skip to primary navigationskip to content
 

Evolution of mechanotransduction machinery

Supervisor: Nick Brown

Cell adhesion is key to the development and function of multicellular organisms. Cell surface adhesion receptors are linked to the cytoskeleton with special machinery that can become stronger as force is exerted on it by the movements of the cell. Key components of this machinery include the proteins talin and vinculin. This project is focused on discovering how this mechanotransduction machinery evolved and functions in diverse processes. A variety of experimental biology approaches will be used, including, molecular and synthetic biology, advanced imaging and CRISPR/Cas mediated genetic modification.

Relevant references

Maartens AP, Brown NH. (2015) The many faces of cell adhesion during Drosophila muscle development. Dev Biol. 401, 62-74.

Klapholz B, Herbert SL, Wellmann J, Johnson R, Parsons M, Brown NH. (2015) Alternative mechanisms for talin to mediate integrin function. Curr Biol. 2015 25, 847-857

Maartens AP, Wellmann J, Wictome E, Klapholz B, Green H, Brown NH. (2016) Drosophila vinculin is more harmful when hyperactive than absent, and can circumvent integrin to form adhesion complexes. J Cell Sci. in press

 

RSS Feed Latest news

New Academic promotions for PDN members

Jun 16, 2017

The General Board on Senior Academic Promotions has new established positions for three PDN members.

Human reproduction likely to be more efficient than previously thought

Jun 13, 2017

How difficult is it to conceive? According to a widely-held view, fewer than one in three embryos make it to term, but a new study from Gavin Jarvis suggests that human embryos are not as susceptible to dying in the first weeks after fertilisation as often claimed.

View all news