
describing decision making in microeconomics.

Taken together, microeconomic utility theory has defined basic reward parame-
ters, such as magnitude, probability, expected value, expected utility, and variance,
that can be used for neurobiological experiments searching for neural correlates
of decision making under uncertainty.

NEUROPHYSIOLOGY OF REWARD BASED ON
ECONOMIC THEORY

Magnitude

The easiest quantifiable measure of reward for animals is the volume of juice,
which animals can discriminate in submilliliter quantities (Tobler et al. 2005).
Neurons show increasing responses to reward-predicting CSs with higher volumes
of reward in a number of reward structures, such as the striatum (Cromwell &
Schultz 2003) (Figure 13a), dorsolateral and orbital prefrontal cortex (Leon &
Shadlen 1999, Roesch & Olson 2004, Wallis & Miller 2003), parietal and posterior
cingulate cortex (McCoy et al. 2003, Musallam et al. 2004, Platt & Glimcher 1999),
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and dopamine neurons (Satoh et al. 2003, Tobler et al. 2005). Similar reward
magnitude—discriminating activations are found in these structures in relation to
other task events, before and after reward delivery. Many of these studies also report
decreasing responses with increasing reward magnitude (Figure 13b), although
not with dopamine neurons. The decreasing responses are likely to reflect true
magnitude discrimination rather than simply the attention induced by rewards,
which should increase with increasing magnitude.

Recent considerations cast doubt on the nature of some of the reward magnitude—
discriminating, behavior-related activations, in particular in structures involved in
motor and attentional processes, such as the premotor cortex, frontal eye fields,
supplementary eye fields, parietal association cortex, and striatum. Some reward-
related differences in movement-related activations might reflect the differences
in movements elicited by different reward magnitudes (Lauwereyns et al. 2002,
Roesch & Olson 2004). A larger reward might make the animal move faster, and
increased neural activity in premotor cortex with larger reward might reflect the
higher movement speed. Although a useful explanation for motor structures, the
issue might be more difficult to resolve for areas more remote from motor output,
such as prefrontal cortex, parietal cortex, and caudate nucleus. It would be help-
ful to correlate reward magnitude—discriminating activity in single neurons with
movement parameters, such as reaction time and movement speed, and, separately,
with reward parameters, and see where higher correlations are obtained. However,
the usually measured movement parameters may not be sensitive enough to make
these distinctions when neural activity varies relatively little with reward magni-
tude. On the other hand, inverse relationships, such as higher neural activity for
slower movements associated with smaller rewards, would argue against a pri-
marily motor origin of reward-related differences, as relatively few neurons show
higher activity with slower movements.

Probability

Simple tests for reward probability involve CSs that differentially predict the prob-
ability with which a reward, as opposed to no reward, will be delivered for trial
completion in Pavlovian or instrumental tasks. Dopamine neurons show increasing
phasic responses to CSs that predict reward with increasing probability (Fiorillo
et al. 2003, Morris et al. 2004). Similar increases in task-related activity occur
in parietal cortex and globus pallidus during memory and movement-related task
periods (Arkadir et al. 2004, Musallam et al. 2004, Platt & Glimcher 1999). How-
ever, reward-responsive tonically active neurons in the striatum do not appear to be
sensitive to reward probability (Morris et al. 2004), indicating that not all neurons
sensitive to reward may code its value in terms of probability. In a decision-making
situation with varying reward probabilities, parietal neurons track the recently ex-
perienced reward value, indicating a memory process that would provide important
input information for decision making (Sugrue et al. 2004).
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reward delivery

reward omission
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Trial after unrewarded trial

Impulses/s above background

Figure 9 Time information contained in predictions acting on dopamine neu-
rons. In the particular behavioral task, the probability of reward, and thus the
reward prediction, increases with increasing numbers of trials after the last
reward, reaching p = 1.0 after six unrewarded trials. Accordingly, the positive
dopamine error response to a rewarding event decreases over consecutive trials
(upper curve), and the negative response to a nonrewarding event becomes more
prominent (lower curve). Data are averaged from 32 dopamine neurons studied
by Nakahara et al. (2004), © Cell. Press.
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Figure 12 A hypothetical concave utility function. EV, expected value (5 in both gambles
with outcomes of 1 and 9, and 4 and 6); EU, expected utility. See text for description.
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Figure 13  Discrimination of reward magnitude by striatal neurons. (a) Increasing
response in a caudate neuron to instruction cues predicting increasing magnitudes of reward
(0.12, 0.18, 0.24 ml). (b) Decreasing response in a ventral striatum neuron to rewards with
increasing volumes. Data from Cromwell & Schultz 2003.
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Expected Value

Parietal neurons show increasing task-related activations with both the magnitude
and probability of reward that do not seem to distinguish between the two compo-
nents of expected value (Musallam et al. 2004). When the two value parameters
are tested separately and in combination, dopamine neurons show monotonically
increasing responses to CSs that predict increasing value (Tobler et al. 2005). The
neurons fail to distinguish between magnitude and probability and seem to code
their product (Figure 14a). However, the neural noise inherent in the stimulus-
response relationships makes it difficult to determine exactly whether dopamine
neurons encode expected value or expected utility. In either case, it appears as if
neural responses show a good relationship to theoretical notions of outcome value
that form a basis for decision making.

Uncertainty

Normalized activation

Graphical analysis and application of the Laplace transform on the exponential util-
ity function would permit experimenters to separate the components of expected
value and utility from the uncertainty inherent in probabilistic gambles. Would the
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Figure 14 Separate coding of reward value and uncertainty in dopamine neurons. (a) Phasic
response to conditioned, reward-predicting stimuli scales with increasing expected value (EV,
summed magnitude x probability). Data points represent median responses normalized to
response to highest EV (animal A, 57 neurons; animal B, 53 neurons). Data from Tobler
et al. (2005). (b) Sustained activation during conditioned stimulus-reward interval scales
with increasing uncertainty, as measured by variance. Two reward magnitudes are delivered
atp = 0.5 each (0.05-0.15, 0.15-0.5 ml, 0.05-0.5 ml). Ordinate shows medians of changes
above background activity from 53 neurons. Note that the entropy stays 1 bit for all three
probability distributions. Data from Fiorillo et al. (2003).
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brain be able to produce an explicit signal that reflects the level of uncertainty,
similar to producing a reward signal? For both reward and uncertainty, there are no
specialized sensory receptors. A proportion of dopamine neurons show a sustained
activation during the CS-reward interval when tested with CSs that predict reward
at increasing probabilities, as opposed to no reward. The activation is highest for
reward at p = 0.5 and progressively lower for probabilities further away from
p = 0.5 in either direction (Fiorillo et al. 2003). The activation does not occur
when reward is substituted by a visual stimulus. The activations appear to fol-
low common measures of uncertainty, such as statistical variance and entropy,
both of which are maximal at p = 0.5. Most of the dopamine neurons signal-
ing reward uncertainty also show phasic responses to reward-predicting CSs that
encode expected value, and the two responses coding different reward terms are
not correlated with each other. When in a refined experiment two different reward
magnitudes alternate randomly (each at p = 0.5), dopamine neurons show the
highest sustained activation when the reward range is largest, indicating a rela-
tionship to the statistical variance and thus to the uncertainty of the reward (Figure
14D). In a somewhat comparable experiment, neurons in posterior cingulate cortex
show increased task-related activations as animals choose among rewards with
larger variance compared with safe options (McCoy & Platt 2003). Although only
a beginning, these data suggest that indeed the brain may produce an uncertainty
signal about rewards that could provide essential information when making de-
cisions under uncertainty. The data on dopamine neurons suggest that the brain
may code the expected value separately from the uncertainty, just as the two terms
constitute separable components of expected utility when applying the Laplace
transform on the exponential utility function.

CONCLUSIONS

Itis intuitively simple to understand that the use of well-established behavioral the-
ories can only be beneficial when working with mechanisms underlying behavioral
reactions. Indeed, these theories can very well define the different functions of re-
wards on behavior. It is then a small step on firm ground to base the investigation of
neural mechanisms underlying the different reward functions onto the phenomena
characterized by these theories. Although each theory has its own particular em-
phasis, they deal with the same kinds of outcome events of behavior, and it is more
confirmation than surprise to see that many neural reward mechanisms can be com-
monly based on, and understood with, several theories. For the experimenter, the
use of different theories provides good explanations for an interesting spectrum of
reward functions that may not be so easily accessible by using only a single theory.
For example, it seems that uncertainty plays a larger role in parts of microeconomic
theory than in learning theory, and the investigation of neural mechanisms of un-
certainty in outcomes of behavior can rely on several hundred years of thoughts
about decision making (Pascal 1650 in Glimcher 2003, Bernoulli 1738).
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